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México, 3 Facultad de Ingenierı́a, Universidad Cesmag, Pasto, Colombia

☯ These authors contributed equally to this work.

* kernel@ciencias.unam.mx

Abstract

This work presents a tool for forecasting the spread of the new coronavirus in Mexico City,

which is based on a mathematical model with a metapopulation structure that uses Bayes-

ian statistics and is inspired by a data-driven approach. The daily mobility of people in

Mexico City is mathematically represented by an origin-destination matrix using the open

mobility data from Google and the Transportation Mexican Survey. This matrix is incorpo-

rated in a compartmental model. We calibrate the model against borough-level incidence

data collected between 27 February 2020 and 27 October 2020, while using Bayesian infer-

ence to estimate critical epidemiological characteristics associated with the coronavirus

spread. Given that working with metapopulation models leads to rather high computational

time consumption, and parameter estimation of these models may lead to high memory

RAM consumption, we do a clustering analysis that is based on mobility trends to work on

these clusters of borough separately instead of taken all of the boroughs together at once.

This clustering analysis can be implemented in smaller or larger scales in different parts of

the world. In addition, this clustering analysis is divided into the phases that the government

of Mexico City has set up to restrict individual movement in the city. We also calculate the

reproductive number in Mexico City using the next generation operator method and the

inferred model parameters obtaining that this threshold is in the interval (1.2713, 1.3054).

Our analysis of mobility trends can be helpful when making public health decisions.

Introduction

The coronavirus disease 2019 (COVID-19) is caused by a novel coronavirus. The coronavi-

ruses are a family of viruses that cause infection in humans and animals. The diseases that are

by a coronavirus are zoonotic [1]. In particular, the coronaviruses that affect humans (HCoV)

can produce clinical symptoms, such as the Severe Acute Respiratory Syndrome (SARS)

viruses and Middle East Respiratory Syndrome (MERS-CoV) [2]. COVID-19 was first identi-

fied amid an outbreak of respiratory illness cases in Wuhan City, Hubei Province, China. This

disease was initially reported to the WHO on 31 December 2019. On 11 March 2020, the
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WHO declared COVID-19 to be a global pandemic [3]. From the beginning of the epidemic to

21 January 2021, more than 97,890,676 cases and 2,094,459 deaths have been reported

globally.

The first case of COVID-19 in South America was registered in Brazil on 26 February 2020.

The first death from this infection in this region was announced in Argentina on 7 March

2020. The virus then arrived in Mexico, where by 21 January 2021 there have been almost

1,688,944 confirmed cases and 144,371 deaths.

To date, many researchers around the world have focused on understanding the transmis-

sion dynamics of COVID-19 disease using mathematical and statistical models and methods,

see for example [4–12]. In this work, we will focus on those models that incorporate informa-

tion on human movement. The relationship between human mobility and the transmission of

coronavirus disease in the United States has been studied in [13, 14]. Metapopulation models

are not only among the simplest spatial models but they are also the most applicable to model-

ling many human diseases [15]. The metapopulation concept is to subdivide the entire popula-

tion into distinct sub-populations, each of which has independent dynamics together with

limited interaction between the sub-populations. This approach has been used to great effect

within the ecological literature [16] and it has recently been used to model the spread of

COVID-19; see, for example, [17–21].

In this work, we calibrate the metapopulation model proposed by Li et al. in [21], similar to

[22], using incidence data reported in [23]. Consequently, we first describe the mathematical

model that we have used; then, we compute the number of trips that are produced and

attracted in each borough of Mexico City using data about these trips in 2017 [24], which then

we combine with the rates of reduction or increase in mobility during the pandemic reported

by Google [25] and the government of Mexico City [26]. Later, by using Bayesian inference,

we solve the associated inverse problem to predict the dynamics of the spread of cases, similar

to the following references [27–33]. Our conclusions are presented in the last section.

Computation of the mobility matrices

To incorporate mobility in the transmission model, the produced and attracted trips in the

boroughs of Mexico City are considered (see Fig 1 and Table 1). Mexico City is the capital of

Mexico. It has around 9 million inhabitants and a floating population of over 22 million, who

are composed of daily commuters and international visitors. Mexico City is among the top 10

most crowded cities in the world [34]. It also has a large number of corporate headquarters

and a large transport network, which is composed of 20 different modes of transport.

Mobility between the zones in Table 1 is represented in a two-dimensional arrangement,

which is known as the origin-destination matrix (O-D matrix) M = {Mij}, i, j = 1, . . ., 16, where

Mij represents the number of trips from zone i to zone j. Origin-destination matrices are usu-

ally obtained every 10 years from surveys. In Mexico City, the last survey was carried out in

2017 [24]. The information available identifies, among other things: if the trip was made on a

weekday or if it was made during the weekend, the transport mode used, the purpose and the

time. It is important to notice that, due to the complexity of mobility in Mexico City, the O-D

matrix does not have to be symmetric nor the sum of the row i has to be equal to the sum of

the column i. This can be explained because the O-D matrix captures chains of trips that may

begin one day and end within the next few days. For instance, trips of people who leave their

home to go to zone i to work and then go to zone j to see a movie before returning home, or

people that work in zone i for few consecutive days (see [35]). In this paper, we consider all of

the trips and they are identified by the mode of transport that was used in the area of interest

(see Table 2).
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Fig 1. Boroughs of Mexico City.

https://doi.org/10.1371/journal.pone.0263367.g001
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There are several methodologies to update the O-D matrix in the literature. Most of them

combine known information with current data observed, such as the number of trips in some

segments of the transit network [36]. There are also some approaches that project the trips to/

from each zone based on the projected economic growth in those areas [37]. Nevertheless,

given the pandemic situation that we are experiencing today and that we have current available

data about the increase or decrease in mobility for some modes of transport, transit stations

and parking lots, we consider the 2017 O-D matrix as a reference matrix and we update it to a

scenario in 2020 using the daily mobility reports provided by Google [25] and the government

of Mexico City [26]. According to [24], Tables 3 to 6 represent the number of trips between

Table 1. Boroughs of Mexico City.

Id. Name Id. Name Id. Name Id. Name

1 Azcapotzalco 5 Iztacalco 9 Álvaro Obregón 14 Cuauhtémoc

2 Coyoacán 6 Iztapalapa 10 Tláhuac 15 Miguel Hidalgo

3 Cuajimalpa de 7 La Magdalena 11 Tlalpan 16 Venustiano

Morelos Contreras 12 Xochimilco Carranza

4 Gustavo A. Madero 8 Milpa Alta 13 Benito Juárez

https://doi.org/10.1371/journal.pone.0263367.t001

Table 2. Transport modes used in the area of interest.

Car RTP/M1 Metrobus/Mexibus Motorcycle taxi

Collective/micro Bicycle Light rail School transportation

Taxi app Bus Suburban Personal transportation

Taxi Motorcycle Walk Other

Subway Trolleybus Pedicab

https://doi.org/10.1371/journal.pone.0263367.t002

Table 3. Mean number of trips from zones 1-16 to zones 1-9 during a week day.

Id 1 2 3 4 5 6 7 8 9

1 477560 21108 7564 120676 6475 25026 1557 0 24149

2 21111 886428 11010 48039 32230 228272 49305 17446 108741

3 7336 10462 301805 9770 5397 10867 3491 722 100180

4 120735 50796 9699 1677356 23427 52676 2602 590 27846

5 6486 32393 5358 22936 361938 181660 1563 145 19190

6 25244 221750 10308 56688 177845 2766471 9326 10395 64521

7 1685 50941 4148 2576 1389 8008 260789 441 83675

8 0 16022 722 590 145 10872 336 218175 3901

9 24180 108129 102892 28836 18012 61990 80171 5577 1034673

10 1730 50969 1994 7283 8243 134119 2179 22801 11070

11 11034 237367 10663 17958 14370 82757 53911 17203 95685

12 2148 100785 2637 6062 7586 46856 7030 31284 14993

13 17200 126058 14645 59944 59956 163732 29187 9714 161543

14 88252 118292 20292 264298 84725 253810 22415 9495 107543

15 99868 52246 43942 81013 26450 73629 11072 2972 115902

16 15795 31971 3324 103651 56192 102397 3239 1199 22583

Sum 920364 2115717 551003 2507676 884380 4203142 538173 348159 1996195

https://doi.org/10.1371/journal.pone.0263367.t003
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these zones; for instance, the mean number of trips whose origin is Coyoacán (id = 2) and des-

tination is Iztapalapa (id = 6) during a week day is 228,272 (see Table 3) and the mean number

of trips whose origin is Tláhuac (id = 10) and destination is Cuauhtémoc (id = 14) is 21,881

(see Table 6) during a day on the weekend.

In Tables 3–6, the last row represents the total number of trips attracted by each zone and

the last column in Tables 4 and 6 represents the total number of trips generated by each zone.

Table 4. Mean number of trips from zones 1-16 to zones 10-16 during a week day.

Id 10 11 12 13 14 15 16 Sum

1 1918 10139 2112 17283 93083 102450 16775 927875

2 48004 242818 103414 124379 118140 52754 34231 2126322

3 1391 11779 2118 16210 21397 42701 3179 548805

4 7446 18848 6419 60994 261785 81367 100561 2503147

5 7728 13951 7546 60375 85200 24730 58757 889956

6 133560 84369 42750 167620 260158 75002 100842 4206849

7 2086 50756 7950 29523 22641 11200 2466 540274

8 21893 18402 31875 10191 11670 3137 2059 349990

9 10788 99656 15231 164890 106156 120847 25640 2007668

10 517763 26394 50459 23977 26811 14303 7563 907658

11 22491 893910 124478 78302 89627 39742 15378 1804876

12 52346 121534 694220 33487 42853 13362 6662 1183845

13 22689 74181 32266 410876 150510 66226 41365 1440092

14 24894 89400 46227 145677 821467 151255 152044 2400086

15 13294 38943 12352 66648 149602 542212 37905 1368050

16 6620 14267 5001 39229 150324 36686 491938 1084416

Sum 894911 1809347 1184418 1449661 2411424 1377974 1097365 24289909

https://doi.org/10.1371/journal.pone.0263367.t004

Table 5. Mean number of trips from zones 1-16 to zones 1-9 during a day of the weekend.

1 2 3 4 5 6 7 8 9

1 331141 13688 3114 68471 5834 10607 1203 378 9658

2 11696 551750 4838 25849 19910 120115 30555 16952 52884

3 2174 4091 175522 3007 3271 7323 4482 492 65008

4 69138 24356 4142 1007667 16605 29428 825 874 11786

5 4545 20175 3729 16417 210228 128570 1118 793 8682

6 11046 124120 7325 32746 128502 1670601 4991 7800 43020

7 1311 29099 3224 1916 1200 4804 158791 3232 51829

8 252 13668 0 925 793 7594 1677 143275 2146

9 8721 52044 68219 13616 9358 40811 50897 3938 579592

10 1406 26844 757 5531 3253 100356 1831 13138 6297

11 6821 147822 2869 17403 8955 55210 32614 12158 55182

12 2622 58174 1034 4675 5281 27902 3341 25524 9751

13 10562 63766 7127 29544 39022 84688 15222 3119 85047

14 56596 66481 13774 184327 57030 180473 13321 8988 60055

15 53266 17612 17869 37333 13774 36801 4374 4100 59194

16 9800 19479 3206 72083 33526 67913 2627 3114 22571

Sum 581097 1233169 316749 1521510 556542 2573196 327869 247875 1122702

https://doi.org/10.1371/journal.pone.0263367.t005
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This way we can see in Table 4 that during a week day 849,911 trips are attracted to zone 10

and 540,274 trips are generated from zone 7.

To compute the new number of trips made using the subway, RTP/M1, trolleybus, light rail

or suburban, we used the corresponding rates given by the government of Mexico City. To

compute the number of trips made using collective/micro or buses, we used the rates of transit

stations given by Google and for personal transportation we used the workplaces rate. To com-

pute the number of trips made by bicycle, we used the rates for Ecobici and for metrobus/mex-

ibus we used an average of both the rates of metrobus and mexibus in Mexico City. The other

transport modes remain the same as in 2017.

Fig 2 shows the variations in the mobility indices from 27 February to 31 November, for

each mode of transport that was modified.

The population of each borough is also considered in our mathematical model. According

to [38], these populations in 2020 are given in Table 7.

Note that both, the mobility rates from Google and the government of Mexico City and the

reference O-D matrix (the one from 2017) are given per day. This way, the population Ni

could be considered as constant; but only per day. In this work, a phenomenon whose duration

is of the order of months is studied, so that for the entire period of estimation Ni is considered

as a variable.

Furthermore, although in all boroughs the largest number of trips are carried out within

the same borough, the distribution of trips to/from the other boroughs does not follow the

same pattern in all cases. For example, the Coyoacán borough attracts the highest number of

trips from the Tlalpan borough and the least amount of trips from Cuajimalpa; meanwhile, the

borough of Iztapalapa attracts the highest number of trips from the Cuauhtémoc borough and

the least amount of trips from La Magdalena Contreras. This phenomenon can be explained

by the prevailing economic activity in each borough and the transportation connectivity with

the others.

Table 6. Mean number of trips from zones 1-16 to zones 10-16 during a day of the weekend.

10 11 12 13 14 15 16 Sum

1 1501 5786 1542 9701 63331 53846 11181 590982

2 26855 150388 60418 64149 67953 19583 19995 1243890

3 493 3714 856 8218 13863 18850 3176 314540

4 6370 16430 3851 28840 181498 37641 71621 1511072

5 3140 9292 8080 40741 56400 13737 33730 559377

6 99372 52020 30083 94294 181288 40162 68541 2595911

7 1013 37941 3235 14790 14315 4452 3892 335044

8 13264 10182 23451 2704 11629 3264 1256 236080

9 5619 54948 10135 87576 65512 60836 26414 1138236

10 345171 17204 50337 14740 21881 6563 5956 621265

11 15078 546694 77342 41336 58766 21318 10691 1110259

12 51898 76431 452836 17491 33051 8737 6028 784776

13 14753 38855 18884 232506 85671 28496 20327 777589

14 22350 60141 30310 84877 427114 92312 114306 1472455

15 7156 19593 10801 27493 94657 339935 28238 772196

16 6200 10326 5581 20049 116777 26215 344904 764371

Sum 620233 1109945 787742 789505 1493706 775947 770256 14828043

https://doi.org/10.1371/journal.pone.0263367.t006
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In order to obtain an stable algorithm for modeling correctly the migration of people, we

use the Fratar method to balance all the origin-destination matrices [39].

Clusters

In this section, we describe the clustering analysis that we implemented on Mexico City based

on mobility data. This analysis is presented not only to try to find some possible socioeco-

nomic relations between some boroughs, but because there exist computational challenges

Table 7. Population in 2020 for each borough of Mexico City.

Id Borough Population

1 Azcapotzalco 414,711

2 Coyoacán 628,063

3 Cuajumalpa de Morelos 199,224

4 Gustavo A. Madero 1,185,772

5 Iztacalco 384,326

6 Iztapalapa 1,815,786

7 La Magdalena Contreras 239,086

8 Milpa Alta 137,927

9 Álvaro Obreón 726,664

10 Tláhuac 305,076

11 Tlalpan 574,577

12 Xochimilco 407,885

13 Benito Juárez 385,439

14 Cuauhtémoc 531,831

15 Miguel Hidalgo 372,889

16 Venustiano Carranza 430,978

https://doi.org/10.1371/journal.pone.0263367.t007

Fig 2. Variations in the mobility indices from 27 February, 2020 to 31 November, 2020.

https://doi.org/10.1371/journal.pone.0263367.g002
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which can be avoided creating clusters. Firstly, in order to solve model (1) for the whole

Mexico City, the program uses around 50GB in RAM during the compilation process using

the Stan package. Secondly, the computation time for estimating the parameters is around 3

days. We have used a computer with Ubuntu 20.04, 64 GB in RAM and 12 cores. Therefore,

we propose in this section how it could be avoided both of these computational challenges.

Solving model (1) for each cluster would reduce the amount of RAM memory used and the

computation time. Moreover, this strategy could be implemented simultaneously using the t-

walk package for example, since the t-walk package only uses one core for execution program.

During the pandemic, the Mexican government has scheduled four phases depending of

level of contagion risk. These phases corresponding to the following periods: phase 1: from 27

February February to 22 March; phase 2: from 23 March to 19 April; phase 3: from 20 April to

28 June; phase 4: from 29 June to 27 October. The mobility network was analysed using the

community detection module Louvain inside the igraph R package [40]. For more details

about the igraph R package, see [41]. Thus, using the Louvain community detection algorithm,

we are able to identify that Mexico City’s network has a modular structure, with three commu-

nities, as shown in Figs 3 and 4. From Figs 3 and 4 we observe that the communities in the first

and fourth phases of the pandemic are the same, and the second and third of the pandemic are

the same. The community 1 of the first phase of the pandemic is composed of boroughs 1, 4,

14, 15 and 16; community 2 is composed of boroughs 2, 3, 7, 8, 9, 11, 12 and 13; and, commu-

nity 3 is composed of boroughs 5, 6 and 10. The community 1 of the second phase of the pan-

demic is composed of boroughs 1, 4, 14, 15 and 16; community 2 is composed of boroughs 2,

5, 6, 8, 10, 11, and 12; and, community 3 is composed of boroughs 3, 7, 9 and 13.

Mathematical model

As we mention in the introduction, the transmission model incorporates information on

human movement within the following Susceptible, Exposed, Infected, Recovered (SEIR)

Fig 3. Borough clusters of Mexico City. (A): Borough clusters for the first period of the pandemic. (B): Borough clusters for

the second period of the pandemic.

https://doi.org/10.1371/journal.pone.0263367.g003
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metapopulation structure [21]:

dSi

dt
¼ �

bsSiIi
Ni
�
baSiAi

Ni
þ y

X

j

MijSj

Nj � Ij
� y

X

j

MjiSi

Ni � Ii

dEi

dt
¼
bsSiIi
Ni
þ
baSiAi

Ni
� aEi þ y

X

j

MijEj

Nj � Ij
� y

X

j

MjiEi

Ni � Ii

dAi

dt
¼ ð1 � rÞaEi � gAi þ y

X

j

MijAj

Nj � Ij
� y

X

j

MjiAi

Ni � Ii

dIi
dt
¼ raEi � gIi

Ni ¼ N0
i þ y

X

j
Mij � y

X

j
Mji; j ¼ 1; 2; . . . ; n;

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð1Þ

where Si, Ei, Ai, Ii and Ni are the susceptible, exposed, undocumented infected, documented

infected and the total population in borough i at time t, respectively, and N0
i denotes the fixed

population in borough i given by Table 7. Spatial coupling within the model is represented by

the daily number of people traveling from city j to city i (Mij) an a multiplicative scale factor θ,

reflecting the under-reporting of human movement. It is also assumed that documented

infected individuals (Ii) do not move between boroughs, although these individuals can move

between boroughs during the latency period. The total population Ni in each borough is reset

Fig 4. Borough clusters of Mexico City. (A): Borough clusters for the third period of the pandemic. (B): Borough clusters for

the fourth period of the pandemic.

https://doi.org/10.1371/journal.pone.0263367.g004
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each new day as the sum of N0
i and the inflow term θ∑j Mij, minus the outflow term θ∑j Mji.

We note that distinction between daytime and nighttime in the transmission model 1 is imple-

mented in [35]. A complete description of the parameters involved in the model (1), the

respective range of values proposed in [21] and their measurement units can be found in

Table 8. We have set a minimum value for the denominator Nj − Ij or Ni − Ii as equal to 103 in

order to avoid instabilities.

Parameter estimation

For parameter estimation, we use the daily reported dataset [23]. We use Bayesian inference to

solve the inverse problem associated to the system of Ordinary Differential Equations (ODEs)

given on (1), similarly to [33]. Some references using this method of parameter estimation can

be found in [42–53].

Let us denote the vector of state variables in the zone i as x = (Si, Ei, Ai, Ii) 2 (L2[0, T])n,

where n = 4 denotes the number of state variables and the vector of parameters in the zone i as

θ ¼ ðbs; ba; y; r; g; a; Si0
; Ei0

;Ai0
; Ii0Þ 2 R

m
, where m = 10 denotes the dimension number of

parameters to estimate. Thus, we can write the model (1) as the following Cauchy problem

_x ¼ φðx; θÞ

xð0Þ ¼ x0:

(

ð2Þ

Problem (2), defines a mapping F(θ) = x from parameters θ to state variables x, where F :

Rm
þ
! ðL2ð½0;T�Þn; where Rþ denotes the non-negative real numbers. We assume that F has a

Fréchet derivative. Usually, not all states of the system can actually be directed measured, i.e.,

the data consists of measurements of some state variables at a discrete set of points t1, . . ., tk,
e.g. in epidemiology, these data consist of number of cases of confirmed infected people. This

defines a linear observation mapping from state variables to data C : ðL2ð½0;T�Þn ! Rs�k,

where s� n is the number of observed variables and k is the number of sample points. Let us

define F : Rm
! Rs�k

as F(θ) =C(F(θ)), called the forward problem. Thus, the inverse prob-

lem is formulated as a standard optimization problem

min
θ2Rm
kFðθÞ � yobsk

2
; ð3Þ

such that x = F(θ) holds, with yobs is the observable data which has error measurements of size

η.

Problem (3) may be solved using numerical tools to deal with a non-linear least-squares

problem [54–58]. In this work, we implement Bayesian inference to solve the inverse problem

Table 8. Parameter description and values proposed in [21] of the state equations given on (1).

Parameter Description Proposed Range Units

βs Transmission rate due to documented infected individuals. [0., 1.] None

βa Transmission rate due to undocumented individuals. [0., 1.] None

1/θ Multiplicative factor (reflect under-reporting of human movement). [0., 1.] Trips/person
1/α Average latency period. [2, 10] Days
1/γ Average duration of infection. [2, 20] Days
ρ Fraction undocumented/documented people. [0.,.4] None

The values are given in days as time unit.

https://doi.org/10.1371/journal.pone.0263367.t008
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given on (3). From the Bayesian perspective, all of the state variables x and parameters θ are

considered as random variables and the data yobs is fixed. For the random variables x and θ,

the joint probability distribution density of the data x and the parameters θ, denoted by π(θ,

x), is given by π(θ, x) = π(x|θ)π(θ), where π(x|θ)π(θ) is the conditional probability distribution,

which is also called the likelihood function, and π(x|θ) is the prior distribution, which involves

the prior information of parameters θ. Given x = yobs, the conditional probability distribution

π(θ|yobs), which is called the posterior distribution of θ, is given by the Bayes’ theorem:

pðθjyobsÞ / pðyobsjθÞpðθÞ; ð4Þ

If an additive noise is assumed

yobs ¼ FðθÞ þ η;

where η is the noise due to discretisation, the model error and the measurement error. If the

noise probability distribution πH(η) is known, θ and η are independent, then

pðyobsjθÞ ¼ pHðyobs � FðθÞÞ:

All of the available information regarding the unknown parameter θ is codified into a prior

distribution π(θ), which specifies our belief in a parameter before observing the data. All of the

available information regarding how we obtained the measured data is codified into the likeli-

hood distribution π(yobs|θ). This likelihood can be seen as an objective or cost function

because it punishes deviations of the model from the data. To solve the associated inverse

problem (4), one may use the maximum a posterior (MAP)

θMAP ¼ max
θ
pðθjxÞ:

We used the dataset in the zone i as yobs ¼ ð~Si ;
~Ei;

~Ai;
~IiÞ, which correspond to the suscepti-

ble, exposed, documented infected and undocumented infected in the zone i, respectively. A

Poisson distribution with respect to the time is typically used to account for the discrete nature

of these counts. However, the variance of each component of the dataset yobs is larger than its

mean, which indicates that there is over-dispersion of the data. Thus, a more appropriate likeli-

hood distribution is to use the Negative Binomial (NB) because it has an additional parameter

that allows the variance to exceed the mean [50, 51, 59]. The NB is a mixture of Poisson and

Gamma distributions, where the rate parameter of the Poisson distribution itself follows a

Gamma distribution [59, 60]. We note that although there are different mathematical expres-

sions for the NB depending on the author or source, they are equivalent. Because of this multi-

ple representation of the NB in the literature, one must ensure to use the NB distribution

accordingly to the source. Here, we have used the following expression for the NB distribution

NBðyjm; �Þ ¼
Gðyþ �Þ
GðyÞGð�Þ

m

mþ �

� �y
�

mþ �

� ��

; ð5Þ

where μ is the mean of the random variable y � NBðyjm; �Þ and ϕ is the over-dispersion

parameter; that is,

E½Y� ¼ m; VarðYÞ ¼ mþ
m2

�
:

We recall that the Poisson distribution has mean and variance equal to μ, so μ2/ϕ> 0 is the

additional variance of the NB with respect to the Poisson distribution. The inverse of the

parameter ϕ, controls the over-dispersion. Thus, it is important to select its support adequately
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for parameter estimation. In addition, there are alternative forms of the NB distribution. We

have used the first option neg_bin of the NB distribution of Stan [61]. We acknowledge that

some scientists have had success with the second alternative representation of the NB distribu-

tion [47]. We assume independent NB distributed noise η (i.e., all dependency in the data is

codified into the contact tracing model). In other words, the positive definite noise covariance

matrix η is assumed to be diagonal. Therefore, using the Bayes formula, the likelihood is

pðθjð~IiÞ / pð~Ii jθÞpðθÞ;

where i denotes the borough index. As mentioned earlier, we approximate the likelihood prob-

ability distribution corresponding to diagnosed cases with a NB distribution

~I j
i � NBðIj

iðyÞ; �iÞ; ð6Þ

where the index j denotes the number of days, i the number of the boroughs, and ϕi are the

parameters corresponding to the over-dispersion parameter of the NB distribution (5) respect

to each borough.

For independent observations, the likelihood distribution π(y|θ) is given by the product of

the individual probability densities of the observations

pðyobsjθÞ ¼
Yn

j¼1

pð~I j
ijyÞ;

where the mean μ of the NB distribution NBðIiðyÞ; �iÞ, is given by the solution Ii(t) of the

model (1) at time t = tj. For the prior distribution, we select the LogNormal distribution for

βs and βa parameters, Gamma distributions for α and γ parameters and Uniform distributions

for the other parameters to estimate: ρ, θ and initial conditions ðSi0
;Ei0

;Ai0
; Ii0Þ. The hyper-

parameters and their support corresponding to all the distributions of the parameters to esti-

mate are given on the table’s range Table 8.

pðyÞ ¼
Qn

i¼1
LN ðab; bbÞUðaq; bqÞUðad; bdÞUðaa; baÞUðag; bgÞ

� Uðas0
; bs0
ÞUðaE0

; bE0
ÞUðaI0

; bI0
ÞUðaQ0

; bQ0
Þ:

ð7Þ

The posterior distribution π(θ|yobs) given by (4) does not have an analytical closed form

since the likelihood function, which depends on the solution of the non-linear model given on

(1), does not have an explicit solution. Then, we explore the posterior distribution using two

methods: first, the Stan Statistics package [61] within its version the Automatic Differentiation

Variational Inference (ADVI) method,; and second, the general purpose Markov Chain Monte

Carlo Metropolis-Hasting (MCMC-MH) algorithm t- walk [62]. Both algorithms generate

samples from the posterior distribution π(θ|yobs) that can then be used to estimate marginal

posterior densities, mean, credible intervals, percentiles, variances, and others. We the reader

refer to [63] for a more complex description of the MCMC-MH algorithms.

Fig 5 shows the credible intervals of parameters of model (1) within 95% Highest-Posterior

Density (HPD) using the ADVI-Fullrank method of Stan package [61]. Table 9 shows the pos-

terior mean and quantiles of all the estimated parameters of model (1) using the ADVI-Ful-

lrank method of Stan package. Table 10 shows the posterior mean and quantiles of all over-

dispersion parameters ϕi of the Negative Binomial distribution (6). Fig 6 shows the joint prob-

ability density distributions of the estimated parameters of model (1) within 95% (HPD). The

blue lines represent the medians. Figs 7–9 show the fit of confirmed COVID-19 cases of all of
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the boroughs of Mexico City using the Stan [61]. Fig 10 shows Credible intervals of parameters

of model (1) within 95% Highest-Posterior Density (HPD) using the t-walk Package [62]. Note

that the result obtained with the t-walk package are preliminary because we only performed

60,000 iterations, with 30,000 of them as burn-in and it was obtained without balancing the

Origen-Destination matrices. We performed this limited quantity of iterations because the

computational time consumption is significantly large for each 1,000 of iterations. However,

we will perform more iterations in the near future. Using both packages, we did a fit for the

first 245 days of the pandemic in Mexico City, starting 27 February, and we have performed

predictions from 245–275 days, corresponding to 28 October to 27 November and compared

with the true cases in this last period 28 October to 27 November. We assumed that the mobil-

ity from 28 October to 27 November is the same as from 28 September to 27 October, i.e., we

assumed the same mobility cluster for the projection period. We set up a minimum borough

fraction equal to 0.6 to limit the borough to fall below their population size. Our future work

will analyse the identifiability of the parameters of model (1), as suggested in [49, 64, 65]. Spe-

cifically, the ρ parameter because it is multiplied by the period of incubation of the disease, α.

Thus, estimating both parameters simultaneously may lead to non-identifiability difficulty. we

Fig 5. Credible intervals of parameters of the model (1) within 95% Highest-Posterior Density (HPD) using the Stan package [61].

https://doi.org/10.1371/journal.pone.0263367.g005
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Table 9. Parameter estimation of βs, βa, ρ, α, γ, θ and initial conditions of the model (1).

Mean Std Min 2.5% 50% 97.5% Max

βs 0.1817 0.0688 0.0433 0.1299 0.1719 0.2215 0.4822

βa 0.2797 0.0724 0.0903 0.2274 0.2743 0.3259 0.5665

ρ 0.0186 0.0056 0.0057 0.0146 0.0178 0.0220 0.0481

α 0.1720 0.0334 0.1103 0.1485 0.1670 0.1910 0.3067

γ 0.2210 0.0570 0.0804 0.1798 0.2161 0.2597 0.4116

θ 0.7279 0.2112 0.0409 0.6113 0.7786 0.8976 0.9963

E10 215.5595 165.6988 9.4025 89.7281 172.8620 297.3270 901.8550

A10 546.1551 275.5846 13.5082 310.5730 565.1880 793.2150 995.1790

I10 1.9900 2.0874 0.0481 0.6862 1.3693 2.6035 22.6618

E20 253.3650 193.9120 3.8161 102.6910 201.1370 366.7250 936.9310

A20 295.6783 195.3005 9.7637 135.7270 260.0070 417.1160 873.4510

I20 3.4961 4.5445 0.0385 0.9100 1.9425 4.0675 40.6196

E30 185.7097 145.4584 1.9960 78.6950 147.7400 247.2920 835.4920

A30 507.7907 263.5192 6.1474 283.0790 514.8280 736.8860 984.3130

I30 4.2297 5.8422 0.0378 0.9611 2.2060 4.9589 61.0710

E40 683.1201 253.4763 18.5321 517.4730 743.1590 900.7840 999.2030

A40 496.4247 271.0262 6.0559 258.5220 495.7330 728.1480 987.1500

I40 30.8663 29.6572 0.0269 5.2495 19.7807 52.1318 99.6383

E50 552.5027 299.4180 4.4051 284.7780 577.9160 837.3670 999.1490

A50 562.7039 282.2821 1.3356 315.3790 605.4310 809.2500 997.2760

I50 4.9965 6.9620 0.0388 1.0097 2.4918 6.0742 61.8987

E60 450.4365 279.1041 1.4010 200.7940 420.6680 688.3850 992.9970

A60 547.0965 270.4777 9.5825 315.7010 568.5270 783.6100 992.2320

I60 23.4015 26.0301 0.0173 3.7063 12.1013 36.0308 99.6128

E70 115.0333 110.9839 2.8503 38.3297 76.6577 151.7080 795.5370

A70 515.9971 278.4386 6.2676 281.7120 534.1290 755.6920 997.6560

I70 3.7288 6.0063 0.0180 0.6917 1.6631 4.0766 55.2651

E80 224.1849 186.9898 3.0370 75.5207 172.3130 321.0610 925.9820

A80 569.0899 287.3211 1.8729 328.3040 597.3180 833.6790 999.2210

I80 3.4849 4.8696 0.0357 0.7935 1.7130 4.2425 44.0485

E90 188.5786 164.5613 3.3092 61.5219 134.4440 269.3350 807.6380

A90 687.0370 275.9913 10.8989 500.1660 765.8410 926.9680 999.2580

I90 16.5153 20.7336 0.0258 2.3711 7.4698 22.8262 96.2754

E100 356.7580 263.3986 2.5233 125.7860 297.0560 550.1360 987.3250

A100 746.1666 233.5140 56.2971 610.6280 829.0390 934.2400 999.0530

I100 31.6034 32.8951 0.0017 3.3353 16.6582 55.7096 99.9472

E110 281.1917 236.3608 2.7780 90.8408 206.4170 432.5200 970.9040

A110 252.0265 216.5767 1.4617 74.8393 192.5350 375.3250 980.7710

I110 4.0954 5.9613 0.0178 0.8408 1.9202 4.5660 54.8201

E120 130.6564 131.6714 2.0295 36.7382 85.9181 175.2460 823.6720

A120 189.1367 168.3434 3.8207 62.8391 135.1090 254.0920 847.2030

I120 8.7603 12.7619 0.0338 1.1913 3.9130 10.2037 94.1881

E130 135.1793 130.8547 2.4587 39.7409 89.4389 187.5800 786.0350

A130 233.7060 218.5237 2.5230 63.5877 160.4860 337.5610 966.4870

I130 17.2452 23.4479 0.0013 1.2447 6.5493 23.5534 99.6969

E140 288.4052 241.8465 2.0949 85.1094 216.5890 441.7050 967.2260

A140 132.8599 136.0876 1.5013 36.5287 86.8088 176.9500 817.9200

(Continued)
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have uploaded all the codes and source data used in this paper to the following Github link for

a detailed review.

The basic reproduction number estimation

The basic reproduction number, which is commonly denoted by R0, is the average number of

secondary infections generated by a single infective during the curse of the infection in a

whole susceptible population. We calculate the reproductive number R0 in Mexico City using

the inferred parameters. Define X = (E, A, I) and using the next generation operator method

[66] on the system (1), the Jacobian matrices F and V of system (1) are given by

F ¼

bsSA
N
þ
baSI
N

0

0

0

B
B
B
B
@

1

C
C
C
C
A

and V ¼

aE

gA � raE

gI � ð1 � rÞaE

0

B
B
B
@

1

C
C
C
A
:

Table 9. (Continued)

Mean Std Min 2.5% 50% 97.5% Max

I140 1.1226 1.1440 0.0290 0.4021 0.7689 1.4526 13.1217

E150 194.1867 170.3316 2.6126 63.5594 138.1430 273.0570 818.0280

A150 629.8427 301.4854 5.1016 382.9950 700.1620 909.0470 999.4200

I150 31.9147 32.6907 0.0114 3.2822 18.5268 56.7282 99.9608

E160 615.1693 319.6856 0.5475 323.0720 703.2440 916.7530 999.8430

A160 590.1725 297.5308 7.9860 345.1590 634.7790 868.4580 999.4370

I160 34.3333 34.6819 0.0100 3.8419 18.8559 64.8812 99.9809

https://doi.org/10.1371/journal.pone.0263367.t009

Table 10. Over-dispersion parameters estimation of the Negative Binomial distribution (6).

Mean Std Min 2.5% 50% 97.5% Max

ϕ1 2.1991 0.3290 1.2822 1.9601 2.1692 2.4130 3.5188

ϕ2 1.8943 0.3639 1.0883 1.6340 1.8487 2.1194 3.9229

ϕ3 2.0723 0.3572 1.2465 1.8068 2.0520 2.2942 3.2018

ϕ4 1.4408 0.2664 0.8347 1.2476 1.4203 1.6004 3.0505

ϕ5 1.8577 0.2999 1.1289 1.6330 1.8409 2.0425 2.9154

ϕ6 1.2810 0.2120 0.6839 1.1406 1.2595 1.4009 2.1667

ϕ7 2.0110 0.3294 1.0595 1.7742 1.9821 2.2169 3.3500

ϕ8 1.5453 0.3538 0.7403 1.2915 1.5145 1.7583 3.3937

ϕ9 2.1633 0.4467 1.1252 1.8410 2.1092 2.4173 4.3067

ϕ10 1.3869 0.2924 0.6578 1.1816 1.3610 1.5593 2.4075

ϕ11 2.4184 0.4398 1.1707 2.1076 2.3709 2.6832 4.0595

ϕ12 1.8298 0.4035 0.8828 1.5461 1.7847 2.0668 4.1388

ϕ13 2.6204 0.6058 1.2449 2.2169 2.5623 2.9725 6.2347

ϕ14 2.1933 0.3804 1.3056 1.9111 2.1554 2.4154 3.8624

ϕ15 2.1977 0.4987 1.0955 1.8362 2.1534 2.5010 3.9972

ϕ16 1.6167 0.3232 0.8505 1.3926 1.5958 1.8085 3.0021

https://doi.org/10.1371/journal.pone.0263367.t010
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Fig 6. Joint probability density distributions of the estimated parameters of model (1) within 95% (HPD). The blue lines represent the medians.

https://doi.org/10.1371/journal.pone.0263367.g006
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Fig 7. Fit of confirmed COVID-19 cases of the boroughs 1 to 6 using the Stan package [61]. Top row from left-hand to right-hand: the fit for the confirmed cases of

the Districts Azcapotzalco and Coyoacan. The tomato colour bars represent the confirmed cases, the blue and purple solid lines represent the median and the mode,

respectively, and the shaded area represent the %95 probability bands for the expected value for the state variable of Documented Infecteds. Middle row from left-hand

to right-hand: the fit for the diagnosed cases of the Districts Cuajimalpa de Morelos and Gustavo A. Madero. Bottom row from left-hand to right-hand: the fit for the

diagnosed cases of the Districts Iztacalco and Iztapalapa.

https://doi.org/10.1371/journal.pone.0263367.g007
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Fig 8. Fit of confirmed COVID-19 cases of the boroughs 7 to 12 using the Stan package [61]. Top row from left-hand to right-hand: the fit for the

confirmed COVID-19 cases of the Districts La Magdalena Contreras and Milpa Alta. The tomato colour bars represent the confirmed COVID-19 cases,

the blue solid line represent the median and the shaded area represent the %95 probability bands for the expected value for the state variable of

Documented Infecteds. Middle row from left-hand to right-hand: the fit for the diagnosed cases of the Districts Alvaro Obregon and Tlahuac. Bottom

row from left-hand to right-hand: the fit for the diagnosed cases of the Districts Tlalpan and Xochimilco.

https://doi.org/10.1371/journal.pone.0263367.g008
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The disease free equilibrium (DFE) of system (1) is X0 = (0, 0, 0, N, 0)T, we then have

F ¼
@F
dX
ðX0Þ ¼

0 bs ba

0 0 0

0 0 0

0

B
B
B
@

1

C
C
C
A

and

V ¼
@V
dX
ðX0Þ

a 0 0

� ra g 0

� ð1 � rÞa 0 g

0

B
B
B
@

1

C
C
C
A
:

Therefore, the next-generation matrix is K = FV−1, from where Re is computed as the leading

Fig 9. Fit of confirmed COVID-19 cases of the boroughs 13 to 16 using the Stan package [61]. Top row from left-hand to right-hand: the fit for the confirmed

COVID-19 cases of the Districts Benito Juarez and Cuauhtemoc. The tomato colour bars reprent the confirmed COVID-19 cases, the blue solid line reprent the

median and the shaded area represent the %95 probability bands for the expected value for the state variable of Documented Infecteds. Bottom row from left-hand to

right-hand: the fit for the diagnosed cases of the Districts Miguel Hidalgo and Venustiano Carranza.

https://doi.org/10.1371/journal.pone.0263367.g009
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eigenvalue of matrix K; that is,

R0 ¼
rbs

g
þ
ð1 � rÞba

g
: ð8Þ

Table 8 shows the range of values for the parameters involved in the expression (8) obtained

using the Stan package [61]. With those values, we obtain a %95 credible interval for

R0 2 ð1:0224; 1:2376Þ.

Discussion

In this work, we analyse a networked dynamic metapopulation model of the coronavirus dis-

semination in Mexico City using ODEs and Bayesian statistics. We present an explanation of

how to estimate the mobility per day between the boroughs that compound the Mexico City,

both on a weekday and on weekends; combining available information from the origin-desti-

nation survey carried out in 2017 with the current mobility indices that Google and the

Fig 10. Credible intervals of parameters of model (1) within 95% Highest-Posterior Density (HPD) using the t-walk package [62].

https://doi.org/10.1371/journal.pone.0263367.g010
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government of Mexico City report, depending on the mode of transport used to make each

trip (e.g., bus, subway, car, etc.) and then we use the Fratar method to balance the daily origin-

destination matrices. We also present a clustering analysis of the boroughs which compound

Mexico City based on mobility data from Google and the Transportation Mexican Survey.

From Figs 3 and 4, we can identify three different clusters during the each phase of the pan-

demic. We point out that the same cluster analysis done for Mexico City, could be imple-

mented for a broader area, the metropolitan area named Valle de Mexico, which is rather

important for the whole country. We consider that this clustering analysis which is based on

individual movement may be crucial to efficiently model a human pandemic on the same scale

as presented here, or at a smaller scale.

From Fig 5, the transmission rate of symptomatic was 0.19 within 95% Credible Interval

(CI) [0.06, 0.42], and the transmission rate of asymptomatic was 0.27 within 95% CI [0.14,

0.40], which is in concordance with the value estimated of 0.25 in [67], in that study the

transmission rate was not separated in symptomatics and asyntomatics. The fraction of

undocumented infections, ρ, was 0.027 within 95% CI [0.02, 0.04]. The estimated latency

period, 1/α, is 5.96 days within 95% CI [3.60, 8.93] days, which is in concordance with the

value used of 5.99, 6.0, 5.1 and 5.0 in [50, 52, 68, 69], and the estimated recovery period, 1/

γ, is 4.86 days within 95% CI [3.15, 9.33] days, which is lower in comparison with the ones

used of 5.97 and 10.81 (asymptomatic and symptomatic class, respectively) in [69], 10.0 in

[52], 7.0 in [50] and 5.0, 10.8 and 14.0 (reported infectious, symptomatic and asymptomatic

class, respectively) in [68]. The inter-borough scale factor θ was 0.77 within 95% CI [0.61,

0.89], this value indicates that the mean number of trips made by a person is between three

and four in one day, which makes sense with complete trips to get out of home, do some

activities (e.g., work, shopping, or services), and return home. The results of the inferred

parameters of model (1) and the population size of the boroughs (e.g., Iztapalapa and Gus-

tavo A. Madero) help to explain the fast dispersion of COVID-19 and indicate the challenge

of finding strategies to contain it. We have compared the parameter values inferred with

respect to those used for Mexico City. As mentioned in Section, we will analyse the iden-

tifiability of the parameters of model (1) (i.e., the ρ parameter) because this parameter is

multiplied by the period of incubation of the disease, α. Thus, estimating both parameters

simultaneously may lead to a non-identifiability difficulty. We may observe this non-iden-

tifiability in Figs 5 and 10; that is, different combinations of the model parameters lead to

the same “energy” value of the system 1. In particular, we can observe that a different com-

bination of the estimated parameters values obtained with the methods ADVI-Fullrank and

ADVI-Meanfield give very similar fitted curves for diagnosed cases. We also observe that

the recovery period time is more in accordance with the values used in [50, 52, 68, 69] but

the latency period is lower than the ones used there. We note that the parameters, βs, βa of

the model (1) are considered as global; that is, they are assumed the same for all the bor-

oughs of Mexico City and all the transportation modes. In the near future, we will explore a

more robust model that will consist of local parameters of transmission βs, βa, instead of

globally (i.e., a pair of transmission rates βs, βa for each borough). Furthermore, we will

consider those transmission rates, βs, βa, to be dependent on time as in [52, 70]. In addition,

we will consider the interstate and international mobility from/to Mexico City. We will

take into account imported cases from the other 31 states of Mexico. We will also consider

the cases imported from overseas by airplane passengers, and will do a global and local

sensitivity analysis of model (1). Finally, we will investigate a spatio-temporal model based

on a diffusion partial differential equation model combined with individual movement

trends.
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