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Abstract

When evaluating a newly developed statistical test, an important step is to check

its type 1 error (T1E) control using simulations. This is often achieved by the

standard simulation design S0 under the so‐called “theoretical” null of no

association. In practice, the whole‐genome association analyses scan through a

large number of genetic markers (Gs) for the ones associated with an outcome of

interest (Y ), where Y comes from an alternative while the majority of Gs are not

associated with Y ; the Y G− relationships are under the “empirical” null. This

reality can be better represented by two other simulation designs, where design

S1.1 simulates Y from an alternative model based on G, then evaluates its

association with independently generated Gnew; while design S1.2 evaluates the

association between permutated Y and G. More than a decade ago, Efron (2004)

has noted the important distinction between the “theoretical” and “empirical”
null in false discovery rate control. Using scale tests for variance heterogeneity,

direct univariate, and multivariate interaction tests as examples, here we show

that not all null simulation designs are equal. In examining the accuracy of a

likelihood ratio test, while simulation design S0 suggested the method being

accurate, designs S1.1 and S1.2 revealed its increased empirical T1E rate if applied

in real data setting. The inflation becomes more severe at the tail and does not

diminish as sample size increases. This is an important observation that calls for

new practices for methods evaluation and T1E control interpretation.
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1 | INTRODUCTION

Type 1 error (T1E) control evaluation using simulations is
always the first step in understanding the performance of any
newly developed statistical test. To formulate the problem
more precisely, let us consider the current large‐scale

genome‐wide association studies (GWAS) or next‐generation
sequencing (NGS) studies of complex and heritable traits.
These studies scan through millions or more genetic markers
(Gs) across the genome for the ones associated with a trait of
interest (Y ), while accounting for environmental effects;
without loss of generality we assume these genetic markers
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are single‐nucleotide polymorphisms (SNPs). Many Y G−
association tests have been developed, and they often require
the assumption of (approximately) normally distributed
errors to maintain an accurate T1E, with some tests being
more robust than others. For example, Bartlett test for
variance heterogeneity has been shown to have large inflated
T1E rates when the error term e follows a t‐ or χ2‐
distribution (Struchalin, Dehghan, Witteman, van Duijn, &
Aulchenko, 2010), and the likelihood ratio test (LRT) is
similarly sensitive to nonnormal errors (Cao, Wei, Bailey,
Kauwe, & Maxwell, 2014), while Levene’s test appears to be
more robust (Soave & Sun, 2017; Soave et al., 2015).

Let T be the associate test statistic to be evaluated.
Standard T1E simulation design, denoted as S0, first
generates phenotype data Y e=0 under the “theoretical”
null of no association. It then independently generates
genotype dataGnew, applies a fitted model ofY =0 b G + ϵG new
to test the H b: = 0G0 , derives the asymptotic distribution of
T denoted as f T( )0 , obtains the corresponding p‐value for
each simulated replicate, and finally estimates the empirical
T1E rate of T . (For notation simplicity and without loss of
generality, for the moment we omit the intercept and
additional covariates Zs from the the regression models.)T is
considered sound if the T1E rate is well controlled under the
e N σ~ (0, )2 assumption, and its robustness is then
evaluated by assuming other distributional forms for e.
Given well‐controlled T1E under normality, power will then
be studied by generating phenotype under an alternative,
Y β G e= +G1 , where typically e N σ~ (0, )2 . In that case,
one applies the fitted model of Y b G= + ϵG1 to obtain the
test statistic T under the alternative, calculates the corre-
sponding p‐value based on f T( )0 , and finally estimates the
empirical power of T . Combining the two, one would then
expect that, in practice, T maintains good T1E control for a
null SNP and has certain amount of power for an alternative
one. However, for a real GWAS, the relationship between the
phenotype and a null SNP is under the “empirical” null,
which we describe below. This inconsistency in T1E
evaluation and interpretation is the focus of our study.

In practice, a whole‐genome association scan receives
an empirical Y1 that comes from an alternative, influenced
by one or more Gs. Among the million or more SNPs to
be analyzed, most are not associated with Y1. However,
the corresponding no phenotype–genotype association is
not accurately reflected by the “theoretical” null simula-
tion design S0 as described above. Now consider two
alternative simulation designs to evaluate T1E control of
the test statistic T . Design S1.1 first generates
Y β G e= +G1 from an alternative, where e N σ~ (0, )2 . It
then independently generates Gnew for a new SNP, fits the
model of Y b G= + ϵG1 new , calculates T and its corre-
sponding p‐value based on f T( )0 , and finally estimates
the T1E rate. Design S1.2 permutates the simulated Y1

and evaluates T1E from Y b G= + ϵG1
perm . Clearly, the

“empirical” null simulation designs S1.1 and S1.2 mimic
the real data far better than the “theoretical” null S0.
Thus, an important question can be asked as to whether
the S1.1 and S1.2 designs lead to similar T1E conclusion
for T as the S0 design. In particular, even if the
e N σ~ (0, )2 assumption is true in the generating model
and T appears to be accurate based on the S0 evaluation,
do we expect T to perform equally well when applied to
real data? The answer would depend on the sensitivity of
the test statistic T used.

Efron (2004) has brought up the discussion of the
“theoretical” versus “empirical” null more than a decade
ago. Focusing on controlling the false discovery rate, Efron
(2004) outlined several possible sources of nonnormality
including unobserved covariates and hidden correlation,
and he proposed an empirical Bayes approach to the
problem. Here, we study the practical implications of T1E
evaluation based on S0, the commonly used “theoretical”
null simulation design, in the context of whole‐genome
association scans. We show that while a test T may appear
to be accurate under S0 and assuming normality, it can
have incorrect T1E rates under the “empirical” null of S1.1
or S1.2, also “assuming normality.” The fundamental cause
of the discrepancy is that, even if the error term in the
generating model of Y β G e= +G1 is normal, e N σ~ (0, )2 ,
marginally Y1 may not be normal. Thus, in evaluating the
null Y G−1 new relationship using the fitted model of
Y b G= + ϵG1 new (or Y G−1

perm using Y b G= + ϵG1
perm ),

the true null distribution ofT may not be f T( )0 which was
derived for Y G−0 new under the “theoretical” null.
Essentially, the Y b G= + ϵG1 new model is misspecified if
ϵ was assumed to be normal. Inference of the location
parameter bG, the main effect of a SNP is generally quite
robust to model assumptions (Khan & Rayner, 2003).
However, for emerging association tests that are designed
to improve power by going beyond the first moment, the
distinction between the “theoretical” and “empirical” null
in T1E evaluation can be consequential.

As a proof‐of‐principle, we will focus on testing gene–
environment (G × E) effects; testing gene‐gene (G ×G)
effects is similar. Such interaction effects are expected for
complex traits, Y β G β E β G E e= + + ( × ) +G E GE , and
we study three scenarios for testing G × E interaction.

The first scenario assumes that the data on E are not
available in practice. Thus, direct G × E interaction analysis
is not possible. In that case, because the unmodeled
interaction induces variance heterogeneity in Y when
conditional only on G, scale tests such as Levene’s test,
originally developed for model diagnostics, can be used to
indirectly test for the interaction effect. We will investigate
the several scale tests recently proposed for this purpose
(Aschard, Zaitlen, Tamimi, Lindström, & Kraft, 2013;
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Cao et al., 2014; Paré, Cook, Ridker, & Chasman, 2010;
Soave et al., 2015). It is worth noting that the causes of
variance heterogeneity are multifaceted beyond potential
interactions (Dudbridge & Fletcher, 2014; Sun, Elston,
Morris, & Zhu, 2013; Wood et al., 2014). We show that,
depending on the robustness of a test, T1E conclusion may
differ between the “theoretical” and “empirical” null.

The second scenario assumes E was available for direct
modeling of the G × E interaction effect. Previously,
Voorman, Lumley, McKnight, and Rice (2011) and Rao
and Province (2016) showed that T1E of testing for
interaction effect in a whole‐genome scan can be more
variable than testing or main effect. The authors examined
SNPnonrepeating × SNPrepeating analysis, where SNPrepeating
represents a fixed SNP and its interactions with all other
SNPs are of primary interest. Statistically, this is similar to
G × E that we will be studying here, because E does not
vary between SNPs in a genome‐wide G × E interaction
scan. Focusing on inflated or deflated genomic inflation
factor λGC (Devlin & Roeder, 1999), Rao and Province
(2016) demonstrated a larger variation in λGC (similar to a
larger variation in T1E rates between different whole‐
genome association scans), when testing the interaction
effect as compared to the main effect under the
“theoretical” null. They attributed this to dependency
between the interaction test statistics, because SNPrepeating
(or the fixed E in our setting) is not changing between the
tests. They also noted that increasing sample size mitigates
the problem. Here, we use this opportunity to revisit direct
G × E interaction testing in a GWAS setting. We show
that, while T1E rates are indeed more variable between
simulation replicates (i.e., between genome‐wide interac-
tion scans) under the conventional “theoretical” null, due
to dependency between the tests as in Rao and Province
(2016), the average T1E rate is correct regardless of the
sample size. However, under the “empirical” null, a
different picture emerges as in the scale test setting.

The third scenario extends the above to a multivariate
setting, where the fixed E interacts with multiple different
Gs as in gene‐based interaction studies. We will examine
sequence kernel association test (SKAT)‐type of variance
component test (Wu et al., 2011), together with burden‐type
of sum test (Madsen & Browning, 2009), and the classical F‐
test, that jointly evaluate multiple interaction effects.
Generally speaking, departure from normality is of a lesser
concern when an outcome Y is influenced by multiple
genetic and environmental factors (Falconer, 1960; Mackay,
2009). However, we will show that the distinction between
the “theoretical” and “empirical” null remains relevant for
multivariate models.

In Section 2, we first describe the three scenarios for
interaction testing, including when E is missing, and
when E is known and interacts with one G or multiple

Gs. For clarification, we call these interaction scenarios.
Under each interaction scenario, we briefly review all
the statistical tests to be investigated. We then describe
the three simulation designs for evaluating T1E control,
namely, S0 for the “theoretical” null design, and S1.1
and S1.2 for the “empirical” null designs; we call these
T1E simulation designs. The implementation of the
different T1E simulation designs depends on the test of
interest. Thus, we also describe in details how the data
are being generated for each of the three interaction
scenarios, and for each of the three T1E simulation
designs; we call these data‐generating models. In
Section 3, we conduct simulation studies, provide the
corresponding numerical results, and reveal the existing
problems in T1E evaluation based on the “theoretical”
null simulation design S0. We show that (a) a T1E
conclusion drawn from S0 can be different from that
based on the two alternative “empirical” null simulation
designs S1.1 and S1.2, (b) the T1E discrepancy can
remain as sample size increases, and (c) the T1E issue
may be more severe at the tail. The root cause of the
issue demonstrated in this study is due to subtle model
misspecifications. A test might be shown to be accurate
under the idealistic “theoretical” null S0. However, its
true T1E behavior, when applied to real whole‐genome
association scans, is only uncovered through the
“empirical” null designs S1.1 and S1.2. We make
additional remarks in Section 4.

2 | METHODS AND MATERIALS

2.1 | Three G× E interaction scenarios
and corresponding statistical tests

For association analysis of a complex trait Y using a
sample of size n, we first define genotype data Gi for
individual i at each SNP under the study. As in
convention, Gi denotes the number of copies of the
minor allele, coded additively as G = 0i , 1, and 2. Also as
in convention, Gi is assumed to come from a binomial
distribution, G f~ Binomial(2, )i , where f is the minor
allele frequency (MAF).

In the simplest case, we might assume the true
generating model for the trait to be

Y β G β E β G E e e N σ= + + ( × ) + , ~ (0, ),G E GE
2 (1)

where βG is the main effect of a causal SNP, βE is the
environmental effect, and βGE is the gene–environment
interaction effect. Note that the error term in the true
data‐generating model is denoted as e and assumed to be
normal. We wish to identify the SNP whose genotype G
influences Y .
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2.1.1 | G× E interaction scenario 1:
Single G, and E missing

Suppose information regarding E was not available, then
the working or fitted model can only account for the
main effect of G,

Y b G= + ϵ.G (2)

However, it is straightforward to show that variances of Y
stratified by the three genotype groups of G differ,
if ≠β 0GE ,

∣Y G β β G E σ σVar( ) = ( + ) Var( ) + = = Var(ϵ).E GE G
2 2 2

(3)

That is, ϵ in the fitted model (2) can behave quite
differently from e, the error term in the generating model
(1). Thus, when E is missing and direct interaction
modeling is not feasible, scale tests for heteroscedasticity
can be utilized to identify G associated with variance of Y
(Paré et al., 2010). A joint location‐scale testing frame-
work can provide robustness against either β = 0G or
β = 0GE , and it can improve power if both main and
interaction effects are present (Soave & Sun, 2017; Soave
et al., 2015). Here we focus on studying the more
sensitive scale test, because the power of the joint test
depends on the individual components.

Different scale tests have been studied in this context,
and chief among them are the Levene’s test (Levene, 1960)
considered by Paré et al. (2010) and Soave et al. (2015), and
the LRT considered by Cao et al. (2014). Levene’s test for
variance heterogeneity between k groups is an analysis of
variance of the absolute deviation of each observation yi
from its group mean or median. Under the null of variance
homogeneity and assuming normality, the resulting test
statistic Levene follows a F(k − 1, n k− ) distribution, and
it is asymptotically ∕χ k( − 1)k−1

2 distributed, k = 3 in our
case. Using median instead of mean to measure the spread
within each group is more robust to nonnormality,
particularly for t‐distributed or skewed data (Brown &
Forsythe, 1974; Soave & Sun, 2017). And we will be using
the median version of Levene in the remaining paper.

The variance LRT considered by Cao et al. (2014)
contrasts the null model of no variance difference with
the alternative model,

Y b G N σ

Y b G N σ

= + ϵ, ϵ ~ (0, ) versus

= + ϵ, ϵ ~ (0, ),
G

G G

2

2 (4)

and conduct the corresponding LRT for H σ: =G0 =0
2

σ σ=G G=1
2

=2
2 . The corresponding test statistic LRTv

is asymptotically χ(2)
2 distributed, under the null of

homoscedasticity and normality. That is, f T χ( ) =0 (2)
2

where the test statistic T is LRTv. For the purpose of
comparison, we will also examine the LRT (LRTm) and
score test (Scorem) for testing the main effect, H b: = 0G0 .

Cao et al. (2014) has pointed out that LRTv is sensitive
to the normality assumption, but under normality they
have demonstrated that LRTv has good T1E control.
However, they implicitly assumed that the test would
work well as long as the error term e in the phenotype‐
generating model is normally distributed, regardless of
the “theoretical” or “empirical” null. The work here is to
show why LRTv may have T1E issue in practice. Indeed,
Soave et al. (2015) applied LRTv to a GWAS of lung
function measures in 1,409 individuals with cystic
fibrosis. Despite the fact that the lung measures were
approximately normally distributed and permutated
before the variance association analysis, the histogram
of GWAS p‐values clearly showed an increased T1E
(Supporting Information Figure S2.G of Soave et al.,
2015); the actual application was a joint LRTm and LRTv
test, but the T1E issue was due to the LRTv component.

2.1.2 | G× E interaction scenario 2:
Single G, and E known

When E is known and its data were collected, we can
directly test for the G x E interaction effect by contrasting
the following two fitted models:

Y b G b E

Y b G b E b G E

= + + ϵ versus

= + + ( × ) + ϵ,
G E

G E GE (5)

where N σϵ ~ (0, )2 . The corresponding LRTGE and ScoreGE
tests are both asymptotically χ(1)

2 distributed under the null
of no interaction effect. That is, under the “theoretical” null
that β = 0GE in the true phenotype‐generating model (1),
f T χ( ) =0 (1)

2 , where the test statistic T is either LRTGE or
ScoreGE. This is an important note for our study here. We
will show that if ≠β 0GE but the association test is
conducted for Gnew (of a new SNP generated independently
of Y ) under the “empirical” null, continuing using χ(1)

2 to
obtain p‐value can lead to T1E result that is quite different
from that obtained under the “theoretical” null.

2.1.3 | G× E interaction scenario 3:
Multiple Gs, and E known

A complex trait is influenced by multiple factors. For
example, intelligence has been found to be associated with
more than a hundred of SNPs (Dadaev et al., 2018; Hill
et al., 2018). Without loss of generality, the simple
phenotype‐generating model (1) can be extended to include
J SNPs,
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∑ ∑Y β G β E β G E

e e N σ

= + + ( × )

+ , ~ (0, ),

j

J

G j E
j

J

GE j
=1 =1

2

j j

(6)

where βGj
is the main effect of SNP j, βE is the

environmental effect, and βGEj
is the interaction effect

of G E×j .
To detect any of the J interaction effects, the classical

F‐test, denoted as FGE, can be applied to the following
fitted model:

∑ ∑Y b G b E b G E= + + ( × ) + ϵ,
j

J

G j E
j

J

GE j
=1 =1

j j (7)

and test ⋯H b b: = = = 0GE GE0 J1 simultaneously. Under
the “theoretical” null that ∀β j= 0GEj

in the phenotype‐
generating model (6), the FGE test statistic is F(J n, −

J2 − 1) distributed and is known to have good T1E
control. However, it is not clear how the test would
behave in practice under the “empirical” null. In that
case, a set of Gnewj’s under the study do not interact with
E to influence Y , but ≠β 0GEj

and e N σ~ (0, )2 in the
true phenotype‐generating model (6).

For rare variants with low MAFs, multivariate testing
is common and different methods have been proposed,
such as the burden‐type of sum test (Li & Leal, 2008;
Madsen & Browning, 2009; Price et al., 2010), and SKAT‐
type of variance component test (Wu et al., 2011); see
Derkach, Lawless and Sun (2014) for a review. Although
these tests were originally developed for main effects of
rare variants, they can be applied to common variants
(Lin, Lee, Christiani, & Lin, 2013) and used for
interaction effects (Section of Lin et al., 2016).

Briefly, the BurdenGE interaction test first aggregates the
allele counts across the J SNPs to obtain ∑G G=* j

J
j=1 . It

then tests H b: = 0G E0 * , using the fitted model of

Y b G b E b G E= + + ( × ) + ϵ.* *G E G E* * (8)

However, the BurdenGE test has T1E issue even under the
“theoretical” null; this was studied in Section 3 of Lin
et al. (2016). For completeness of method evaluation, we
include BurdenGE in our study of “theoretical” versus
“empirical” null.

Extending the earlier SKAT work for main effects, Lin
et al. (2016) then used it to study interaction effects.
Without going to the technical details, the main compo-
nent of the SKATGE interaction test is
∑ ( )w Score bj

J
j GE=1

2
j , where ( )Score bGEj is the score test

statistic for each bGEj in the fitted model (7), and wj

depends on the MAF of SNP j. We will study the SKATGE,
as well as the BurdenGE and FGE for gene‐based interaction
studies of both common and rare variants.

2.2 | Three T1E simulation designs: The
“theoretical” null S0, and the “empirical”
null S1.1 and S1.2

The three simulation designs for evaluate T1E can be
conceptualized as follows:

⎧

⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪⎪⎪⎪

Y

G

Y G

Y

G
G

Y G

Y

Y G

The ‘theoretical’ 
null’ S0:

simulates under the null,

independently generates ,

and evaluates T1E from the
− null relationship.

The ‘empirical’ 

null’ S1.1:

simulates under an alternative 

based on ,
independently generates ,

and evaluates T1E from the
− null relationship.

The ‘empirical’ 

null’ S1.2:

permutates the , and evaluates 

T1E from the − null

relationship.

0

new

0 new

1

new

1 new

1

1
perm

(9)

The exact implementation depends on the test to be
evaluated. Thus, we describe below, in detail, how data are
being generated for the three T1E simulation designs (S0,
S1.1, and S1.2), and under the different interaction testing
scenarios (E missing or not, and single or multiple Gs).

2.3 | Data‐generating models for the
three T1E simulation designs and under
each of the three interaction scenarios

2.3.1 | Scenario 1: Single G, and E
missing

Consider the true phenotype‐generating model (1), the
“theoretical” null simulation design S0 assumes β = 0GE ;
for simplicity but without loss of generality we also
assume β = 0G . Thus, S0 simulates phenotype data using

Y β E e e N σ= + , ~ (0, ).E0
2 (10)

It then independently simulates genotype data for an
nonassociated SNP,

G f~ Binomial(2, ),new (11)
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where f is the MAF. Finally, because E was assumed
missing in practice, S0 uses the following fitted model:

Y b G N σ= + ϵ, ϵ ~ (0, ),G G0 new
2 (12)

to detect the variance heterogeneity present in ϵ, based on
the Levene and LRTv tests as described in Section 2.1.1.

The “empirical” null simulation design S1.1, however,
first simulates phenotype data under an alternative. That is,

Y β G β E β G E e e N σ= + + ( × ) + , ~ (0, ).G E GE1
2

(13)

Note that G is a truly associated SNP, and
G f~ Binomial(2, ), where the MAF f does not have to
be the same as that of Gnew above. S1.1 then indepen-
dently simulates genotype data for a nonassociated SNP
Gnew as in (11). Similarly, because E was assumed
missing in practice, S1.1 uses the fitted model

Y b G N σ= + ϵ, ϵ ~ (0, ),G G1 new
2 (14)

to conduct the Levene and LRTv variance tests.
The “empirical” null simulation design S1.2 first

permutates the Y1 generated above. Because Y1
perm is no

longer associated with the Y1‐generating G, it then uses
the fitted model

Y b G N σ= + ϵ, ϵ ~ (0, ),G G1
perm 2 (15)

to assess T1E control of a test.
In summary, the true phenotype‐generating models

are Y β E e= +E0 or Y β G β E β G E e= + + ( × ) +G E GE1 ,
where e N σ~ (0, )2 in both cases. Gnew is genotype data
of a nonassociated SNP. The three T1E simulation
designs estimate T1E rate of a heteroscedasticity test for
Var(ϵ) using, respectively, the fitted models of

⎧
⎨⎪
⎩⎪

Y b G
Y b G
Y b G

S0: = + ϵ
S1.1: = + ϵ
S1.2: = + ϵ.

G

G

G

0 new

1 new

1
perm

(16)

2.3.2 | Scenario 2: Single G, and E known

In this case, the data‐generating model is the same as
above, namely,

Y β E e e N σ

Y β G β E β G E e e N σ

= + , ~ (0, ), or

= + + ( × ) + , ~ (0, ).
E

G E GE

0
2

1
2

Because E is known in this second interaction scenario,
the three T1E simulation designs estimate the T1E rate by
testing H b: = 0GE0 using, respectively, the fitted models of

⎧
⎨⎪
⎩⎪

Y b G b E b G E
Y b G b E b G E
Y b G b E b G E

S0: = + + ( × ) + ϵ
S1.1: = + + ( × ) + ϵ
S1.2: = + + ( × ) + ϵ.

G E GE

G E GE

G E GE

0 new new

1 new new

1
perm perm perm

(17)

Note that Eperm represents the fact that the permutation
must be performed jointly for Y1 and E. This is to
maintain the Y E−1 relationship while breaking the
Y G−1 association.

For the “theoretical” null S0, we assumed Y β E e= +E0
without the main G effect in the true generating model
(similar to Model I of Rao & Province, 2016). Alternatively,
we could consider Y β G β E e= + +G E0 with the main
effect (Model II of Rao & Province, 2016). In that case, the
fitted model would beY b G b E b G E= + + ( × ) + ϵG E GE0 ,
and bGE is expected to be zero. However, this difference in
the “theoretical” null design regarding the main effect does
not affect our study of the interaction effect.

The work of Rao and Province (2016) studied the
effect of dependency in Gnonrepeating ×Grepeating interaction
analysis on T1E control. Similarly, we can assume E is
fixed to represent the fact that, in a real genome‐wide
G × E interaction scan, the E does not change from SNP
to SNP. However, as demonstrated below, we show that
this dependency is not the source of the T1E issue
addressed here.

2.3.3 | Scenario 3: Multiple Gs, and E
known

By now, it should be clear how the three T1E simulation
designs would be implemented in this setting. The true
phenotype‐generating models are

Y β E e e N σ= + , ~ (0, ), orE0
2 (18)

∑ ∑Y β G β E β G E

e e N σ

= + + ( × )

+ , ~ (0, ).

j

J

G j E
j

J

GE j1
=1 =1

2

j j

(19)

For the SKATGE and FGE tests, the three T1E simulation
designs estimate the T1E rate of jointly testing

∀H b j J: = 0, = 1,…GE0 j , using, respectively, the fitted
models of
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(20)

For the BurdenGE test based on ∑G G=* j
J

j=1 , the three
T1E simulation designs estimate the T1E rate of testing
H b: = 0G E0 * , using, respectively, the fitted models of

⎧

⎨
⎪⎪

⎩
⎪⎪

Y b G b E b G E
Y b G b E b G E

Y b G b E

b G E

S0: = + + ( × ) + ϵ
S1.1: = + + ( × ) + ϵ

S1.2: = +

+ ( × ) + ϵ.

* *
* *

*

*

G E G E

G E G E

G E

G E

0 new new

1 new new

1
perm perm

perm

* *

* *

*

*

(21)

3 | SIMULATION STUDIES

3.1 | Simulation models and parameter
values

For indirect or direct G × E interaction study of a single
SNP (i.e., interaction scenarios 1 and 2), Table 1 provides
the details of the data‐generating models and parameter

values used. To evaluate the Levene and LRTv tests for
variance heterogeneity, besides the data‐generating
model as described in Section 2.3.1 and as used by
Aschard et al. (2013), we also considered the model
adopted by Cao et al. (2014) for a more extensive
comparison. Cao et al. (2014) used Model (4) to directly
simulate variance homogeneity or heterogeneity in Y
stratified by G. In contrast, Aschard et al. (2013) used
Model (1) to indirectly simulate variance heterogeneity
that has better genetic epidemiology interpretation,
because the size of βGE corresponds to power of scale
tests under alternatives. For direct testing of the
interaction effect, conveniently, the data‐generating
model of Aschard et al. (2013) in Table 1 is conceptually
the same as the simulation model I of Rao and Province
(2016), except that SNPrepeating is a fixed E here.

To best mimic real data conditions, we also used a
“double‐loop” simulation design. Consider the “theoretical”
null of Y β E e= +E0 for direct G × E interaction analysis.
Within each of nrep.out replicates (e.g., 100) in an outer
simulation loop, we simulate Y0 based on a fixed E,
Y β E e= +E0 fixed . We then simulate nrep.in replicates (e.g.,
104) of Gnew, test bGE based on the fitted model of
Y b G b E b G E= + + ( × ) + ϵG E GE0 new fixed new fixed , and esti-
mate the T1E rate using the nrep.in replicates. This is
similar to one single whole‐genome G × E interaction scan.
Finally, we average the T1E values over nrep.out replicates
to account for sampling variation inherent in the simulation
of a Efixed for one single whole‐genome interaction scan.
This can be done similarly for the “empirical” null.

TABLE 1 Summary of the two data‐generating models for indirect and direct G × E interaction testing, and evaluating the “theoretical”
null simulation designs S0 versus the two “empirical” null simulation designs S1.1 and S1.2, as described in Sections 2.3.1 and 2.3.2

Introduce variance heterogeneity by σG
2

(Cao et al., 2014)

Introduce variance heterogeneity by G × E
(Aschard et al., 2013)
Or, directly test βGE (assuming E was available)

Null model
for S0

Y e e N σ= , ~ (0, )0
2 Y β E e= +E0 , e N σ~ (0, )2

Alternative
models for
S1.1 and S1.2

Y β G e e N σ= + , ~ (0, )G G1
2 Y β G β E β G E e e N σ= + + × + , ~ (0, )G E GE1

2

Parameters G GMAF = 0.4 for and new

β σ σ σ= 0.3, = 0.23, = 0.25, = 0.29G 0
2

1
2

2
2

G GMAF = 0.4 for and new

 E β β β σ( = 1) = 0.3, = 0.01, = 0.3, = 0.1, 0.2,…, 1, = 1G E GE
2

Sample size n = 103 or 104 n = 103 or 104

Nominal T1E
level

α = 0.05 α = 0.05, 0.01, 0.001, 10−5

Replications nrep.in = 105 nrep.in = 105, or 107 for α = 10−5

nrep.out = 100 nrep.out = 100

If E was available for directG × E testing, the Aschard et al. (2013) model coincides with Model I of Rao and Province (2016), except E wasGnonrepeating. T1E rate
is first estimated from nrep.in simulation replicates in an inner loop in which E is fixed (similar to one whole‐genome G × E interaction scan), then averaged
over nrep.out simulation replicates in an outer loop in which E varies.
MAF: minor allele frequency.
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For each combination of parameter values in Table 1
that generates Y1 under an alternative, instead of studying
power (of Y G−1 ), we focused on evaluating T1E control
(of Y G−1 new or Y G−1

perm ) contrasting the proposed
“empirical” null simulation designs (S1.1 and S1.2) with
the previously considered “theoretical” null simulation
design (S0), as described in Section 2. Table 2 provides the
parameter values for gene‐based interaction analysis (i.e.,
interaction scenario 3). The number of SNPs was chosen to
be J = 11 as in Lin et al. (2016), among which only six
interact with E. That is, ≠β 0GEj

only for some j J= 1,…,
as detailed in Table 2. Two sets of MAF levels were
considered, with one presents gene‐based interaction
studies of common variants and the other of rare variants.

3.2 | Simulation results

For each of the three G × E interaction scenarios, for each
of the statistical tests under the study, and for each of the
three T1E simulation designs, we recorded the correspond-
ing T1E rate. We bold the ones that exceed the

∕α α α± 3 × (1 − ) nrep.in range, where α is the nom-
inal T1E rate, and rep.in is the number of simulation
replicates used to estimate the empirical T1E rate for each
of the nrep.out replicates; each replicate in an outer loop
represents a whole‐genome association scan. Thus,

∕α α α± 3 × (1 − ) nrep.in is a conservative interval.

3.2.1 | Scenario 1: Single G, and
E missing

Results in Table 3 show that, while location tests for
phenotypical mean differences across genotype groups
(LRTm and Scorem) are generally robust to the choice of

“theoretical” null S0 versus “empirical” null S1.1 or S1.2,
it is not the case for the LRTv test for variance
heterogeneity; the empirical T1E rates of the Levene test
were slightly deflated but not significantly. Different
choices of the null simulation designs lead to different
conclusions regarding the accuracy of LRTv. For example,
simulation design S0 showed that LRTv has the correct
T1E control across the parameter values considered.
However, designs S1.1 and S1.2 revealed its inflated
empirical T1E rate, for example, 0.07 for the nominal
α = 0.05 level for some settings.

TABLE 2 Summary of the data‐generating models for direct multivariate G × E interaction testing, and evaluating the “theoretical” null
simulation designs S0 versus the two “empirical” null simulation designs S1.1 and S1.2, as described in Section 2.3.3

Null model for S0 ∑Y β G β E e e N σ= + + , ~ (0, )j
J

G j E0 =1
2

j

Alternative models for S1.1 and S1.2 ∑ ∑Y β G β E β G E e e N σ= + + ( × ) + , ~ (0, )j
J

G j E j
J

GE j1 =1 =1
2

j j

MAF for
→
Gj and

→
Gnewj

Large: (2.15, 2.58, 2.58, 4.16, 2.57, 2.61, 4.95, 2.58, 2.57, 2.58, 3.68) × 10−1

Small: (2.15, 2.58, 2.58, 4.16, 2.57, 2.61, 4.95, 2.58, 2.57, 2.58, 3.68) × 10−2

Parameters J E= 11; ( = 1) = 0.3,
→
β = (−0.218, 0, 0, −0.476, 0, 0, −0.151, −0.845, 0.0945, 0, −0.133)G ,

→
β β σ= 0.3, = (0.1, −0.1, 0, 0, 0.1, 0.1, 0, −0.1, 0, −0.1, 0 ), = 0.27E GE

2

Sample size n = 103

Nominal T1E level α = 0.05, 0.01, 0.001

Replications nrep.in = 10 ; nrep.out = 1005

T1E rate is first estimated from nrep.in simulation replicates in an inner loop in which E is fixed (similar to one whole‐genome gene‐based G × E interaction
scan), then averaged over nrep.out simulation replicates in an outer loop in which E varies.

MAF: minor allele frequency.

TABLE 3 Simulation results of interaction scenario 1: Single G,
and E missing

α = 5 × 10−2, n = 103

βGE 0.0 0.2 0.4 0.6 0.8 1

Location
LRTm S0 5.029 5.027 5.026 5.027 5.027 5.026

S1.1 5.039 5.021 5.021 5.019 5.014 5.010
S1.2 4.997 5.023 5.022 5.020 5.017 5.011

Scorem S0 5.002 4.998 4.997 4.998 4.998 4.997
S1.1 5.014 4.992 4.993 4.991 4.985 4.981
S1.2 4.974 4.994 4.993 4.990 4.988 4.983

Scale
LRTv S0 5.035 5.083 5.081 5.081 5.081 5.079

S1.1 5.029 5.188 5.262 5.507 5.979 6.757
S1.2 5.031 5.198 5.274 5.519 5.994 6.756

Levene S0 4.956 4.898 4.898 4.898 4.898 4.896
S1.1 4.989 4.901 4.904 4.905 4.909 4.907
S1.2 4.906 4.922 4.912 4.911 4.915 4.908

Empirical T1E rates of LRTm and Scorem location tests for mean difference in
Y across the three G groups, and of LRTv and Levene scale tests for variance
difference in Y , based on the “theoretical” null design of S0 and the
alternative “empirical” null designs of S1.1 and S1.2. The alternative Y1 data
were generated using the Aschard’s genetic model as described in Table 1.
Empirical T1E rates outside ∕α α α± 3 × (1 − ) nrep.in are bolded.
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While the increased T1E rates under the S1.1and S1.2
“empirical” null designs appeared to be mild and occurred
only in extreme models (i.e., large G × E interaction
effect), results in Table 4 demonstrate that the T1E issue of
LRTv, revealed under the “empirical” null simulation
designs of S1.1 and S1.2, can be more severe at the tail. For
example, for the nominal α = 1 × 10−5 level, the empirical
T1E rate of LRTv can be as high as 11.5 × 10−5. Because
the genome‐wide significance level for GWAS is
α = 5 × 10−8 (Dudbridge & Gusnanto, 2008), an inflation
of false positive findings can be of a real problem in
practice. Further, results in Table 5 confirm that increas-
ing sample size n (from 103 to 104) does not mitigate the
discrepancy in T1E conclusion drawn from the “theore-
tical” versus “empirical” null.

The root cause of this discrepancy is unsuspected model
misspecification. Under the S1.1 and S1.2 designs, Y1
marginally is not normally distributed, even if it was
generated (conditional on the true G) using a normally
distributed error e term. Using T LRT= v as an example,
Cao et al. (2014) has shown that LRTv is accurate based on
f T( )0 , which is χ(2)

2 derived for Y G−0 new under the
“theoretical” null S0 condition and assuming e N σ~ (0, )2 .
However, when LRTv is applied to Y G−1 new, even if
e N σ~ (0, )2 for generating Y1 conditional on the true G, the
correct asymptotic distribution of LRTv under the “empiri-
cal” null is a weighted sum of independent χ(1)

2 (Supporting
Information Materials and Theorem 3.4.1(1) of Yanagihara,
Tonda, & Matsumoto, 2005; Tonda, & Wakaki, 2003;
Gomes-Sanchez-Manzano et al, 2006; Eicker, 1969). Thus,
assessing LRTv using χ(2)

2 can have T1E issues if the data
were generated under the “empirical” null S1.1 condition as
in real data, similarly for S1.2.

Figure 1 compares the asymptotic distribution (black
solid curve) with the finite‐sample distribution (red dashed
curve) of LRTv under the “empirical” null, as well as with
the asymptotic distribution (χ(2)

2 , blue dot‐dashed curve) of
LRTv under the “theoretical” null. While the the finite‐
sample distribution approximates well the asymptotic
distribution derived under the “empirical” null, it is clear
that the distributions of LRTv differ between the “empirical”
and “theoretical” null; the difference is more visible on the

TABLE 4 Simulation results of interaction scenario 1: Single G, and E missing; effect of the nominal α level

n = 103 α 5 × 10−2 1 × 10−2 1 × 10−3 1 × 10−5

Location LRTm S0 5.016 0.999 0.985 0.988
S1.1 5.009 1.007 0.988 0.990
S1.2 5.011 1.009 1.033 1.013

Scorem S0 5.008 0.998 0.989 0.990
S1.1 4.982 0.998 0.982 0.991
S1.2 4.982 0.999 0.983 0.997

Scale LRTv S0 5.009 1.002 1.024 1.033
S1.1 6.923 1.636 2.059 11.599
S1.2 6.920 1.639 2.042 11.624

Levene S0 4.955 0.961 0.938 0.971
S1.1 4.964 0.978 0.932 0.952
S1.2 4.962 0.970 0.953 0.958

Empirical T1E rates of LRTm and Scorem location tests for mean difference in Y across the three G groups, and of LRTv and Levene scale tests for variance
difference in Y , based on the “theoretical” null design of S0 and the alternative “empirical” null designs of S1.1 and S1.2. The alternative Y1 data were generated
using the Aschard’s genetic model as described in Table 1, focusing on the extreme case of large interaction effect, β = 1GE . Empirical T1E rates outside

∕α α α± 3 × (1 − ) nrep.in are boded.

TABLE 5 Simulation results of interaction scenario 1: Single G,
and E missing; effect of sample size n

α = 5 × 10−2

n = 103 n = 104

Location
LRTm S0 5.011 5.012

S1.1 4.992 5.003
S1.2 4.934 4.989

Scorem S0 5.011 5.012
S1.1 4.993 5.003
S1.2 4.934 4.989

Scale
LRTv S0 5.103 5.165

S1.1 7.034 7.125
S1.2 7.007 7.020

Levene S0 4.924 4.945
S1.1 4.905 4.965
S1.2 4.874 4.825

Empirical T1E rates of LRTm and Scorem location tests for mean difference in
Y across the three G groups, and of LRTv and Levene scale tests for variance
difference in Y , based on the “theoretical” null design of S0 and the
alternative “empirical” null designs of S1.1 and S1.2. The alternative Y1 data
were generated using the Cao’s genetic model as described in Table 1, and
using two difference sample sizes of n = 103 and 104. Empirical T1E rates
outside ∕α α α± 3 × (1 − ) nrep.in are bolded.
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scale of critical value for statistical significance (the vertical
lines). The true significance threshold for LRTv under the
“empirical” null is further away to the tail, as compared
with the threshold of χ(2)

2 under the “theoretical” null.
Thus, applying LRTv to real GWAS or NGS while using the
significance threshold of χ(2)

2 can lead to inflated T1E rate.
Deriving the correct distribution corresponding to the
“empirical” null, unfortunately, requires the knowledge of
the alternative model which is unknown in practice.
Permutation‐based method can provide reasonable esti-
mates which we discuss later.

In practice, it is routine (and recommended) to display
and examine the empirical distribution of a trait under the
study. However, Supporting Information Figure S1 shows
that even under the most extreme setting where β = 1GE ,
the marginal histogram of Y1 appears to be approximately
normal visually, unless a formal diagnostic test for
normality was conducted. The slightly right‐skewed
empirical distribution of Y1 is the result of mixing six
conditional distributions of Y1, each perfectly normally
distributed conditional on the causal G and E. This is the
key difference between the “theoretical” and “empirical”
null simulation designs, regardless of the sample size. For
a less extreme case where β = 0.2GE , although both the
histogram and Q–Q plot (Supporting Information Figure
S2) suggest that normal distribution is a good fit (passing
the Shapiro–Wilk normality test), the T1E discrepancy
between the “theoretical” and “empirical” null remains,
although less severe, as shown in Table 3 (column
β = 0.2GE ) and Supporting Information Figure S3 (middle
row). Tables 3, 4, and 5 also provide T1E results for testing
phenotypic mean (as opposed to variance) differences
across the genotype groups. Although location testing for
main effect is generally quite robust to the assumption of
normality, problem can arise when testing for interaction

effects, beyond any apparent model misspecifications (Rao
& Province, 2016).

3.2.2 | Scenario 2: Single G, and E known

In direct testing for the G × E interaction effect
(SNP SNP×repeating nonrepeating to be more precise), Rao
and Province (2016) used the classical “theoretical” null
simulation design S0, with or without the main G effect.
Regardless, figures 1b,c of Rao and Province (2016)
showed that the variation in the resulting λGC was
substantially bigger when testing bGE than testing bG.
Their figures 1d,e also demonstrated that the variation
diminishes as sample size increases. However, we note
that this observation was made before averaging across
the 414 simulated interaction scans/datasets; each scan
contained 20,000 SNPs from which a λGC value was
estimated.

The results of Rao and Province (2016) are consistent
with ours shown in Supporting Information Figure S6.
Supporting Information Figure S6 shows that scan‐specific
estimated T1E rates are indeed variable (due to depen-
dency between the tests) and become less so as the sample
size increases; 100 G × E whole‐genome interaction scans
with 105 SNPs in each scan and E being fixed within a
scan. However, it is important to note that the average T1E
rate across nrep.out simulated scans reflects better the
long‐run behavior of a method. Indeed, results in Table 6
show that the T1E rate of testing bGE, estimated from
10 × 1005 (nrep.in× nrep.out) simulated replicates, is well
controlled under the conventional “theoretical” null
simulation design of S0. However, this is not the case
under the “empirical” null simulation designs of S1.1 or
S1.2. Similar to the LRTv scale test for variance hetero-
geneity, the discrepancy in T1E control, between the two
types of null simulation designs, becomes more prominent
at the tail and persists as sample increases (Table 6).

3.2.3 | Scenario 3: Multiple Gs, and E
known

Table 7 contains T1E results for gene‐based interaction
studies of both common and rare variants. When the
MAFs are between 0.2 and 0.5 (common), we observed
that the T1E rates of all tests considered are significantly
different between the “theoretical” null and “empirical”
null. This result is consistent with that of the interaction
scenarios 1 and 2 above. Our simulation results also
confirmed that the BurdenGE interaction test has T1E
issue even under the “theoretical” null, as previously
noted in Lin et al. (2016). When the MAFs are reduced
10‐fold to be between 0.02 and 0.05 (rare), although
SKATGE appears to be robust, the BurdenGE and FGE tests

FIGURE 1 Comparison of the asymptotic distribution (black
solid) and finite‐sample distribution (red dashed) of LRTv under
the “empirical” null, with the asymptotic distribution (χ2

2, blue
dot‐dashed) of LRTv under the “theoretical” null. Vertical lines
correspond the 99.9% quantile cutoffs for α = 0.001
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continue to display significant differences between the
“theoretical” and “empirical” null simulation designs for
evaluating their T1E control.

4 | DISCUSSION

In this study, we highlight the importance of distinguish-
ing the “theoretical” and “empirical” null distributions,
first noted by Efron (2004), in a different application
context. Starting with scale tests for variance hetero-
geneity and through simulation studies, we showed that
conclusions of T1E control of a statistical test could differ
depending on the choice of the null simulation designs.
For example, the LRTv variance test appears to be
accurate under the “theoretical” null design, but it can
have inflated T1E under the “empirical” null design that
better mimics real data conditions (Tables 3, 4, and 5, and
Supporting Information Figure S3).

Cao et al. (2014) has pointed out the sensitivity and
limitation of LRTv when the error term e is not normally
distributed. However, they implicitly assumed that the test

would work well as long as e N σ~ (0, )2 , regardless of
“theoretical” null or “empirical” null. In our simulation
study, although all the e’s for generating the phenotype data
were normal, the increased T1E under the “empirical” null
are, fundamentally, attributed to the sensitivity of LRTv to
subtle model misspecifications. This is because the marginal
distribution of the empirical outcome data are in fact not
normal (Supporting Information Figures S1 and S2). Thus,
tests shown to be extremely sensitive to model assumptions
are particularly vulnerable when applied to real data.
Because empirical data are better represented by the
“empirical” null than the “theoretical” null, evaluating
T1E control using the “empirical” null design can expose
the true behavior of a test when applied to real whole‐
genome association scans.

Conversely, power calculation for LRTv using the
significance threshold of the “theoretical” null dis-
tribution can be too optimistic. Indeed, this study was
motivated by the observation made in Supporting
Information Table S7 of Soave et al. (2015) that,
“further analysis using permutation estimation of
p‐values showed that power of the LRT under asymptotic

TABLE 6 Simulation results of interaction scenario 2: Single G, and E known

n = 103 n = 104

α = 5 × 10−2 1 × 10−2 1 × 10−3 5 × 10−2 1 × 10−2 1 × 10−3

LRTGE S0 5.034 1.017 1.029 5.033 1.007 0.979
S1.1 7.091 1.763 2.422 6.886 1.709 2.410
S1.2 7.100 1.771 2.389 6.972 1.707 2.339

ScoreGE S0 4.982 1.003 1.002 5.021 1.004 0.972
S1.1 7.028 1.738 2.363 6.874 1.705 2.400
S1.2 7.040 1.747 2.339 6.960 1.703 2.326

Empirical T1E rates of the LRTGE and ScoreGE tests, based on the ‘theoretical’ null design of S0 and the alternative ‘empirical’ null designs of S1.1 and S1.2. The
alternative Y1 data were generated using the Aschard’s genetic model as described in Tables 2 when βGE = 1, but E was assumed to be known in this case and
direction interaction testing was possible. Empirical T1E rates outside ∕α α α± 3 × (1 − ) nrep.in are bolded.

TABLE 7 Simulation results of interaction scenario 3: Multiple Gs, and E known

Small MAF (rare) large MAF (common)

α = 5 × 10−2 1 × 10−2 1 × 10−3 5 × 10−2 1 × 10−2 1 × 10−3

FGE S0 4.991 0.982 0.985 4.983 1.001 0.992
S1.1 5.448 1.130 2.363 6.905 1.591 2.043
S1.2 5.448 1.130 1.238 6.818 1.596 1.945

SKATGE S0 4.904 0.949 0.895 4.934 0.976 0.917
S1.1 5.038 1.074 1.059 6.460 1.411 1.640
S1.2 5.034 1.065 1.110 6.378 1.394 1.651

BurdenGE S0 6.169 3.751 15.049 13.709 4.280 7.440
S1.1 8.432 2.213 3.144 5.666 1.232 1.410
S1.2 8.408 2.208 3.148 5.712 1.237 1.420

Empirical T1E rates of the FGE , SKATGE , and BurdenGE tests of jointly testing for multiple interaction effects, based on the “theoretical” null design of S0 and the
alternative “empirical” null designs of S1.1 and S1.2. Models and parameters values are given in Table 2. Empirical T1E rates outside

∕α α α± 3 × (1 − ) nrep.in are bolded.
MAF: minor allele frequency.
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analysis was greatly inflated.” The work here provides
analytical insights on why this is the case. The
asymptotic power was obtained using the χ(2)

2 distribu-
tion derived under the “theoretical” null while
controlling T1E at α, as in Cao et al. (2014). The
permutation‐based power was obtained by using the
empirical α1 − quantile cutoff of the LRTv statistic
applied to permutated phenotype data. This is equiva-
lent to controlling T1E at α under the “empirical” null
of S1.2. Under the “empirical” null, however, we
showed that LRTv follows a different distribution and
the corresponding significance quantile cutoff is
further to the tail, as compared with the f T χ( ) =0 (2)

2

distribution under the “theoretical” null (Figure 1).
This leads to (correct) smaller permutation‐based
power. The (incorrect) higher asymptotic‐based power
is a result of increased T1E rate, when the data were
generated under the “empirical” null condition but the
test statistic was evaluated using χ(2)

2 derived under the
“theoretical” null condition. Permutation‐based S1.2
null design can estimate the true distribution of a test
statistic T when applied to a real data set, and identify
the correct significance threshold for T under the
“empirical” null. But, permutation must be carried out
carefully in practice, for example, in the presence of
sample correlation (Abney, 2015).

In practice, investigators often rely on visual inspection
of histograms of outcome data as illustrated in Supporting
Information Figures S1 and S2. We have noted that the
departure from normality does not have to be severe to have
an effect on tests such as LRTv, as observed in a LRTv scan
of lung function in cystic fibrosis subjects by Soave et al.
(2015). In that case, the lung phenotype is called SaKnorm,
defined as the forced expiratory volume in one second,
adjusted for sex, age, height, and mortality, and normalized.
In the sample analyzed, the distribution of the phenotype
indeed appeared to be normal, but the application of LRTv
to permutated SaKnorm showed inflated T1E even for
common SNPs: Supporting Information Figure S2.H of
Soave et al. (2015) for 454,764 SNPs with MAF≥ 0.1,
Supporting Information Figure S2.I for 111,120 SNPs with
MAF < 0.1, and Supporting Information Figure S2.G for all
565,884 GWAS SNPs.

Furthermore, for data appear to deviate from normal
such as those displayed in Supporting Information
Figure S1, even if investigators chose to perform some
standard normal transformations, the T1E issue can persist.
For example, let us consider the phenotype data simulated
based on Aschard’s genetic model, as described in Table 1
where β = 1GE (Supporting Information Figure S1). After
square‐root or log transformations (Goh & Yap, 2009),
although the empirical marginal distribution of the
phenotype data improved as expected (Supporting Infor-

mation Figure S4), the severity of T1E inflation of LRTv in
fact worsened under the “empirical” null simulation
designs S1.1 and S1.2 (Supporting Information Figure S5).

Voorman et al. (2011) showed that spurious false
positives can occur in genome‐wide scans for G × E
interactions, particularly in the presence of model mis-
specification. Rao and Province (2016) also presented
inflated or deflated genomic inflation factor λGC in a G ×G
interaction scan when one SNP is anchored (i.e., SNPrepeating
xSNPnonrepeating), using the conventional “theoretical” null
simulation design without any apparent model misspecifi-
cations. Based on our G × E simulation studies where E
was fixed within each scan, we note that the large variation
in λGC estimate demonstrated by Rao and Province (2016)
corresponds to the sampling variation inherent in estimat-
ing T1E rate from nrep.in replicates (or SNPs) within each
of the nrep.out replicates (or scans). This, however, does not
translate to T1E issue based on the classical frequentist
interpretation. Results in Table 6 show that, under the
“theoretical” null of S0, there is no T1E issue in G × E
interaction studies even if E was fixed within a genome‐
wide scan. But, similar to scale test of variance, T1E results
differ using the “empirical” S1.1 or S1.2 null simulation
designs. Additional theoretical insights are provided in
Section 3 of the Supporting Information Materials.

Departure from normality is generally weakened
under multivariate assumptions. However, the topic
addressed here remains relevant. To demonstrate this,
in addition to studying interaction between E and G of a
single SNP, we also examined testing for interaction
effects between E and multiple Gs as in gene‐based
interaction studies. We reached the same conclusion that
T1E conclusions could differ between the “theoretical”
and “empirical” null simulation designs.

To conclude, although we only presented three examples
(i.e., scale tests for variance heterogeneity, and direct tests
for one or multiple interaction effects jointly), the findings
here have important implications for future evaluation of
T1E control and interpretation. The newer tests being
developed often go beyond the first moment such as the
scale tests studied here, and they are increasingly complex
and possibly more sensitive to subtle model misspecifica-
tions. The conventional “theoretical” null simulation design
(S0) is unrealistic and can lead to misleading conclusion
regarding T1E control, which in turn affects power study.
The alternative “empirical” null simulation designs (S1.1
and S1.2) can reveal the true behavior of a test when
applied to real data.
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