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Abstract

Introduction: The White Blood Cell (WBC) differential count yields clinically relevant 
information about health and disease. Currently, pathologists manually annotate the 
WBCs, which is time consuming and susceptible to error, due to the tedious nature 
of the process. This study aims at automation of the Differential Blood Count (DBC) 
process, so as to increase productivity and eliminate human errors. Materials and 
Methods: The proposed system takes the peripheral Leishman blood stain images 
as the input and generates a count for each of the WBC subtypes. The digitized 
microscopic images are stain normalized for the segmentation, to be consistent over 
a diverse set of slide images. Active contours are employed for robust segmentation 
of the WBC nucleus and cytoplasm. The seed points are generated by processing the 
images in Hue‑Saturation‑Value (HSV) color space. An efficient method for computing a 
new feature, ‘number of lobes,’ for discrimination of WBC subtypes, is introduced in this 
article. This method is based on the concept of minimization of the compactness of each 
lobe. The Naive Bayes classifier, with Laplacian correction, provides a fast, efficient, and 
robust solution to multiclass categorization problems. This classifier is characterized 
by incremental learning and can also be embedded within the database systems. 
Results: An overall accuracy of  92.45% and 92.72% over the training and testing sets 
has been obtained, respectively. Conclusion: Thus, incremental learning is inducted 
into the Naive Bayes Classifier, to facilitate fast, robust, and efficient  classification, which 
is evident from the high sensitivity achieved for all the subtypes of WBCs.
Key words: Incremental learning, naive bayes classifier, number of lobes,  
white blood cells classification
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INTRODUCTION

Over the years, information derived from the White 
Blood Cell  (WBC) differential count has become a 
cornerstone in Laboratory Hematology and is widely used 
for screening, case finding, diagnosis, and monitoring 
of hematological and non‑hematological disorders. 

Human blood consists of five types of white blood cells, 
namely, Neutrophils  (40-60%), Lymphocytes  (20-40%), 
Monocytes  (2-8%), Eosinophils  (1-4%), and 
Basophils (0.5-1%).

The WBC differential count is considered to yield 
clinically relevant information in health and disease.[1] 
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For example, excess of lymphocytes may be caused 
due to Lymphocytic Leukemia.[2] High Eosinophil and 
Monocyte count is usually an indicator of bacterial 
infection in the body.[3] Thus, the WBC count is an 
important and useful measure, which indicates the 
health status of the body.

In a typical pathology laboratory, two types of blood 
counts are performed, namely Complete Blood 
Count  (CBC) and Differential Blood Count  (DBC). 
The CBC is performed using an instrument called the 
cytometer, based on the principle of ‘flow cytometry’.[4] 
On the other hand, in DBC, an expert would count 100 
WBCs  (all categories) on the blood stain slides and 
compute the percentage occurrence of each type of 
WBC. The DBC is a much more reliable count than 
the CBC. However, manual annotation of the WBCs is 
considered to be an imprecise technique, because of the 
massive data and tedious nature of the task.[5]

There were a few efforts in the past to automate the 
solution to this problem. Earlier, Ongun et  al.,[6] and 
Ramesh et  al.,[7] had also proposed an automatic 
DBC system. In the scheme suggested by them, the 
WBCs were segmented by applying active contours 
or color‑based segmentation. Various geometric and 
texture features were used by them for classification. 
Apart from this, several attempts were made in the 
past for the segmentation of WBCs, such as, the 
Teager Energy‑Based Segmentation by Kumar et  al.,[8] 
and the Watershed Algorithm by Jiang et  al.,[9] 
Rezatofighi et al.,[10] introduced a method based on the 
orthogonality theory and the Gram‑Schmidt process 
for segmenting the WBC nuclei.

In the opinion of the authors of this article, the 
previous studies on automation of differential WBC 
count have not laid emphasis on the development 
of a fast, parallel, and scalable system. A  really fast 
system is needed, as the number of DBCs a pathology 
laboratory handles is enormous. This study focuses on 
building an automatic computer system for performing 
DBC on digitized peripheral blood stain images. We 
propose a scheme based on the Bayesian classifier that 
learns incrementally and that can be embedded inside 
a database system like MySQL, to create a feasible 
framework for the development of a scalable learning 
system.

MATERIALS AND METHODS

Dataset Description
The image dataset used in this process was generated 
by the digitization of peripheral blood stain slides. 
The slides used here were Leishman stained.[11] This 
section describes the process of preparation of the slide. 
The slides were air dried and thereafter flooded with 
the Leishman’s stain. The stain formulation included 
methanol, which fixed the cell. The slides were held 
for two to three minutes before diluting the solution 
with an equal amount of buffered water at pH  6.8. The 
water was added slowly with a plastic Pasteur pipette. 
Such slides were then left to hold for about 12  minutes. 
The appearance of polychromatic ‘scum’ on the surface 
of the slides was merely a result of oxidation of the dye 
components and could be ignored. Following this, the 
excess stain was washed off with slow running water and 
the slides were flooded with buffered water at pH  6.8 
for another minute. The digitized images of the stained 
blood smear slide were then captured by using a whole 
slide scanner at 40X magnification. The images of all the 
five types of WBCs, as obtained from the scanner, are 
shown in Figure 1. The dataset is available for download 
at http://autodbc.wordpress.com/.

System Design
The system comprises of the following modules:  (1) 
Stain Normalization,  (2) WBC Segmentation,  (3) 
Feature Extraction, and  (4) Classification using Naive 
Bayes Classifier. Each of these has been discussed in the 
subsequent subsections.

Stain Normalization
For a scalable system, it is necessary for the segmentation 
to be consistent for a large image dataset. In order to 
devise a robust segmentation technique, independent of 
staining in the images, it is essential to stain normalize 
the images before the segmentation step.

The images were stain normalized with respect to a target 
image, which was selected on the basis of a larger visible 
contrast between the WBCs and the background cells as 
observed in the RGB image. The stain normalization was 
done as proposed by Reinhard et al.[12]

WBC Segmentation
Image segmentation is pivotal in medical image analysis 
problems. The segmentation step is decisive, as the 

Figure 1: Different types of WBCs in the provided dataset
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subsequent feature extraction and classification steps 
depend on the accurate segmentation of the white blood 
cells.

The aim of WBC segmentation was twofold. First was 
segmentation of the WBCs. Second was extraction of 
the WBC nucleus and cytoplasm separately. The nucleus 
and cytoplasm were obtained separately to facilitate 
computation of the nuclear as well as cytoplasmic features, 
which were essential for the classification step. Refer to 
the Feature Extraction section for details of features used 
for classification. Several attempts for segmentation of 
WBCs were made in the past, which included scale‑space 
filtering, watershed algorithm as proposed by Jiang, et al.,[9] 
and Teager energy‑based segmentation, as proposed by 
Kumar et al.,[8] to name a few.

The various steps involved in WBC segmentation are 
shown in the Figure  2. The nucleus and cytoplasm 
segmentations have been dealt with individually in the 
subsequent subsections.

Nuclei Segmentation
Active contours, as proposed by Chan, et  al.,[13] were 
implemented for segmentation of the WBC nuclei. They 
provided a framework based on the minimization of 
energy of the contour, which was robust and delineated 
objects even in the presence of noise. The preliminary 
task for nuclei segmentation was to obtain seed points for 
the employment of active contours. In order to acquire 
seed points, the stain normalized RGB image obtained 
in the Stain normalization section was converted to its 
HSV equivalent. The nucleus of the WBCs had higher 
intensities in the pink hue, therefore, the S channel of 
the obtained HSV image was used for thresholding.

Morphological opening and area‑based filtering, using 
connected component analysis  (CCA), was done, to 
remove the non‑WBCs. The morphological opening was 
also beneficial in resolving the connected nuclei problem. 
The structuring element used here was a square matrix of 
window, size 7  ×  7. Thus, the mask containing the seed 
points was generated.

The active contour model could be implemented 
because of the difference in the intensity levels of 

the interior and the exterior of the nucleus. Details 
of energy function and the minimization of active 
contour energy can be found in Chan, et  al.[13] The 
active contours enhanced the shape of the nucleus, 
because some of the features like number of lobes and 
maximum curvature points depended on the precise 
shape of the nucleus.

Cytoplasm Segmentation
Cytoplasm segmentation required the extraction of white 
blood cells. The nucleus was then subtracted from the 
obtained WBC to get the cytoplasm. The pink hue of the 
WBCs was separated by simple thresholding of the hue 
channel of the HSV image. The morphological opening 
was done to remove protrusions on the obtained cells. 
Connected component elimination, using the obtained 
WBC nuclei, was done, to remove the non‑WBCs that 
were obtained in the previous steps. Thus, the seed 
points were acquired to apply the active contours. The 
segmentation of the WBC nuclei and the cytoplasm was 
accurate and no WBC was eliminated at this stage.

Feature Extraction
Choice of features immensely affects the classifier 
performance. For a robust classification, the features must 
characterize each WBC subtype and must be independent 
of each other. A neoteric scheme for determination of the 
number of lobes in WBCs is presented in this article. 
Apart from this, other features have also been computed, 
based on the biological aspects of all kinds of WBCs. The 
remainder of this section gives information on the features 
that have been used in the proposed system.

Cellular Features
Size of the White Blood Cells
The size of WBCs is directly proportional to its diameter. 
The diameter of the lymphocytes lies in the range of 
6‑10 µm, which is very low, whereas, the monocytes have 
a very high value of diameter. The basophils, eosinophils, 
and the neutrophils have intermediate values. The size 
of each WBC is calculated, to take advantage of the 
difference in size of all kinds of WBCs.

Compactness of the White Blood Cells
This feature signifies the shape of the WBCs. The 

Figure 2: Segmentation scheme
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monocytes have the highest value of this feature as 
compared to the other kinds of WBCs.

Nuclear Cytoplasmic Ratio
The Nuclear Cytoplasmic Ratio  (NCR) gives the degree 
of spread of the nucleus with respect to the cytoplasm 
in a WBC. The NCR is very high for lymphocytes, when 
compared to the other kinds of WBCs. The NCR for the 
basophils is close to one.

Nuclear Features
Average Nuclear Roundness
Roundness of any shape refers to how close it is to being 
a circle. Average Roundness factor for each segment of a 
nucleus is given by

Average roundess factor
n

area
primeter2

= ∑1 4. * *i
n pi=1

where n is the total number of segments of each nucleus. 
This feature clearly differentiates the WBCs on the 
basis of the shape of the nuclei. The lymphocytes and 
basophils have a higher value of this feature, whereas, 
the eosinophils, monocytes, and neutrophils have a 
lower value. Among the latter ones, the eosinophils 
and monocytes  (mostly kidney‑shaped) have a relatively 
higher value than the neutrophils. This feature is very 
vital for the classification of the band neutrophils as they 
have a very low value of the average roundness factor.

Number of Lobes
The number of lobes in the lymphocytes, basophils, and 
monocytes has a lower value; the majority of them being 
single lobed or bi‑lobed. On the other hand, eosinophils 
and neutrophils have a higher number of lobes. Segmented 
neutrophils have the highest number of lobes. Thus, the 
number of lobes may be an important distinguishing 
feature. We have proposed a novel method to estimate 
the number of lobes in a WBC. The number of lobes have 
been calculated by splitting the nucleus into Ni regions, 
where Ni ∈ (2, 3, 4, 5), by using the region splitting 
algorithm, as proposed by Costas et  al.[14] The number of 
lobes has been computed as follows: If the ratio of the area 
of the nucleus to that of its bounding box, that is, ‘Extent’ 
is found to be greater than 0.7, the number of lobes is 
equal to one, otherwise, the number of lobes is equal to 
Ni|C(Ni) = Hamonic Mean (R ,e ,E )i i i

 has been maximized. 
Here (R ,e ,E )i i i

, are the mean of roundness factors, extents, 
and eccentricities of the Ni splitted regions, respectively. 

Figure 3 illustrates the lobe counting method used by us. In 
this case extent = 0.59, which is less than 0.7.C(2) = 0.72, 
C(3) = 0.63, C(4) = 0.61, and C(5) = 0.61, therefore, the 
number of lobes in the given nuclei = 2.

Maximum Curvature Points
This feature gives us a count of the number of sharp 
bends in the nuclei. The number of maximum curvature 
points in the lymphocytes and basophils are too low 
when compared with the eosinophils and monocytes, 
which have intermediate values of this feature. The 
segmented neutrophils have the highest value. The 
curvature is calculated after contour extraction. The 
points on the boundary of the nuclei, which are above 
a certain threshold, are counted as the maximum 
curvature points. The threshold is calculated using the 
local curvature properties as proposed in.[7] Figure  4 
illustrates the maximum curvature points of a nucleus in 
our dataset.

Roughness
Gray‑Level Entropy Matrix  (GLEM)[15] features were 
computed from the GLEM matrix. Among the GLEM 
features, the roughness of the nucleus was calculated. 
The roughness of the basophil and eosinophil nucleus 
was higher than the others, because of the nucleus being 
granular in both the cases.

Cytoplasmic Features
Homogeneity
The degree of homogeneity of the cytoplasm was 
computed from the Gray‑Level Co‑occurrence 
Matrix  (GLCM).[16] The basophils and the eosinophils 
exhibited the lowest values of this feature.

Classification Using Naive Bayes Classifier
The Naive Bayes Classifier is a simple probabilistic 
induction algorithm that fares well when the classes are 
easily separable, as in our case. This supervised algorithm 
comes originally from the study on pattern recognition by 
Duda and Hart.[17] Fisher’s COBWEB algorithm and the 
AUTOCLASS system outlined by Cheeseman et  al.,[18] 
are also based on the Bayesian ideas.

The categorical data was used for classification. 
Hence, feature values of each sample were quantized. 
Quantization was done as low, medium, and high 

Figure 3: Computation of Lobes Figure 4: Computation of maximum curvature points
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values, based on the characteristics of each of the WBC 
subtypes, as defined by the medical experts.

The problem of multicategory classification, where 
sometimes the time or sample size available for training is 
limited, and where the class apriori probabilities are known 
or easily estimated, can be typically solved by using the 
Naive Bayesian classifier with incremental learning.[19]

Incremental learning facilitates the classifier to learn 
from new training sets, apart from preserving the 
information acquired from different datasets, thus 
improving its generalization capabilities on unknown 
images. Such a learning strategy is beneficial, as it need 
not store  or re‑process old instances. It can be applied 
to situations where the input data comes only in a 
sequence, and a continuously updating model is crucial 
for classification in real time.[20,21] In our case  (refer to 
Figure 5), after classification of each WBC in the testing 
set, it was automatically added to the training set. Thus, 
incremental learning was accomplished.

The aim of this article was to implement a scalable 
system to be used in real life situations. Such a system 
would be implemented on the web and would require 
the embedding of a classifier within the database system. 
The Naive Bayes Classifier with Laplacian correction was 
suitably used.

EVALUATION RESULTS

The total dataset contained 267 WBCs in 237 images. 
The training was done on 80% of the dataset and 20% 
was kept for testing purposes. The confusion matrix for 
training and testing data is shown in Tables 1 and 2, 
respectively.

The recall and precision of the classifier for all five types 
of WBCs in the testing set has been stated in Table 3. 
An overall accuracy of 92.45% and 92.72% was obtained 
in the training and testing sets, respectively. The obtained 
accuracy was found to be far better than the accuracy of 
77%, which was achieved by Umpon et al.[22] In multiclass 

Table 1: Confusion matrix: Training

 Classifier

Basophils Eosinophils Lymphocytes Monocytes Neutrophils

Ground truth

Basophils 4 1 0 0 0
Eosinophils 0 11 1 0 2

Lymphocytes 1 0 72 4 0
Monocytes 0 1 2 17 0
Neutrophils 0 2 2 0 92

Table 2: Confusion matrix: Testing

Classifier

Basophils Eosinophils Lymphocytes Monocytes Neutrophils

Ground truth

Basophils 1 0 0 0 0
Eosinophils 0 3 0 0 1

Lymphocytes 0 1 14 1 0
Monocytes 0 0 0 5 1
Neutrophils 0 0 0 0 28

Figure 5: WBC Classification System
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problems such as these, a correct classification of only 
the majority classes such as neutrophils and lymphocytes 
would have given a high accuracy, which was not the 
aim of this study. Hence, the sensitivity  (recall) of each 
class was a more apt measure for classification of WBC 
subtypes. The individual sensitivities of each WBC 
subtype, especially minorities like basophils, eosinophils, 
and monocytes, were found to be better than in many 
previous studies like that of Ramesh, et al.[7]

The reasons for the misclassification of the WBCs 
were studied and it was observed that eosinophils and 
monocytes were the most misclassified WBC types. 
The misclassification of eosinophils into neutrophils was 
due to the similarity in the feature values of eosinophils 
and segmented neutrophils, except for the homogeneity 
of the cytoplasm and the roughness of the nucleus. On 
the other hand, the misclassification of monocytes was 
basically due to their similarity to band neutrophils. In 
the opinion of the authors, the misclassification rate 
could be further reduced by introducing some more 
texture‑based features in the feature set.

Another experiment was performed to test the effectiveness 
of the novel feature, that is, ‘Number of Lobes’. The 
Bayesian classifier, trained without this feature, achieved 
an accuracy of on the testing set, thus, showing the 
effectiveness and relevance of this novel feature.

CONCLUSION AND FUTURE STUDY

In this study, a scalable, automatic, WBC differential count 
system is proposed. Segmentation is robust and consistent 
over a large image dataset. A  careful selection of features, 
based on the domain knowledge of medical experts, has 
been done. A  novel way to estimate the feature, ‘Number 
of Lobes,’ is proposed. Inclusion of this new feature has 
shown a drastic improvement in the classification accuracy 
of the system. Incremental learning is inducted into the 
Naive Bayes Classifier, to facilitate fast, robust, and efficient 
classification, which is evident from the high sensitivity 
achieved for all the subtypes of WBCs.

Currently, studies are being conducted to implement 
this system as a full‑fledged, web‑based tool, which 
can be used in real life clinical practice. This study can 

also be extended to identify objects in the smear such 
as ‘microorganisms’. Efforts are also being made for 
development of implementation of the Bayesian Classifier 
as a relational database module  (MySQL module). 
A  large‑scale multisite collaborative study is required to 
employ such a system, by collaborative filtering, to aid in 
the development of reliable computerized tools.
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