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Abstract

Background

Malaria is an important cause of morbidity and mortality in malaria endemic countries. The

malaria mosquito vectors depend on environmental conditions, such as temperature and

rainfall, for reproduction and survival. To investigate the potential for weather driven early

warning systems to prevent disease occurrence, the disease relationship to weather condi-

tions need to be carefully investigated. Where meteorological observations are scarce, sat-

ellite derived products provide new opportunities to study the disease patterns depending

on remotely sensed variables. In this study, we explored the lagged association of Normal-

ized Difference Vegetation Index (NVDI), day Land Surface Temperature (LST) and precipi-

tation on malaria mortality in three areas in Western Kenya.

Methodology and Findings

The lagged effect of each environmental variable on weekly malaria mortality was modeled

using a Distributed Lag Non Linear Modeling approach. For each variable we constructed a

natural spline basis with 3 degrees of freedom for both the lag dimension and the variable.

Lag periods up to 12 weeks were considered. The effect of day LST varied between the

areas with longer lags. In all the three areas, malaria mortality was associated with precipi-

tation. The risk increased with increasing weekly total precipitation above 20 mm and peak-

ing at 80 mm. The NDVI threshold for increased mortality risk was between 0.3 and 0.4 at

shorter lags.

Conclusion

This study identified lag patterns and association of remote- sensing environmental factors

and malaria mortality in three malaria endemic regions in Western Kenya. Our results show

that rainfall has the most consistent predictive pattern to malaria transmission in the

endemic study area. Results highlight a potential for development of locally based early
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warning forecasts that could potentially reduce the disease burden by enabling timely con-

trol actions.

Introduction
Malaria is the most important vector-borne disease in the world contributing to high morbidity
and mortality especially in children and pregnant women. Africa bears the greatest burden of
the disease accounting for 80% of the 207 million estimated malaria cases reported worldwide
in 2012 [1]. In 2012, Kenya was among the 18 countries in Africa that contributed 80% of esti-
mated global malaria deaths [1]. Global concerted efforts to curb the disease in Africa has
resulted in reductions on malaria mortality rates by 49% in all ages and 54% in children under
five years between the years 2000 and 2012 [1]. A study looking at age-specific malaria mortal-
ity rates in two malaria endemic districts in Western Kenya conducted by the Kenya Medical
Research Institute and United States Centre for Disease Control (KEMRI/CDC) followed in
Health and Demographic Surveillance Systems (HDSS) between the years 2003 and 2010
reported 67% reduction in malaria mortality rates in all ages and 72% reduction in children
under five years of age [2]. The massive reductions were attributed to the high prevalence of
household bed net ownership of 81%.

Despite these gains in mortality reduction, malaria still contributes to high morbidity and
hospital admissions in the region stressing the limited available resources. Control and eradica-
tion of malaria is critical for the achievement of Millennium Development Goal four which
requires two thirds reduction in child mortality by 2015. The KEMRI/CDC HDSS area lies in
the region in Western Kenya that has high malaria parasite prevalence of 38% in children less
than 15 years. Malaria with a mortality fraction of 30% is the leading cause of death in children
below five years [3]. The region experience continuous, but seasonally varying malaria
transmission.

Natural and human modified environments interact to create suitable conditions for high
mosquito vector abundance. Malaria incidence increases for households near swampy areas,
and where there are agricultural activities such as banana and cacao farming [4, 5]. Similar in
Kenya highlands, malaria incidence and larval presence tend to increase in close proximity to
swampy areas or streams, and near agricultural lands such as tea plantations [6, 7]. In one
study, topological wetness index predicted household malaria risk better than land use [7]. In a
lowland region of Western Kenya, it was shown that land cover including mature maize, freshly
cultivated lands and newly pasteurized grasslands were associated with anopheles larval pres-
ence [8].

Rainfall results in pools of water, which provide suitable breeding sites for vectors while
temperature determines development of the anophelesmosquitoes, adult mosquito biting and
mortality rates [9, 10]. In a previous analysis [11], lagged values of weekly mean temperature
and total rainfall up to 16 weeks were assessed for their association with malaria mortality
among children in KEMRI/CDC HDSS area. Rainfall and temperature data were obtained
from Kisumu airport weather station which is approximately 60 km from the study area. This
was prompted by unavailability of reliable ground weather data for the study area. Unavailabil-
ity of weather data at appropriate spatial and temporal scales is experienced in many low-
income countries thus limiting estimation of risk of weather and climate-sensitive diseases
such as malaria [12]. Therefore in this study, we used satellite derived remote sensing data
which is obtained when satellites orbiting the earth picks light or electromagnetic radiations
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from objects on earth’s surface or from earth itself [13]. For example, NDVI is calculated by
using near infrared (NIR) channel and visible light absorbed by vegetation. The index varies
from -1 to 1. Negative values indicate water bodies while 1 shows the highest density of green
leaves [14]. Remote sensing data has been used in several previous applications in malaria epi-
demiology and control.

Satellites that have been used in malaria research include Terra with MODIS (Moderate
Resolution Imaging Spectroradiometer) sensor and National Oceanic and Atmospheric
Administration (NOAA)–Mwith AVHRR (Advanced very high resolution radiometer) sensor
among many more [14, 15].

Data from earth observation satellites has been used in the development of malaria early
warning systems [14, 16], development of malaria risk maps [17, 18] and identification of suit-
able malaria vector habitats [19–21]. Some of the remote sensing data that have been applied to
malaria epidemiology include: land surface temperature (LST), cold cloud duration, vegetation
indices such as NDVI and enhanced vegetation index, precipitation and actual evapotranspira-
tion [19–21].

The objective of this research was to study the association between remote sensing variables:
day LST, precipitation and NDVI, on malaria mortality over time in KEMRI/CDC HDSS areas
with a higher resolution to better understand to what extent weather variability is driving the
malaria mortality patterns in the regions.

Materials and Methods

Ethics Statement
The protocols for KEMRI/CDC HDSS are approved by both CDC (# 3308, Atlanta, GA) and
KEMRI (# 1801, Nairobi, Kenya) Institutional Review Boards. The individual level mortality
data was anonymized and de-identified through aggregation to weekly level and stripping of
individual level identifiers.

Study area
The KEMRI/CDC HDSS covers three areas in Western Kenya following a population of over
240,000 individuals. The three areas are Asembo in Rarieda district, Gem in Gem district and
Karemo in Siaya District. Asembo was the first to be enumerated in 2001, followed by Gem in
2002 and Karemo in 2007. Censuses are conducted every four months where demographic and
socio-economic data such as births, deaths, migrations, education and socio-economic status
are updated. The KEMRI/CDC HDSS has been described in detail elsewhere [22, 23]. Verbal
Autopsies are conducted on all deaths and the signs and symptoms are used to determine prob-
able cause of death.

Malaria Mortality Data
We used malaria cause of death data for the KEMRI/CDC HDSS for the period 2003 to 2012
for Asembo and Gem areas while 2008 to 2012 for Karemo. Baseline data collection in Karemo
began in 2007 [22], thus complete annual time series starts from 2008 in that area. The daily
data was aggregated to weekly temporal resolution for each of the three areas and all areas
combined.

To obtain malaria deaths Inter-VA4 method was used. This is probabilistic method for
deriving probable cause of death from Verbal Autopsy (VA) questionnaire. The VA details
signs and symptoms exhibited by the diseased prior to death. These signs and symptoms in
binary categories are then fed to the Bayesian probabilistic algorithm to derive the possible
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cause of death. This is a more consistent method to derive cause of death data from VA ques-
tionnaires compared to physician coding previously employed in KEMRI/CDC HDSS [24, 25].

Remote sensing data
The remotely sensed data obtained included day LST, precipitation and NDVI. The day LST
and NDVI were extracted from Terra MODIS MOD11A1 and MYD13Q1 products, respec-
tively hosted and managed by United States Geological Survey and National Aeronautics and
Space Administration (NASA) [26].

The day LST was available at daily temporal and 1000m spatial resolution, while NDVI data
was available at 16 days temporal and 250m spatial resolutions, respectively, as displayed in Fig
1. The MODIS datasets were downloaded as HDF-EOS (Hierarchical Data Format—Earth
Observing System) files. We downloaded two tiles (h21v09) and (h21v08) that cover the whole
KEMRI/CDC HDSS study area for the period 2003 to 2012. The downloaded HDF image tiles
were stitched together and re-projected using MODIS projection tool [26] to TIFF images in
the R 3.10 environment. The TIFF images were processed using RGDAL [27] package in R
software to extract LST and NDVI for each of the compound in the three HDSS areas and then
aggregated per area. The precipitation data was downloaded from NASA’s Tropical Rainfall
Measuring Mission (TRMM) as binary files at 0.25° x 0.25° spatial resolution and daily at
three-hour intervals temporal resolution. To get total daily precipitation estimates, we multi-
plied the hourly rates by 3 and summed.

The 16 day MODIS NDVI data was interpolated using natural cubic spline in the TIS pack-
age in R to get daily estimates. The missing daily values for LST and precipitation were linearly
interpolated using TIS [28] package in R software [29]. The area specific and all areas daily,
LST, precipitation and NDVI values were then aggregated to weekly temporal resolution for
the study period 2003–2012. For LST and NDVI we computed weekly mean values while for
precipitation we computed weekly totals.

Statistical Analysis
Wemodelled the delayed effect of day LST, precipitation and NDVI on the weekly malaria
mortality using Distributed Lag Non-Linear Models (DLNM) package in R [30]. The DLNM

Fig 1. Map showing LST and NDVI for the three study areas in Western Kenya aggregated for the
years 2003–2012.

doi:10.1371/journal.pone.0154204.g001
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framework allows modelling of non-linear relationships in dimensions of the predictor as well
as its lag. The DLNMmethod employs the concept of cross-basis which is a joint modeling of
basis functions of the predictor variable and its lag [31]. We created models for each of the
study areas, and for all areas together. DLNM for each of the environmental variables was cre-
ated using a natural cubic spline basis with 3 degrees of freedom to capture the non-linear
effects as well as their lag dimensions. We modelled lags 0 to 12 weeks for each of the explana-
tory variables. Weekly malaria deaths were assumed to follow a quasi-Poisson process allowing
for over-dispersion. In each model, a natural cubic spline function of time trend allowing one
degree of freedom per year of data was included to capture long-term time trends of malaria
mortality based on previous estimation[11]. The model equations used for estimating the effect
of each environmental variable on malaria mortality were:

lnðEðYtÞÞ ¼ bo þ sðT; timedf Þ þ f ðXt; lagdf ; vardf Þ þ biXi 1:

lnðEðYtÞÞ ¼ bo þ sðT; timedf Þ þ f ðXt; lagdf ; vardf Þ þ biXi þ sðmonth; vardfÞ 2:

EðYtÞ � Poisson

where E(Yt) is the expected number of malaria deaths in week t. βo is the intercept, s(T,timedf)
is the smooth function of time with degree of freedom timedf,f(Xt,lagdf,vardf) is the crossbasis
function of variable t and its lag dimension with vardf and lagdf degrees of freedom respectively
controlling for the the ith covariate Xi. For example, the model for precipitation included LST
day and NDVI as linear predictors. We also ran similar models adjusting explicitly for within
year seasonality by including a smooth function of month with 3 degrees of freedom shown in
Eq 2 with the additional s(month,vardf) component. The cross-basis functions of day LST, pre-
cipitation and NDVI were centered at 28°C, 20 mm and 0.4 respectively for each of the areas.
Centering values were determined by visual examination of the exposure mortality relation-
ships. For NDVI we chose a centering value of 0.4 based on a study in coastal town of Kilifi in
Kenya [20], which showed an NDVI threshold of 0.3 to 0.4 for increase in malaria incidence. It
should be noted that the choice of centering value does not change the relationship between
outcome and exposure. Relative risks presented are in reference to these centering points. We
also modelled the delayed effect of precipitation on NDVI and computed cross-correlation
coefficients.

We plotted the overall effects of each of the remote sensing variables over the whole lag
period up to 12 weeks, and also plotted contour graphs showing both the lag effect at the whole
range of predictor variable. The lag effects were estimated as 1°C increase in day LST, 0.1
decrease in NDVI below the centering value and 10 mm increase in rainfall above the reference
value.

Results
There was a total of 3,809 malaria deaths reported in all the three KEMRI/CDC HDSS areas
during the study period. The number of deaths reported in Asembo and Gem was 1,240 and
1,896, respectively in the years 2003 to 2012 while the number of deaths in Karemo was 641
reported between 2008 and 2012. The weekly malaria deaths’mean was 7.2 in all the three
areas combined. Gem had the highest average of 3.6 as displayed in Table 1. There were weeks
recording high death counts up to 34 in 2009, the highest peak as shown in Fig 2. The mean
day LST varied little between the three areas with a mean of 29.7°C in all areas combined.

There was an increase in vegetation index with increasing precipitation and shorter lag
effect of precipitation on NDVI for weekly total rainfall over 60mm (S1 Fig). Gem area showed
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the greatest concentration of green vegetation with the average NDVI of 0.64 and lowest in
Asembo at 0.58 (Table 1 and Fig 1).

We observed weekly seasonal patterns in malaria mortality with peaks within each year cor-
responding to season fluctuations in the remote sensing variables day LST and precipitation
(Fig 2). The within year monthly seasonal fluctuation in risk of mortality is depicted by a spline
function of month in S4 Fig The highest risk of mortality is observed in April and the lowest
risk in September. In 2008, there was an upsurge in malaria deaths, which remained persistent
in 2009 and later declined in the year 2010 (Fig 2). Vegetation Index also displayed a within
year bimodal seasonal pattern. Precipitation showed yearly variation with two distinct peaks.

The overall effects of each of the remotely sensed variables on malaria mortality and lag pat-
terns are presented in Fig 3 and S5 Fig for monthly seasonally adjusted results. The results are
combined for all three areas. For day LST (Fig 3A), in comparison with the reference tempera-
ture of 28°C, we observed increased risk at temperatures below the reference and above the ref-
erence forming a U-shaped relationship which is significant for day LST between 34°C and
36°C. When monthly seasonal effect is included, Day LST above 28°C show protective effect on
malaria mortality as displayed in S5A Fig. The lag effect of LST (Fig 3D) is distributed with
shorter delays at weekly mean temperatures below 28°C, while at longer delays, particularly
after 9 weeks with temperature above 28°C appear more influential.

The overall effect of rainfall (Fig 3B) on malaria mortality showed increased risk with
increasing rainfall above the reference point of 20 mm and peaking at about 80mm per week.
Precipitation below 20mm per week also indicated increasing risks of mortality. Furthermore,
there was increase in risk of mortality for weekly precipitation of above 80mm in the seasonally
adjusted models shown in S5B Fig. There were delayed effects on mortality with precipitation
amounts below 20 mm, while much shorter lag effect was observed with precipitation above
80mm (Fig 3E).

The overall effect of vegetation index (Fig 3C) was highest with NDVI values below 0.4
which was the reference point. The risk increased with decreasing NDVI values with highest

Table 1. Summary of weekly malaria mortality and remote sensing variables LST (°C), Precipitation (mm) and NDVI, in Asembo, Gem, Karemo and
all areas combined.

Variable Area Min Max Mean Percentiles

5% 25% 50% 75% 95%

Malaria deaths Asembo 0 13 2.3 0 1 2 3 6

Gem 0 20 3.6 0 1 3 5 9

Karemo 0 12 2.4 0 1 2 3 6

All Areas 0 34 7.2 1 3 6 10 17

Land Surface Temperature Asembo 22.2 39.1 30.6 25.3 28.0 30.5 33.0 36.2

Gem 22.5 37.3 29.1 24.5 26.8 28.6 31.3 35.5

Karemo 19.9 38.6 29.4 24.7 27.0 29.1 31.3 35.4

All Areas 22.9 37.5 29.7 24.9 27.3 29.5 31.9 35.6

Precipitation Asembo 0 197.8 27.6 1.8 7.3 22.3 39.5 73.6

Gem 0 190.9 31.2 3.8 11.6 27.0 42.6 79.6

Karemo 0 126.3 29.3 1.6 9.5 26.1 41.3 76.5

All Areas 0 196.2 29.5 2.6 9.5 25.9 41.1 78.0

Normalized Difference Vegetation Index Asembo 0.34 0.75 0.58 0.43 0.53 0.59 0.65 0.71

Gem 0.44 0.77 0.64 0.49 0.60 0.65 0.69 0.75

Karemo 0.40 0.73 0.61 0.45 0.56 0.62 0.67 0.71

All Areas 0.40 0.75 0.61 0.46 0.57 0.62 0.67 0.72

doi:10.1371/journal.pone.0154204.t001
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relative risk observed at 0.3. NDVI values above 0.4 were negatively associated with malaria
mortality with significant relative risks below 1. We do not observe effects of NDVI in the sea-
sonally adjusted model displayed in S5C Fig.

The lag effect (Fig 3F) was shorter with NDVI values below 0.4 with effects from zero weeks
up to 4 weeks and then increasing again after 8 weeks. The effect of NDVI above 0.4 showed
consistent pattern across the weeks.

Fig 2. Distribution of weekly mean values of malaria deaths, LST (°C), Precipitation (mm) and NDVI in
the areas Asembo, Gem and Karemo, Kenya 2003–2012.

doi:10.1371/journal.pone.0154204.g002
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Fig 4 shows the overall effect of each of the remote sensing variable on malaria mortality by
area while S6 Fig shows the results for models with monthly seasonal adjustments. The day
LST effect varies between the three areas with no effect observed in Asembo (Fig 4A), Gem (Fig
4D) above 33°C and Karemo below 28°C (Fig 4G). For the seasonal adjusted results, there is
decreased risk with Day LST above 28°C in Asembo (S6A Fig), decreased risk between 28°C
and 34°C in Gem (S6D Fig) and high risk below 28°C in Karemo (S6G Fig).

Precipitation effect was very consistent between the areas with risk above 20mm with peaks
at about 80mm of weekly precipitation (Fig 4B, 4E and 4H). The seasonally adjusted results

Fig 3. The overall risk of day Land Surface Temperature (LST °C) (A), Precipitation (mm) (B), and
Normalized Difference Vegetation Index (NDVI) (C) on malaria mortality for all areas for the whole lag period.
The bold lines indicate relative risks while the shaded regions display the 95% Confidence intervals. D, E and
F are the lag patterns for day LST, precipitation and NDVI respectively at whole range of predictors.

doi:10.1371/journal.pone.0154204.g003
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show marginally significant risks in Asembo and Gem for precipitation above 70mm (S6 b
and e) and risk for weekly precipitation of between 40mm and 80mm in Karemo (S6 h).

The effect of vegetation cover was very consistent in the three areas with higher risks of
mortality with NDVI below 0.4 and negative association for NDVI above 0.4 (Fig 4C, 4F and
4I). There was no effect of NDVI in the seasonally adjusted models in Gem and Karemo (S6 f
and i) and marginal effect of NDVI values of about 0.66 to 0.7 in Asembo (S6 c).

There was negative relationship between weekly mean LST of 29°C in the earlier weeks in
Asembo and Gem, and for all areas combined as displayed in S1 Table. However, the overall
effect of weekly mean day LST of 29°C is not significant in all the three areas. The overall effect
of precipitation across most lags is significant with the highest overall relative risk of 1.68 (CI:
1.31–2.14) in Asembo and lowest in Gem with relative risk of 1.49 (CI: 1.28–1.74). The

Fig 4. The overall risk of day LST (°C) (A, D and G), Precipitation (mm) (B, E and H), and NDVI (C, F and I)
on malaria mortality in Asembo (A, B and C), Gem (D, E and F) and Karemo (G, H and I) for the whole lag
period. The bold lines indicate relative risks while the shaded regions display the 95% Confidence intervals.

doi:10.1371/journal.pone.0154204.g004
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association and lag pattern between malaria mortality and precipitation showed the most con-
sistent pattern between the three different study areas.

The lag structure of weekly vegetation index of 0.3 compared to 0.4 was significantly higher
in week 3 and 4 in Asembo, weeks 0 to 4 in Gem with no effect in Karemo. The overall effect
across all weeks was significant in all the areas with highest in Gem at relative risk of 3.4(CI:
1.64–7.05) and lowest in Asembo at 2.18(CI: 1.06–4.51).

Discussion
We have modelled the exposure response relationship between three remote sensing variables
(LST, precipitation and NDVI) and malaria mortality in three areas in Western Kenya using
distributed lag non-linear modelling approach. The flexibility of the modelling framework
allowed us to model both the exposure effect as well as the lag effect taking into account non-
linear structure of the relationship.

The results showed non-linear relationships and delayed effects between remote sensing
data and malaria mortality that were consistent between the three study areas in Western
Kenya, and describe how the meteorological patterns partly drive vegetation change and pre-
cede malaria mortality in the study region. This corroborates the expected biological interac-
tions between vectors, parasites and human hosts generating malaria incidence, morbidity, and
mortality [9, 10]. The DLNM approach has been used in malaria weather epidemiology in
other settings [32, 33].

Since mosquito density is important in understanding malaria transmission dynamics, tem-
perature is one of the crucial factors influencing mosquito development. Using compartmental
models, it has been shown that at 17 to 33°C, vector abundance is stable, corresponding to
endemic transmission as in the study area. However, at temperatures of 20 to 26°C model equi-
librium is distorted corresponding to upsurge in mosquito vector population [34].

Larval temperature has also been shown to affect adult mosquito survival with increased
temperature resulting in increased mortality during larval stage. For example, an increase in
temperature by 4°C from 23 to 27°C resulted in significant increase in mortality [35].

Our findings show LST to be negatively associated with malaria mortality. Negative effect of
day LST on malaria mosquito density at one month lag was shown in the study area [36]. For
temperatures above 28°C, we observe positive relationship between day LST and malaria mor-
tality with lag effect after two months. In Argentina [37], LST was shown to be the most impor-
tant driver of malaria vector abundance however this study did not consider the lagged effect
of LST. It has been shown that in hot weather, an increase in temperature in certain ranges
results in rapid development of the malaria vectors and thus expected subsequent increase in
mortality [34]. The overall effect of LST on malaria mortality conforms with the optimal tem-
perature for malaria vector development, which are between 25°C and 30°C [16]. We note,
however, that LST was shown not to have any effect on sporozite rate [38]. Previous analysis
showed a more delayed effect of weekly mean temperatures on malaria mortality after week 9
in the study area [11]. This is similar to our finding for the lag pattern of temperatures above
28°C, however, in this analysis we used daytime LST, which is a proxy for maximum
temperature.

The overall effect of LST was different in the three areas, with increased risk for malaria
mortality with LST above 33°C in Gem, while in Karemo effect was for LST below 28°C. This
may be due to the fact that Gem has lower temperatures compared to the other areas at much
higher altitude so an increase in temperature results in faster development of the vectors while
in Karemo which is relatively hotter, temperature thresholds of 25–28°C drives vector develop-
ment. The exposure response relationship between day LST and risk of malaria mortality was
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different when we included smooth seasonal adjustment into the model. The relationship is
negative for temperatures above 28°C and no significant effect for temperatures below 28°C.
This can be explained by the possible interaction between the monthly seasonal component
and day LST.

The effect of rainfall was very consistent in the three areas of the HDSS with very similar lag
patterns and positive association with malaria mortality across lag periods. This could be
explained by the fact that the seasonal patterns of rainfall are similar in the three regions and
partly by the fact that the TRMM satellite covers large area at 0.25° by 0.25° spatial resolution.
This may mask the differences between the three areas due to overlapping grid points. How-
ever, our results are very similar to other studies, with increasing risk having increasing lags in
hot weather countries as observed in China [32], and the sinusoidal relationship as exemplified
[33] for P. falciparummalaria in China with increased risk below 20mm and above 40mm of
weekly rainfall with peaks at approximately 80mm. The lag structure found in the present
study was also similar for areas described as hot in Ethiopia with lag effect after six weeks [39]
and 1–47 days in Kenyan coast [40]. We observed an almost linear increase in risk of malaria
mortality with the addition of seasonal component in the precipitation model parameters. Its
significant for weeks with over 80mm of rainfall. The seasonal component may have masked
the overall risk pattern.

Vegetation characteristics provide different opportunities for vectors to thrive e.g. crop type
determines breeding and resting place for mosquitoes, greening of vegetation determines tim-
ing of habitat creation and deforestation results in sunlit pools suitable for breeding [41].

The overall effect of vegetation index NDVI in our study corroborates similar findings in
Coastal region of Kenya that an NDVI threshold of 0.3–0.4 [20, 42] is a necessary condition to
drive increase in malaria incidence. In the previous study at the Kenyan Coast, a one month lag
of NDVI was shown to be highly correlated (R2 = 0.71) with monthly proportion of annual
malaria cases which is consistent with our finding of an effect with 0 to 4 weeks for NDVI
below 0.4. Similar results of these NDVI values corresponding to high malaria transmission
have also been observed in Bangladesh [43].

In the present study, NDVI values above 0.4 were negatively associated with mortality.
Because NDVI is associated with lag patterns of rainfall, higher NDVI corresponds to higher
previous precipitation weeks which may result in flashing of the mosquito vector larvae leading
to decreased incidence. The exposure relationship was similar in the three areas with lag effect
strongest at 0 to 4 weeks in Gem and Karemo which are consistent with a study in Ethiopian
highlands [44] and lag effect in week 3 in Karemo, however the overall effect was significant for
all the three areas. NDVI was highly correlated with rainfall with lags of 1 to 4 weeks in both
Asembo and Karemo while in Gem after 5–8 weeks. This is consistent with expectation of
increases in green vegetation cover after weeks of rainfall. Similar findings have been shown in
Iran [45].

The present study had certain limitations. The study uses Inter-VA Verbal Autopsy meth-
odology to extract malaria-specific cause of deaths from Verbal Autopsy questionnaire. This is
a statistical method that may under-estimate or over-estimate malaria deaths in the region. In
low income countries such as Kenya, this is the most efficient way of ascertaining cause of
death where vital registration is incomplete. The Inter-VA method for ascertaining cause of
death has been shown to have high concordance with physician coding [25] and malaria deaths
derived using the methodology correlates well with Malaria Atlas projections [46].

Our analysis also does not take into account other interventions that have been imple-
mented in the HDSS area over the years and human activities and prevention strategies that
would have explained differences in mortality besides the environmental variables. There are
intrinsic factors, crucial in determining vertebrate host immunity and important to consider
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together with the environmental factors, but were beyond the scope of this study. The inclu-
sion of the trend variable alone may not capture all shorter-term influence of such unmea-
sured confounders. Another limitation is the assumption of linearity for the results, and use
of same centering values and lag structure in the three areas that have different environmen-
tal patterns.

Conclusions
This study described association of lag patterns of weekly remotely sensed environmental and
meteorological conditions on malaria mortality in three malaria endemic regions in Western
Kenya. The estimates in the present study provide information on the degree to which these
conditions drive the mortality patterns in an area of stable malaria transmission, and indicate
suitable lead times for the development of malaria early warning systems in malaria endemic
regions. The analysis shows how use of remote sensing could help in the forecast and control of
malaria, as has been articulated in this study [47]. Our findings corroborate expected biological
mechanism of the development of the vector as well as the parasite in the vector related to envi-
ronmental factors, but also indicate some geographical dissimilarities in the associations. The
results provide further evidence in the body of literature on lagged association of weather fac-
tors and malaria. Our study also reinforces the applicability of the use of remote-sensing data
which is available at appropriate spatial and temporal resolution for risk mapping of malaria in
areas where weather data is not reliable and readily available.
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