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Purpose: The purpose of this study is to construct a guided bone regeneration membrane that 

is similar to bone components and structurally resembles the native extracellular matrix with 

sufficient antibacterial properties.

Materials and methods: A novel type of biomimetic and bioactive silver ion-loaded calcium 

phosphate/chitosan (Ag-CaP/CS) membrane with antibacterial ability was successfully devel-

oped by incorporation of silver ion-loaded CaP via a one-step electrospinning method and 

subsequently crosslinked with vanillin.

Results: Evaluation of the physicochemical properties revealed that the fabricated fibrous 

membranes mimicked the extracellular matrix structure and the addition of CaP significantly 

increased the mineralization ability of the membranes. Importantly, the Ag-CaP/CS membranes 

exhibited a sustainable release of Ag+, which in turn inhibited the adhesion and growth of Staphy-

lococcus mutans. The results of cell adhesion and MTT assay revealed that the Ag-CaP/CS 

membranes were cytocompatible with bone marrow stromal cells.

Conclusion: The fabricated electrospinning Ag-CaP/CS nanofiber membranes with excellent 

biocompatibility and strong antimicrobial properties have great potential to be used for guided 

bone regeneration.
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Introduction
Insufficient alveolar bone volume is a common clinical problem that has a direct impact 

on the survival rate of dental implant treatment. Guided bone regeneration (GBR) is 

a procedure aiming for the reconstruction of impaired bone tissue, and has become 

increasingly popular in oral and maxillofacial surgery for augmentation of alveolar 

bone.1–4 This technique makes use of a membrane barrier to direct the growth of 

neo-bone tissue while preventing the ingrowth of fibrous tissues to the bone defects.5–7 

In the past decades, a variety of barrier membranes, including non-absorbable, for 

example, polytetrafluoroethylene, and absorbable membranes, such as polyglycolic 

acid, poly (lactic acid), and collagen membranes, have been developed and applied for 

GBR techniques.8–10 Although the commercially available GBR membranes showed 

certain positive outcomes, they are at risk of a biomaterial-centered infection, especially 

when the membranes are exposed to infected tissue or an area with high accessibility 

of bacteria, such as the oral cavity. Hence, development of GBR membranes with 

sufficient antibacterial ability may be a solution for this problem.

In addition to sufficient antibacterial ability, some other essential properties of 

GBR membranes are required, such as excellent biocompatibility, cell immobility, 
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tissue integration, mechanical stability, optimal porosity, 

and clinical manageability,11 which may directly influence 

the outcome of the GBR approach. It is well accepted that 

a biomaterial mimicking the extracellular matrix (ECM) 

in terms of both the structure and the components is in 

favors of cell functionality and accelerates the process of 

injured tissue regeneration.12 Recently, how to successfully 

develop a GBR membrane resembling native bone ECM 

both in composition and structure has become a hot research 

issue. To manufacture micro-nanoscaled fibers that mimic 

the structure and morphology of primordial ECM for bone 

tissue regeneration, electrospinning has been widely used 

as a proven technique. During electrospinning, polymer 

solutions are sprayed and spun in a strong electric field and 

eventually solidified into nanofibers. Some biocompatible 

and biodegradable polymers are broadly used for electrospin-

ning, including poly (lactic acid), poly (vinyl alcohol), poly 

(lactic-co-glycolic acid), and poly (epsilon-caprolactone). 

In addition, electrospinning is a rapid, straightforward, and 

low-cost method to produce nanofiber-based membranes with 

high porosity and good pore size distribution.13,14 An optimal 

porous structure of the GBR membrane is essential for the 

growth of cells and the exchange of nutrients.4 Therefore, 

electrospinning was employed to fabricate fibrous membrane 

for GBR applications.15,16

From a materials point of view, natural human bone is a 

complex of organic–inorganic composite consisting of cal-

cium phosphate (CaP) nanoparticles and collagen nanofibers. 

However, electrospinning of collagen denatures collagen to 

gelatin, and the solvent used in electrospinning will weaken 

the typical biological properties of collagen and cannot imi-

tate the component of ECM.17 Consequently, other types of 

natural polymers have been considered, including chitosan 

(CS). CS is obtained by deacetylation of chitin, which is the 

second most abundant polysaccharide in the world.18,19 CS has 

attracted great research interest in the biomedical field because 

of its excellent performance of biocompatibility, blood 

compatibility, biosecurity, and microbial degradability.20–23 

Silver ions (Ag+) as antibacterial agents have broad-spectrum 

antibacterial properties, and their resistance to bacteria has 

rarely been reported relative to traditional antibiotics.24–26 

Therefore, Ag+ and silver nanoparticles have been extensively 

studied in the medical field.27,28 The antimicrobial activity of 

silver is mainly dependent on the silver cation (Ag+), which 

can bind strongly to some electron donor groups in biological 

molecules. In addition, these silver agents are often incorpo-

rated in carriers to achieve a sustained release of Ag+.29 CaP 

materials, such as nano-hydroxyapatite, have been found 

to provide a large reservoir of silver ions, which could be 

released gradually resulting in long-term antimicrobial activ-

ity. Our previous studies have proved that the silver ion-loaded 

CaP system possesses strong antibacterial activity, good bio-

compatibility, as well as causes slow release of silver ions.30,31 

Moreover, chemical composition of CaP is similar to that of 

natural bone and it has the necessary elements for human 

metabolism. Importantly, its chemically reactive groups can 

form chemical bonds with the bone tissue.32 Our goal is to 

design and fabricate a biomimetic and bioactive silver ion-

loaded CaP/CS (Ag-CaP/CS) membrane with antibacterial 

ability, via electrospinning, which resembles the ECM so as 

to create conducive living milieu to induce cells to function 

naturally. It was hypothesized that the Ag-CaP/CS fibrous 

composite GBR membrane with optimal silver ion content 

could controllably release silver ions from the fibers to achieve 

the desired cytocompatibility and sufficient antibacterial effect 

simultaneously, thus overcoming the drawback of a biomate-

rial-centered infection with use of the current commercially 

available GBR membranes. To this end, Ag-CaP/CS fibrous 

membranes were firstly prepared by electrospinning, and the 

physicochemical properties, biocompatibility, as well as the 

antimicrobial activity of the membranes were then studied by 

in vitro tests in comparison with pure CS and CaP/CS fibrous 

membrane without silver as the control groups. In general, the 

higher the content of CaP, the better the osteoconductivity of 

composite bone repair materials. However, our preliminary 

experiments showed CaP content higher than 20 wt% made 

electrospinning of composite membrane difficult. Thus, 

20 wt% of CaP was utilized in the present study. In order to 

determine the optimal concentration of silver ions, we fabri-

cated two types of membranes with different silver content 

and evaluated the antibacterial activity and cytocompatibility 

to determine which silver ion concentrations in the composite 

membrane can show strong antibacterial activity and good 

cytocompatibility simultaneously.

Materials and methods
Materials
Medical grade CS (degree of deacetylation: 85%; molecular 

weight: 200–400 kDa) was bought from Heppe Medical 

Chitosan GmbH (Halle, Germany). Trifluoroacetic acid 

(TFA) and vanillin were purchased from Sigma-Aldrich 

Co., Ltd (Gillingham, UK). CaP and silver ion-loaded CaP 

(Ag-CaP) were prepared using a wet synthesis method as 

described previously.31

Membrane preparation
CS was dissolved in TFA to form a 5 wt% CS solution 

at 40°C. Then Ag-CaP or CaP was added and mixed by 

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine 2018:13 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

4593

electrospun silver ion-loaded calcium phosphate/chitosan gBr membrane

ultrasonic mixing for 30 minutes. Electrospinning was 

performed and the spinneret needle was maintained at a 

voltage of 26 kV by a high voltage power, and an aluminum 

foil under the needle at a distance of 20 cm was used as the 

collector. The pump rate was set at 1.0 mL/h. A total of four 

types of membranes were prepared in this study as shown 

in Table 1, including pure CS, CaP/CS without silver and 

CaP/CS with different silver content. A scanning electron 

microscope (SEM, JSM-6510LV; JEOL, Tokyo, Japan) was 

used to characterize the structure of the fabricated materials. 

Energy dispersive spectroscopy (EDS, X-MaxN 20; Oxford, 

UK) was carried out to observe the distribution of the fillers 

in the fiber matrix. One hundred fibers per sample were used 

to measure the diameter by Image-Pro Plus.

crosslinking
Before crosslinking, the membranes were stabilized accord-

ing to the literature.33 In brief, the membranes were first 

stabilized by soaking them for 20 minutes in 0.5% sodium 

hydroxide (NaOH) dissolved in 100% ethanol, followed by 

five times washing in PBS for 30 seconds. The stabilized 

membranes were then crosslinked in 5% (w/v) vanillin 

dissolved in ethanol for 2 hours at 50°C. Subsequently, the 

crosslinked membranes were rinsed with 100% ethanol for 

5 minutes and then with PBS for 30 seconds to remove the 

unreacted vanillin.

Simulated body fluid (SBF) immersion test
Immersion studies were performed by incubating a mem-

brane (disk shape with a diameter of 15 mm) in 10 mL SBF 

solution in a 15 mL tube. The pH value of the SBF solution 

was adjusted to 7.4 before membrane immersion.34 Three 

samples were used for each condition. All the tubes were 

placed in a water bath at 37°C under continuous shaking. 

After immersion periods of 1 and 2 weeks, the membranes 

were gently washed with deionized water and freeze-dried. 

The membranes were then examined by X-ray powder dif-

fraction (XRD, DX-2500; Dandong Fangyuan Instrument 

Co., Ltd., Dandong, China) and observed by SEM after 

sputter coating with gold.

In vitro ag+ release
The fibrous membranes with Ag+ (A1 and A2) were cut into 

square pieces with a length of 10 mm and then immersed in 

3 mL PBS. All samples were incubated at room temperature 

and placed on oscillators at 90 rpm. The supernatant was col-

lected at predetermined time points. After digestion by HNO
3
 

and dilution at a suitable ratio for testing, the Ag concentra-

tion of the solution was tested by atomic absorption spectros-

copy (SpectrAA 220Z; Varian, Melbourne, VIC, Australia). 

Meanwhile, A0 membrane was also cut into square pieces 

with a length of 10 mm and Ag+ was physically absorbed 

on A0 by immersion of the membrane in AgNO
3
 aqueous 

solution for 2 hours, then the Ag+ physically absorbed A0 

membrane was dried in a vacuum oven, in which the designed 

Ag+ content is the same as that in A2 membrane. Thereafter, 

the release of Ag+ from the Ag+ physically absorbed A0 

membrane for 1 day, immersion in PBS was also tested by 

using the abovemen tioned methods.

antimicrobial properties assessment
antibacterial adhesion assay
The membranes were cut to a size of 5×5 mm and sterilized 

by ethylene oxide gas prior to the test. Streptococcus 

mutans (ATCC 25175) in brain–heart infusion (BHI) broth 

(Oxoid Ltd, Basingstoke, UK) or Porphyromonas gingivalis 

(ATCC 33277) in tryptic soy broth (Sigma-Aldrich Co., St 

Louis, MO, USA) were adjusted to a density of 106 colony 

forming units/mL. Then, each membrane was immersed in 

2 mL bacterial suspension at 37°C. After 24 hours, the mem-

branes were gently washed with sterilized PBS to remove the 

unattached bacterial cells. After being fixed with 2.5% (v/v) 

glutaraldehyde (Sigma-Aldrich, St Louis, MO, USA) for 

2 hours, the samples were dehydrated with a series of ethanol 

solutions (30%, 50%, 70%, 80%, 90%, 95%, and 100% for 

10 minutes each) and dried using the critical point method. 

At the end of this procedure, the samples were coated with 

gold and viewed via SEM.

Direct contact test (DCT)
DCT, based on the turbidimetric determination of bacterial 

growth in 96-well microtiter plates, was used to evaluate the 

antibacterial activity of root canal sealing materials.35,36 In this 

study, a modified DCT method was adopted to evaluate the 

antibacterial ability of the fibrous membranes. In brief, the 

test membranes (5×5 mm, n=4) were placed separately in 

24-well microtiter plates (named as group A well plates). 

Twenty microliters of bacterial suspension (~1×106 colony 

forming units/mL) was added to the membranes and incu-

bated at 37°C for 1 hour to facilitate direct contact of bacteria 

with the membranes. BHI broth (460 µL) was then added 

to each well and the plates were gently vortex mixed for 

2 minutes; 30 µL of the supernatant was then transferred to 

Table 1 The compositions of the fabricated samples

Sample CS A0 A1 A2

The ratio of cs to calcium phosphate Pure cs 4:1 4:1 4:1
silver content 0 0 0.075% 0.144%

Abbreviation: cs, chitosan.
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another well containing fresh BHI broth medium (400 µL) 

and again mixed for 2 minutes (named as group B well 

plates). Both groups A (in the presence of the membranes) 

and B (with the membranes not present) well plates were 

further incubated at 37°C anaerobically for up to 24 hours. 

At each predetermined time point, 200 µL of liquid was 

transferred from each well to a sterilized 96-well microtiter 

plate and the bacterial growth was measured at 650 nm and 

37°C using a microplate spectrophotometer (PerkinElmer 

1420 Multilabel Counter; PerkinElmer, Inc., Waltham, 

MA, USA). After that, the liquid was transferred back to 

the original wells and the incubation was continued. Empty 

wells without test materials (n=4) served as controls. All the 

experiments were carried out under aseptic conditions.

cytocompatibility
cell culture
Cell attachment, spread, and proliferation on the different 

membranes were evaluated using bone marrow stromal cells 

(BMSCs). Two young Sprague Dawley rats (2 months old and 

weight about 100 g) obtained from the experimental animal 

center of Sichuan University were employed for extraction 

of BMSCs, which was approved by the Ethics Committee of 

Sichuan University, and all operation procedures and animal 

care were performed in compliance with the Guide for the 

Care and Use of Laboratory Animals. BMSCs were obtained 

from the tibiae and femora of young Sprague Dawley rats and 

cultured in α-Minimum Essential Medium supplemented with 

20% fetal bovine serum, 100 U/mL penicillin, 100 mg/mL 

streptomycin, 0.219 mg/mL l-glutamine, and 100 mM HEPES 

buffer (Thermo Fisher Scientific, Waltham, MA, USA) in 

a humidified incubator with 5% CO
2
 at 37°C. The culture 

medium was changed every other day. The third passage of 

BMSCs was used in the experiments. Prior to seeding, all the 

membranes of ~1 mm thickness were cut into discs of 10 mm 

in diameter, sterilized by ethylene oxide gas, and pre-wetted in 

the culture medium for 24 hours. BMSCs were seeded onto the 

pre-wetted membranes (2×104 cells per membrane). The seeded 

membranes were then cultured in a humidified incubator (37°C, 

5% CO
2
) for 11 days with the medium changed every 2 days. 

Cells cultured without materials were assigned as control.

attachment and proliferation of the BMscs
After 4 and 7 days, the samples were collected for SEM 

observation. The cell membrane constructs were rinsed 

in PBS, fixed with 3% glutaraldehyde, and dehydrated in 

graded ethanol concentrations (25%, 50%, 75%, 90%, 95%, 

and 100% v/v in distilled H
2
O). After that, the samples were 

rinsed with isoamyl acetate and then dried in supercritical 

CO
2
. Thereafter, the samples were sputter coated with Au 

and observed by SEM.

The proliferation of BMSC cells cultured on all the mem-

branes was determined by MTT assay (Amresco, Cleveland, 

OH, USA) according to the instruction of the manufacturer. 

The absorbance at 490 nm was measured with a microplate 

reader (PerkinElmer 1420 Multilabel Counter, PerkinElmer, 

Inc.) after 1, 4, 7, and 11 day (s) of incubation (n=3).

statistical analysis
For quantitative analysis, Student’s t-tests were used to assess 

differences between two groups and multiple comparisons 

were performed via one-way analysis of variance test using 

SPSS (v. 11.0). P-values ,0.05 were considered statistically 

significant. Data are expressed as mean values±SD.

Results and discussion
Morphology of fibrous membranes
Fibrous membranes were prepared from all the solutions 

by the same parameters via electrospinning. All the mem-

branes were constructed with fibers with a broad diameter 

range and they presented a randomly oriented arrangement 

(Figure 1). For those groups with CaP, the surface of fibers 

was rougher than that of pure CS fibers due to the exposure 

of CaP particles. A porous structure was formed by the ran-

domly arranged fibers, which would facilitate the exchange 

of nutrients and waste of cell metabolism.

XrD and Fourier-transform infrared 
analysis
XRD patterns of hydroxyapatite (HA) and silver-loaded 

hydroxyapatite (HA-Ag), electrospun membranes (CS, 

A0 and A1), and A1 immersed in SBF for 2 weeks (A1-SBF) 

are presented in Figure 2A. The characteristic diffraction 

peaks of HA-Ag were almost the same as those of HA, indi-

cating that the addition of Ag+ had little effect on the crystal 

structure of HA. However, the characteristic diffraction peaks 

of HA were not observed in A0 and A1 samples. Instead, the 

characteristic diffraction peaks of CaHPO
4
 were confirmed, 

indicating the apatitic CaP was dissolved and transformed 

into CaHPO
4
 in the acidic solution of TFA during the elec-

trospinning process. HA will dissolve and transform into 

CaHPO
4
 in acidic solutions of pH value ,4.5.37 Since TFA 

with low pH value was used as the solvent in this experi-

ment, the electrospinning fibers eventually contain CaHPO
4
 

rather than HA.
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Without crosslinking, the prepared electrospun CS mem-

brane lost integrity in aqueous solution. Therefore, the use of 

an appropriate crosslinking agent is essential to improve the 

stability and mechanical property of CS membranes. In this 

study, we chose vanillin as the crosslinking agent due to its 

lower cytotoxicity than that of the common crosslinking 

agents, for example, glutaraldehyde and formaldehyde.38,39 

It has been shown that vanillin-crosslinked CS microspheres 

Figure 1 Scanning electron micrographs of the four electrospun fibrous membranes: (A) CS, (B) A0, (C) A1, and (D) A2; (E–H) the corresponding diameter distribution 
diagrams.
Abbreviation: cs, chitosan.

°
Figure 2 (A) XRD patterns of calcium phosphate particles (HA and HA-Ag), electrospun membranes (CS, A0, and A1), A1 immersed in SBF for 2 weeks (A1-SBF), and 
(B) FTIR spectra of A1, CS, and A1 crosslinked by vanillin (A1-crosslinked).
Abbreviations: CS, chitosan; FTIR, Fourier transform infrared; HA, hydroxyapatite; HA-Ag, silver loaded hydroxyapatite; SBF, simulated body fluid; XRD, X-ray 
diffraction.
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displayed a better cytocompatibility and much weaker 

inflammatory reaction than glutaraldehyde-crosslinked CS 

microspheres.40 Vanillin reacts with CS through the Schiff 

base reaction between the aldehyde groups of vanillin and 

the amine groups of CS. The characteristic absorption peak 

of C=N is seen at 1,677 cm−1 in Figure 2B, which indicates 

that the Schiff base reaction occurred.

The distribution of caP and ag+

It is widely accepted that the distribution of nanoparticles in 

fibers directly influences the performance of membrane. EDS 

mapping was used to characterize the distribution of CaP and 

Ag+ in the Ag-CaP/CS composite membrane. As shown in 

Figure 3, the EDS spectrogram further proved the presence 

of CaP and Ag+ in fibers. The homogeneous distribution of 

Ca, P, and Ag elements in EDS mapping indicated that the 

silver ion-loaded CaP nanoparticles were homogeneously 

distributed in the fibers.

The silver ion loading and release
XPs analysis
XPS was applied to further confirm the chemical composition 

and the valence states of the prepared membranes. The 

XPS spectra of HA-Ag, A1, and A1 crosslinked by vanillin 

Figure 3 The distribution of caP and silver ions in the a2 membrane.
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nanofiber membranes are shown in Figure 4A–C. The 

presence of the characteristic peak of Ag 3d indicated that 

silver ions were successfully incorporated into the electro-

spun fibrous membranes. The binding energy of Ca and P 

did not change obviously in the three survey spectra. The 

characteristic peak of sodium was observed in A1 and 

A1-crosslinked membranes, which can be explained by the 

incorporation of sodium in the process of stabilization of 

the membranes by sodium hydroxide solution. XPS is also 

a powerful technique to explore the oxidation state of the 

transition metal compounds with localized valence orbital 

due to the different energies of the photoelectrons. From the 

high resolution XPS spectra of Ag 3d (inserted images), the 

binding energy fits well to a single spin-orbit pair of Ag 3d
5/2

 

at 367.6 eV and Ag 3d
3/2

 at 373.6 eV, respectively, which is 

attributed to Ag+.12,41 The spectra of Ag 3d for A1-crosslinked 

nanofibers illustrated that the valence state of silver ions 

was stable univalent silver during the electrospinning and 

Figure 4 (Continued)
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crosslinking process, which provides the necessary evidence 

of the antibacterial action of silver ions in the membrane.

The release of silver ions in vitro
The release behaviors of Ag+ from the Ag-CaP/CS nanofi-

ber membranes was evaluated by in vitro release evaluation 

(Figure 4D). As the results indicated, apparently, both A1 

and A2 exhibited an evident initial burst release within the 

first day and the amount of the Ag+ released from nanofiber 

membranes increased slowly with augmentation of soaking 

time, after 1 day. Although there was no statistical difference 

between A1 and A2, the amount of Ag+ released from A2 

was slightly higher than that released from A1 after 1 day. 

Ag+ physically absorbed on A0 membrane was used to assess 

the Ag+ release behaviors as the control. Robust burst release 

of Ag+ physically absorbed on A0 after 1 day immersion 

was observed and release amount reached 76.8% of the total 

absorbed Ag+. Therefore, we did not test the release of Ag+ 

physically absorbed on A0 for a longer period. Although the 

burst release of Ag+ from A1 and A2 was also observed, the 

amount of Ag+ released from A1 and A2 after 1 day immer-

sion was not .30% of the total Ag+ in the membranes. Thus,  

A1 and A2 showed a relatively slow release for Ag+ in compari-

son with Ag+ physically absorbed on the fabricated membrane 

group. The release of Ag+ could be explained by a complex 

mechanism that includes diffusion, swelling, and corrosion.42 

The release of Ag+ should be first separated from the calcium 

phosphate surface  and then be released from the CS nanofiber 

matrix. Therefore, a considerable part of Ag+ was released 

within 24 hours, which might achieve a strong antibacterial 

effect during the early stage after surgery. Another mechanism 

is that a portion of Ag+ diffused into the solution along with 

the degradation of CS and CaP.

Immersion in sBF
The bone-linking ability of the different composite nanofiber 

membranes was assessed by examining the apatitic mineral-

ization ability on the surface of membranes by incubation of 

the membranes in SBF. Figure 5 shows the SEM image of 

the surface morphology of the membranes after incubation 

in SBF for up to 2 weeks. The surface morphology of pure 

CS did not show any noticeable change after either 1- or 

2-week immersion (Figure 5A and D). In contrast, both 

A0 and A1 were covered with some spherical minerals and 

the amount of mineral deposition increased with the immer-

sion time (Figure 5B vs 5C, 5E vs 5F). However, the crystal 

structure of the mineral deposition could not be identified 

by the XRD patterns (Figure 2A, A1-SBF). The deposition 

Figure 4 XPS spectra (A) silver-loaded hydroxyapatite, (B) A1, (C) A1 crosslinked by vanillin. (D) Concentration of silver ions released from different silver-loaded 
electrospun fibrous membranes in deionized, distilled water.
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of apatite can be explained by the nucleation and growth 

mechanism. Briefly, the increased local concentration of ions 

contributed to the formation of nucleation points; thereafter, 

the CaP nuclei formed and gradually grew into crystals. As 

a result, the hemispheric apatite formed and accumulated 

on the surface of fibers over time. The incorporation of CaP 

into the fibers provided nucleation points for the deposi-

tion of apatite.43 The results suggested that the addition of 

CaP significantly increased the mineralization ability of the 

membranes, which is beneficial for bone formation.

antimicrobial analysis
anti-adhesion of P. gingivalis
P. gingivalis, the gram-negative and the main pathogenic 

bacteria of peri-implantitis or periodontitis, was used to 

investigate the antimicrobial activity of various membranes. 

After immersion of the membranes in the bacterial suspen-

sion for 24 hours, the adhesion and growth of P. gingivalis 

on the fibrous membranes were observed by SEM, and the 

results are shown in Figure 6. Notably, the serried bacteria 

attached to the fibers to form a bead necklace structure of 

pure CS and CaP/CS (A0). Moreover, a lot of diminutive 

bacteria were present, which indicated that the P. gingivalis 

can rapidly proliferate and grow on the surface of membranes. 

On the contrary, only a few bacteria could be found on the 

membranes with Ag+ (A1 and A2), and the bacteria on A2 

membrane seemed to be slightly less than on A1. The results 

demonstrated that the prepared membranes with Ag+ had 

strong antibacterial properties as we expected, which would 

greatly reduce the risk of postoperative infection.

anti-adhesion of S. mutans
S. mutans, a common oral bacterium, was employed to evalu-

ate the anti-adhesion effect of the prepared membranes. After 

incubation of the membranes with S. mutans suspension for 

24 hours, SEM observation indicated that large numbers of 

bacteria adhered on the surface of the CS and CaP/CS (A0), 

whereas few of them could be found on the Ag-CaP/CS 

membranes (A1 and A2; Figure 7A–D). In other words, mem-

branes with Ag+ restrained the adhesion and reproduction of 

the bacteria on the membrane surface. Low bacterial adhesion 

would prevent the formation of biofilm, and consequently 

reduce the risk of a biomaterial-centered infection.44 It is 

reported that the mechanism of the antibacterial activity of 

the silver ion is by attaching to the cell wall of bacteria and 

disturbing the permeability and intermembrane exchange. 

In addition, the antimicrobial action of silver ions is closely 

related to their interaction with phosphorous- and sulfur-

containing biomolecules, including DNA and proteins, by 

weakening DNA replication and inactivating proteins.45

evaluation of antimicrobial activity by DcT
Furthermore, a modified DCT approach was used to assess 

the antimicrobial activity of the four fibrous membranes. 

Figure 5 SEM photos of the electrospun membranes after immersion in SBF: (A) CS, (B) A0, and (C) A1 for 1 week; (D) CS, (E) A0, and (F) A1 for 2 weeks.
Abbreviations: CS, chitosan; SBF, simulated body fluid; SEM, scanning electron micrograph.
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In the presence of the membranes, that is, the test in group A 

wells, only the Ag-CaP/CS membranes (A1 and A2) inhibited 

the proliferation of bacteria within 24 hours, whereas bacteria 

cultured with A0 and pure CS proliferated at the same rate 

as the control group (Figure 7E). The situation in vivo was 

a dynamic system with the exchange of body fluid, resulting 

in the loss of antibiotic constituents around the implanted 

materials. Thus, we utilized the group B wells to assess the 

growth of residual bacteria after just 1 hour of direct contact 

with the membrane. Unlike the results obtained from group A 

wells, only A2 exhibited complete inhibition of bacterial pro-

liferation for up to 24 hours (Figure 7F). Bacteria in contact 

with A1 began to proliferate after 4 hours of incubation. The 

DCT indicates that the antibacterial property of Ag-CaP/CS 

composite membranes was associated with the amount of the 

incorporated silver. We learned that there are, indeed, related 

studies demonstrating that CS itself has a certain antibacterial 

effect.46,47 In contrast, research has also shown that CS does 

not have an antimicrobial effect.26,48 There is a controversial 

point about the antibacterial properties of CS. We think that 

whether or not CS exhibits antibacterial properties may be 

related to the source of its extraction as well as the species of 

bacteria. In our present study, both gram-positive (S. mutans) 

and gram-negative (P. gingivalis) bacteria were used to assess 

the antibacterial properties and the results indicated that CS 

did not exhibit antibacterial effect.

cell morphology and proliferation of 
BMscs
BMSCs were used to evaluate the attachment, spread and 

growth of cells on the membranes. As shown in Figure 8, 

the morphology of BMSCs on the surface of different mem-

branes after incubation for 4 and 7 days was observed by 

SEM. All of the membranes facilitated good attachment 

and growth of cells except for pure CS membrane. This is 

in accordance with the previous studies which showed that 

unmodified CS membranes did not perform sufficiently to 

mediate cell adhesion.49,50 After 4 days of incubation, cells 

on the membranes were flat and polygonal and the parapodia 

of BMSCs extended into the fibrous structure of the mem-

branes. At day 7, the cells on the composite membranes were 

almost confluent. As the fibrous framework of biodegradable 

polymer membrane, the micro-nanostructure can act as an 

ECM for cell attachment and adhesion. The difference in 

the cell growth between the CS and composite membranes 

is likely due to the addition of CaP, which may increase the 

Figure 6 seM image of bacterial growth on various membranes after 24 hours of co-culture with Porphyromonas gingivalis (as indicated by the red arrow).
Abbreviations: cs, chitosan; seM, scanning electron micrograph.
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surface roughness and protein adsorption to promote cell 

adhesion.4,51 In addition, Ca and P are necessary elements 

for human metabolism, which can transduce the chemi-

cal signal into the cell, thereby modulating a series of cell 

behaviors.52

The proliferation of BMSCs on the nanofiber membranes 

was investigated by MTT assays. Figure 9 shows the cell 

viability after culturing for 1, 4, 7, and 11 days. With increas-

ing culture time, obviously, the number of cells on the nano-

fiber membranes significantly increased. The proliferation 

Figure 7 SEM images of bacterial adhesion on (A) CS, (B) A0, and (C) A1 and (D) A2 after 24 hours of incubation with Streptococcus mutans (as indicated by the red arrow). 
DCT results of the four membranes in (E) group A and (F) group B after 24 hours of incubation.
Abbreviations: cs, chitosan; DcT, direct contact test; seM, scanning electron micrograph.
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of BMSCs on A0, A1, and A2 was distinctly higher than 

on pure CS membrane, which is consistent with the SEM 

results. The incorporation of CaP facilitated cell adhesion on 

the surface of membranes, thereby significantly promoting 

the proliferation of BMSCs.52 However, the cell viability 

of A0 was higher than those of A1 and A2, suggesting 

that the addition of silver ions inhibited cell proliferation 

to some extent, but the silver-loaded membranes were still 

Figure 8 SEM images of BMSCs on the surface of (A, B) CS, (C, D) A0, and (E, F) A1 and (G, H) A2 after (A, C, E, G) 4 days and (B, D, F, H) 7 days of incubation.
Abbreviations: BMscs, bone marrow stromal cells; cs, chitosan; seM, scanning electron micrograph.
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superior to pure CS membrane for BMSCs proliferation. 

The Ag-CaP/CS composite membranes with an optimal 

concentration of Ag+ could have simultaneously good 

cytocompatibility and antibacterial properties. Bacteria 

are prokaryotes and human cells are eukaryotic cells with 

integrated nuclei.53 Therefore, eukaryotic cells are larger 

than prokaryotic cells and a higher concentration of Ag+ 

is required to cause cytotoxicity on human cells than on 

bacterial cells. This difference provides a “therapeutic win-

dow” for the membranes to achieve biocompatibility and 

antibacterial properties at the same time.4 This result also 

indicates that although a higher content of silver ions in the 

membrane will achieve stronger antibacterial activity, it will 

lead to corresponding cytotoxicity.54 Therefore, an optimal 

concentration of silver in biomaterial is of great importance. 

The fabricated membrane of A2 achieved good cytocompat-

ibility and strong antibacterial properties simultaneously, so 

we did not further increase the concentration of silver ions 

in the membrane in this study.

Conclusion
In this study, Ag-CaP/CS bioactive composite fibrous 

membranes with antibacterial properties were successfully 

developed by electrospinning method and subsequently 

crosslinked with vanillin as the potential candidate for 

GBR application. The physicochemical properties evaluated 

suggested that the fabricated fibrous membranes mimicked 

the ECM structure and the addition of CaP significantly 

increased the apatite mineralization ability of the mem-

branes. Most importantly, the silver ions were success-

fully incorporated into the fibers, and thereby endowed the 

membranes with antibacterial function. The incorporation 

of 0.144% content of silver ions into the nanofibers (A2) 

endows the fibrous membranes with strong antibacterial 

properties without induction of adverse cytotoxicity. Hence, 

the fabricated Ag-CaP/CS fibrous membranes showing 

a combination of excellent biocompatibility and strong 

antimicrobial properties have great potential to be used 

for GBR.
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Figure 9 MTT assay of BMscs cultured on the membranes.
Notes: Error bars represent SD from the mean (n=3). ***P,0.001; **P,0.01; *P,0.05.
Abbreviations: BMscs, bone marrow stromal cells; cs, chitosan.
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