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SUMMARY

During adaptive angiogenesis, a key process in the
etiology and treatment of cancer and obesity, the
vasculature changes to meet the metabolic needs
of its target tissues. Although the cues governing
vascular remodeling are not fully understood,
target-derived signals are generally believed to
underlie this process. Here, we identify an alterna-
tive mechanism by characterizing the previously
unrecognized nutrient-dependent plasticity of the
Drosophila tracheal system: a network of oxygen-
delivering tubules developmentally akin to mamma-
lian blood vessels. We find that this plasticity, partic-
ularly prominent in the intestine, drives—rather than
responds to—metabolic change. Mechanistically, it
is regulated by distinct populations of nutrient- and
oxygen-responsive neurons that, through delivery
of both local and systemic insulin- and VIP-like neu-
ropeptides, sculpt the growth of specific tracheal
subsets. Thus, we describe a novel mechanism by
which nutritional cues modulate neuronal activity to
give rise to organ-specific, long-lasting changes in
vascular architecture.

INTRODUCTION

Unlike the more stereotypical development of the body’s main

blood vessels, the formation of the capillary networks respon-

sible for tissue perfusion is an adaptive process primarily gov-

erned by the metabolic needs of the target tissues (Fraisl et al.,

2009; Potente et al., 2011). The plastic nature of this adaptive

angiogenesis is further highlighted by the dramatic changes in

vascularization observed in tumors or in obese adipose tissue:
changes that contribute to the progression of pathologies such

as cancer and obesity and are becoming increasingly central to

their treatment (Cao, 2010; Kerbel, 2008; Lijnen, 2008). Although

environmental factors such as diet are widely believed to affect

the development and progression of these pathologies, explora-

tion of the link between nutrition and angiogenesis has largely

been confined to correlative studies. These include descriptions

of the effects of gestational nutrition on the placental vasculature

(Belkacemi et al., 2010; Rutland et al., 2007) or the pro/anti-

angiogenic actions of nutrients and metabolites with a potential

modulatory role in cancer (Adolphe et al., 2010; Kumar et al.,

2013). A tantalizing new study has shown that increasing adipose

tissue vascularization can ameliorate the deleterious metabolic

effects of a high-fat diet, pointing to a central metabolic role for

these vascular changes (Sung et al., 2013). However, whether

modulation of angiogenesis is associated with metabolic bene-

fits remains a controversial topic, partly because it is not trivial

to genetically target the blood vessels of specific organs to

recapitulate the changes associated with certain dietary inter-

ventions without affecting other cell types or vascular pools

(Cao, 2010; Lijnen, 2008; Sun et al., 2012; Sung et al., 2013).

Regardless of its metabolic consequences, adaptive angio-

genesis is widely believed to be mechanistically driven by

target-derived signals (Cao, 2007; Fraisl et al., 2009).

A close spatial association between mammalian nerves and

vessels was observed as long ago as 1543 (Vesalius, 1543), an

association that has subsequently been shown to result from

mutual guidance or common pathfinding mechanisms during

the formation of the neural and vascular networks (Car-

meliet and Tessier-Lavigne, 2005; Mukouyama et al., 2005;

Mukouyamaet al., 2002;Quaegebeur et al., 2011). Notably, inter-

play of innervation and vascularisation of internal organs has also

been described (Davies, 2009). A functional role for these neuro-

vascular interactions was suggested following the discovery that

vessel abnormalities precede a number of neurodevelopmental

and neurodegenerative disorders: an observation that points to
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angiogenesis as a therapeutically relevant process (Quaegebeur

et al., 2011; Storkebaum et al., 2011). The question remains

whether, in a reciprocal process, neuronal activity may affect

adaptive angiogenesis. In spite of some intriguing associations

(Asano et al., 1997; Tonello et al., 1999), no neuronal populations

havebeen identified that effect long-lasting changes in angiogen-

esis in response to environmental factors.

Drosophila melanogaster has an open circulation, but its

tracheal system has a role analogous to that of the vertebrate

vasculature in supplying tissues and internal organs with oxygen

(Fraisl et al., 2009; Uv et al., 2003). During embryogenesis, devel-

opmental mechanisms akin to those discovered in the vertebrate

lung and vasculature make use of signaling pathways such as

fibroblast growth factor (FGF) signaling to sculpt this complex

tracheal network of interconnected tubes (Ghabrial et al., 2003;

Javerzat et al., 2002; Metzger et al., 2008; Uv et al., 2003). These

embryonic proliferative and morphogenetic stages are super-

seded by a larval period of extensive, but mechanistically less

understood, cellular growth. Growth is particularly prominent in

the tracheal terminal cells: the cells at the end of each airway

that make contact with target tissues and through which gas ex-

change takes place (Ghabrial et al., 2003; Uv et al., 2003). Like

vertebrate capillaries, Drosophila tracheal terminal cells branch

profusely in response to low oxygen using conserved FGF

and hypoxia-inducible factor (HIF) signaling pathways (Centanin

et al., 2008; Jarecki et al., 1999). This hypoxic remodeling has

been assumed to be the only source of tracheal plasticity and,

in normal conditions, the tracheal system is generally believed

to grow in proportion to the whole organism. In this study, we

use a combination of genetic approaches, metabolic profiling,

and in vivo imaging to uncover previously unrecognized

nutritional plasticity in the fly tracheal system. In contrast to the

known target-derived mechanisms of adaptive remodeling, we

find this plasticity to be regulated by a mechanism, previously

undescribed in either flies or vertebrates, involving nutrient-

responsive neurons effecting long-lasting and metabolically

significant changes in tracheal architecture.

RESULTS

Branching of Tracheal Terminal Cells Is Regulated in an
Organ-Specific Fashion According to Both Previous and
Current Nutrient Availability
While subjecting wild-type Drosophila larvae to different dietary

conditions, we observed that a severe reduction in dietary yeast

(the main source of lipid and amino acids in the larval diet) was

accompanied by an almost ubiquitous reduction in tracheal ter-

minal cell branching, even when controlling for overall develop-

mental delay by allowing nutrient-restricted larvae to develop

to a comparable stage (Figures 1A–1C, 1G–1I and Figures

S1A, S1C, S1D, S1F, S1G, S1I, S1J, S1L, S1M, and S1O avail-

able online). The single exception was the tracheal branches of

the central nervous system (CNS), which were refractory to this

dietary manipulation (Figures 1A and 1G). By contrast, a mild

reduction in dietary yeast neither affected developmental timing

nor led to major changes in the size of organs or that of most

tracheal terminal cells (Figures 1D and 1E and data not shown)

but did lead to a severe reduction in tracheal coverage
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throughout the digestive tract (Figures 1F, S1B, S1E, S1H,

S1K, and S1N). Reduced tracheal coverage was not caused

by cell death (Figures S2A and S2B) and could not be solely

accounted for by defects in gas filling (Figures S2Q and S2R).

Instead, it resulted from reduced tracheal terminal cell branching

(Figures S2E–S2G, S2K–S2M, and S2Q–S2R). To investigate the

reversibility of the tracheal changes described above, we reared

larvae under the mild nutrient restriction conditions shown to

reduce intestinal tracheation and transferred them to more nutri-

tious food immediately after eclosion. Even after 7 days on a

nutritious diet, the intestinal tracheae of these adults flies were

significantly less branched than those of control adult flies

always reared on a nutritious diet (Figures 1J and 1K), indicating

that a defined period of nutrient restriction has long-term effects

on the tracheal scaffold.

Dietary plasticity could be a feature unique to larval tracheae,

given that their branches are undergoing extensive growth. To

investigate whether adult tracheae are also responsive to diet,

we allowed wild-type flies to develop under our standard nutri-

tional conditions and then exposed them to nutritionally poor

or imbalanced diets as adult flies. As Figure 1L shows, a 7 day

nutritional imbalance (9% sucrose) led to increased intestinal

tracheation of the mid-midgut, confirming the dietary plasticity

of the tracheal system also in adult flies.

Collectively, these data uncover previously unrecognized

nutritional plasticity of the insect tracheal system, shaped by

both previous and current nutritional states. The tracheae of

different organs exhibit different degrees of nutritional plasticity;

intestinal tracheal terminal cells are particularly sensitive to a

reduction in yeast availability, while CNS tracheae are preferen-

tially spared.

Differential, Cell-Autonomous Activation of Insulin
Signaling Mediates Tracheal Terminal Cell Growth and
Underlies the EnhancedPlasticity of Intestinal Tracheae
We then focused on the larval phenotypes to investigate the

molecular mechanisms of nutritional plasticity. Hypoxia, the

only known regulator of tracheal plasticity, has been shown

to promote tracheal branching by inducing FGF ligand in

target tissues and receptor upregulation in tracheal cells (Centa-

nin et al., 2008; Jarecki et al., 1999). Although downregulation of

the FGF receptor gene Breathless (Btl) did lead to reduced tra-

cheation in most scored tissues, consistent with the known

FGF requirement for the establishment of the tracheal scaffold

during earlier developmental stages (Ghabrial et al., 2003; Uv

et al., 2003), further attempts to manipulate FGF signaling or to

detect FGF ligand expression and differential pathway activation

under different nutritional conditions all failed to support a role for

FGF signaling in coupling nutrition with larval tracheal growth

(data not shown). These included expression of Btl, constitutively

active Btl, and its ligand Branchless (Bnl) in tracheal terminal

cells and analysis of Bnl and Stumps (a downstream signaling

component) expression under different nutritional conditions.

We then turned our attention to the insulin signaling pathway:

the major coordinator of nutrient intake and tissue size in all

animals including Drosophila (Andersen et al., 2013). We first

suppressed the intracellular insulin signal transducer phosphoi-

nositide 3-kinase (PI3K) by expressing the dominant-negative



Figure 1. Nutritional and Organ-Specific Plasticity of Different Tracheal Subsets

(A–C) Representative tracheation of the ventral nerve cord (VNC) (A), body wall (B), and gut (mid-hindgut, C) in well-fed larvae (8% yeast).

(D–F)Amildnutrient restriction (2%yeast) doesnot affectCNS (D)or bodywall (E) tracheae,but leads to reduced tracheal terminal growth in thegut (mid-hindgut, F).

(G–I) Severe nutrient restriction (0.8% yeast) does not affect CNS tracheae (G), but leads to reduced coverage of both body wall (H) and gut (I, mid-hindgut). For

body wall: p < 0.001 (8% versus 0.8%), p = 0.004 (2% versus 0.8%). For mid-hindgut: p < 0.0001 (8% versus 0.8%), p < 0.0001 (8% versus 2%), and p < 0.0001

(2% versus 0.8%). n = 10–24/set.

(J) Representative gut tracheation (mid-midgut) of a 7-day-old adult fly reared on a nutritious (8% yeast) diet both during larval and adult stages.

(K) Representative tracheation of the same intestinal region in an age-matched fly subject to an identical dietary regime as an adult, but exposed to a restricted

diet (0.8% yeast) during larval life. Reduced branching is apparent.

(L) Increased tracheation of the same region in a representative adult fly reared under standard conditions and exposed to 9% sucrose for 7 days.

Quantifications of the adult phenotypes (J to L) are displayed below these panels. p = 0.001 (well-fed – larval restriction) and p < 0.0001 (balanced – adult

imbalance), n = 17–33/set. Scale bars, 10 mm in all images except for (B), (E), and (H), 100 mm. See also Figures S1 and S2. Color coding for this and subsequent

Likert levels are displayed as follows: red (strongly reduced), orange (reduced), gray (unchanged), light blue (increased), and dark blue (strongly increased). The

mean (circled) is also displayed. See Experimental Procedures for additional information.
Dp110D954A (referred to as PI3K-DN; Leevers et al., 1996) in

tracheal terminal cells using DSRF-GAL4 (Gervais and Casa-

nova, 2011). This led to reduced tracheal terminal cell branching
both in the periphery and throughout the digestive tract, but not

in the CNS (Figures 2A–2F, S2S, S2T, S3A–S3D and data not

shown): a reduction qualitatively and quantitatively comparable
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Figure 2. Organ-Specific Effects of Reduced Insulin Signaling on Tracheal Coverage

(A–C) Representative tracheation of the areas boxed in the cartoons in control larvae: body wall (A), midgut (anterior, B), and hindgut (mid-hindgut, C).

(D–F) Expression of PI3K-DN in tracheal terminal cells leads to reduced branching in body wall (D), midgut (anterior, E), and hindgut (mid-hindgut, F). For body

wall: p = 0.001 (DSRF>PI3K-DN versus GAL4 control), p < 0.001 (DSRF>PI3K-DN versus UAS control), p = 0.03 (GAL4 versus UAS control), n = 13–15/set. For

anterior midgut: p < 0.0001 (DSRF>PI3K-DN versus GAL4 control), p < 0.001 (DSRF>PI3K-DN versus UAS control), n = 15/set. For mid-hindgut: p < 0.0001

(DSRF>PI3K-DN versus GAL4 control), p < 0.0001 (DSRF>PI3K-DN versus UAS control), n = 19–25/set.

(legend continued on next page)
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to that observed in these tracheal terminal cells following severe

nutrient restriction (Figures 1G–1I). As in the case of diet, the in-

testinal branches appeared to be more severely affected by this

manipulation. Because the selective intestinal phenotype was

not caused by stronger GAL4 expression in intestinal tracheae

(data not shown), we tested whether it resulted from increased

sensitivity to insulin signaling. To this end, we made use of an

RNAi construct against the insulin receptor (InR) known to lead

to incomplete receptor downregulation and a milder reduction

in insulin signaling (Slaidina et al., 2009; Willecke et al., 2011).

Driving this RNAi transgene in all tracheal terminal cells led to a

significant reduction in intestinal, but not body wall or CNS,

tracheal coverage (Figures 2G–2I, S3E, and S3F and data not

shown). As in the case of dietary or PI3K manipulations, reduced

coverage resulted from reduced tracheal terminal cell branching

(Figures S2C, S2D, S2H–S2J, and S2N–S2P).

Together, these results confirm the cell-autonomous role for

the insulin signaling pathway in the regulation of tracheal terminal

cell growth and suggest that the enhanced nutritional plasticity

of the gut tracheae is a consequence of their higher sensitivity

to insulin signaling.

Different Tracheal Subsets are Combinatorially
Modulated by Both Systemic and Local Insulin- and
VIP-like Neuropeptides
In Drosophila larvae, nutrient restriction leads to growth inhibi-

tion, caused by the reduced release of several insulin-like

peptides (Ilps) from brain insulin-producing cells (the so-called

median neurosecretory cells, mNSCs, represented schemati-

cally in Figure 3J) into the hemolymph (Géminard et al., 2009).

A triple mutation of the three main mNSC Ilps (Ilp2, Ilp3, and

Ilp5; Grönke et al., 2010) largely recapitulated the phenotype re-

sulting from expression of PI3K-DN in tracheal terminal cells.

Indeed, reduced growth was observed in both body wall (Figures

3A and 3D) and intestinal tracheal terminal cells (Figures 3B,

3E, and S4A–S4D). However, we found the posterior hindgut

tracheal branches to be spared in these larvae (Figures 3C

and 3F). Immunohistochemical and ultrastructural analyses of

this intestinal portion revealed that these posterior tracheal

branches were adjacent to the two hindgut nerves that run along

both sides of the hindgut (Figures 3K, 3L, and 7B). We have pre-

viously shown that axons emanating from a different population

of CNS Ilp-producing neurons, the Ilp7 neurons, contribute to

this innervation (Figure 3J; Miguel-Aliaga et al., 2008) and thus

could provide a local peptide supply to this portion of the gut.

Functional inactivation of the Ilp7 neurons by expression of the

inward-rectifying potassium channel kir2.1 or by expression of

tetanus toxin light chain did not affect most tracheae but led to

reduced tracheal coverage of two portions of the hindgut (Fig-

ures 3G–3I, S4E, and S4F and data not shown): the posterior

hindgut (Figures 3C and 3I), where the Ilp7 axons are adjacent

to the posterior visceral tracheal branches (Figures 3K and 7B),
(G–I) Driving RNAi against InR from the same driver line does not affect body wa

hindgut (mid-hindgut, I).

Scale bars, 10 mm in all images except for (A), (D), and (G), 100 mm. For body wal

control), p = 0.014 (DSRF>InR-RNAi versusUAS control), n = 10/set. For mid-hind

RNAi versus UAS control), n = 27–28/set. See also Figures S2 and S3.
but also the mid-hindgut (Figure S4F), which we had also found

to be regulated by systemic mNSC-derived Ilps (Figures S4B

and S4D). In this latter region, the visceral tracheal branches

emanate from the segmentally repeated main lateral branches

(Figures 7A and 7B) and do not abut the Ilp7 axons, suggesting

paracrine growth regulation.

We then characterized the peptidergic profile of the central

neurons contributing to the hindgut nerves using immunohisto-

chemistry. Four of the eight Ilp7-expressing neurons coexpress

pigment dispersing factor (Pdf) (Figures 4A and 4B): a neuro-

peptide that shares functional and signaling similarities with

vertebrate vasoactive intestinal polypeptide (VIP) (Taghert and

Nitabach, 2012). Four other central hindgut-innervating neurons

also express Pdf and bundle together with the Ilp7 hindgut

nerves (Figure 4B; Talsma et al., 2012). Together, both neuronal

populations deliver Pdf and Ilp7 to the hindgut in a regionalized

fashion: Ilp7 is apparent only in the posterior hindgut, whereas

Pdf is present in both posterior and mid-hindgut terminals (Fig-

ures 4C and 7B). Mutation of these peptides, alone or in combi-

nation, revealed complex control of different intestinal tracheal

subsets by local Ilp7 and Pdf peptides in combination with the

systemic Ilp2, Ilp3 and Ilp5 peptides (Figures 4D–4U, S5A–S5L,

and 7B): in the posterior hindgut, neither loss of Ilp7 alone nor

Ilp2, Ilp3, and Ilp5 together affected tracheal branching (Figures

4F, 4I, S5C, 3C, and 3F), but loss of all four peptides resulted in

reduced tracheal terminal cell growth (Figures 4L and S5C), indi-

cating partially redundant control of tracheal terminal growth.

Loss of Ilp7 or Pdf alone, or tracheal-specific downregulation

of the Pdf receptor (DSRF-GAL4, UAS-Pdfr-RNAi), resulted in

reduced tracheal growth only in the mid-hindgut (Figures 4G–

4I, 4M–4R and S5A–S5I): a region also affected by the lack of

systemic Ilps (Figures S4B and S4D) and not directly exposed

to Ilp7 peptide (Figure 7B). Finally, mutants lacking both Ilp7

and Pdf displayed reduced tracheal growth in both themid-hind-

gut and posterior hindgut (Figures 4T, 4U, S5K, and S5L), indi-

cating that Ilp7 and Pdf act redundantly in the posterior hindgut.

Collectively, neuropeptide mutation and tracheal receptor

downregulation experiments indicate that growth of tracheal ter-

minal cells is directly regulated by the nervous system. The sys-

temically secreted Ilps act as virtually pan-tracheal regulators,

but in some intestinal portions they synergize in a combinato-

rial—and sometimes partially redundant—manner with locally

delivered Ilp and Pdf neuropeptides.

Exposure to Nutrients and Reductions in Oxygen
Availability Elicit Calcium Responses in the Gut-
Innervating Ilp7/Pdf Neurons
Both mNSCs and Ilp7 neurons have been shown to modulate

feeding responses to nutrient scarcity in adult flies (Cognigni

et al., 2011). However, the dietary dependency of Ilp release

has only been investigated in mNSCs using immunohistochem-

istry (Géminard et al., 2009). To directly image neural activity in
ll tracheae (G) but leads to reduced branching in the midgut (anterior, H) and

l: n = 15–20/set. For anterior midgut: p = 0.014 (DSRF>InR-RNAi versus GAL4

gut: p < 0.0001 (DSRF>InR-RNAi versusGAL4 control), p < 0.0001 (DSRF>InR-
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Figure 3. Two Subsets of Insulin-Producing Neurons Regulate the Growth of Different Tracheal Subsets

(A–C) Representative terminal tracheation in well-fed control larvae. The specific body wall/gut areas are boxed in the cartoons: body wall (A), midgut

(B, anterior), and hindgut (C, posterior).

(legend continued on next page)
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response to nutrients in vivo, we expressed the genetically en-

coded green fluorescent Ca2+ indicator GCaMP3 (Tian et al.,

2009) in Ilp7 neurons, together with a red fluorescent protein to

visualize the cell bodies. Ilp7 cell bodies displayed some transient

activity in the absence of a stimulus, which rapidly increased

following yeast presentation (Figures 5A, 5C, S6A, and Movie

S1). In most neurons, the frequency and amplitude of the tran-

sient Ca2+ peaks increased and then adapted after about one

minute, possibly a consequence of persistent exposure to

yeast. This response was yeast-specific because exposure to

sucrose did not elicit any responses in these neurons (data not

shown), consistent with the yeast dependency of tracheal

growth. It was also specific to Ilp7 neurons, given that GCaMP3

fluorescence intensity was unaffected by yeast in the Capa-ex-

pressing Va neurons, used as a control population of six unre-

latedpeptidergic efferent neurons (Suska et al., 2011) (Figure 5A).

The only well-characterized environmental trigger of tracheal

branching is hypoxia (Centanin et al., 2008; Jarecki et al., 1999).

We therefore monitored oxygen-evoked Ca2+ responses in

these two neuronal populations and found that hypoxia led to a

fast and very robust response in the Ilp7—but not in the Va—

neurons (Figures 5B, 5D, and S6B, andMovie S2). This response

was qualitatively distinct from that resulting from yeast exposure.

Indeed, it was predominantly tonic, although some animals

mainly showed transient peaks of increased amplitude, and

lasted throughout the hypoxic period, decreasing slightly over

time. Interestingly, the return to normoxia almost completely

abrogated the basal transient firing of Ilp7 neurons, suggesting

hyperpolarization. This effect was not a consequence of exces-

sive firing and cellular ‘‘exhaustion’’ because repeated hypoxic

stimulation continued to activate the Ilp7 neurons (Figure S6C).

Together, these findings indicate that the activity of the Ilp7-

and Pdf-producing neurons is increased in vivo by both nutri-

tional cues and reductions in oxygen availability.

Activation of the Ilp7/Pdf Neurons Promotes Tracheal
Branching Locally
Together with previous Ilp/Pdf loss-of-function experiments, the

above experiments suggested that nutritional modulation of Ilp

neuronal activity underlies the nutritional plasticity of tracheae.

To test this idea, we used thermogenetics to achieve persistent,

low-level activation of the Ilp7 neurons throughout larval life by

expressing the heat-sensitive channel TrpA1 from Ilp7-GAL4 in

larvae reared at 25�C. This promoted tracheal branching in a
(D–F) Reduced branching is apparent in equivalent areas of the body wall (D), mid

p < 0.0001 for both body wall and anterior midgut. n = 16–35/set.

(G–I) Representative terminal tracheation in the same body regions of well-fed co

apparent in body wall (G) or anterior midgut (H), but the tracheal branching in the p

versus UAS control), but not significant versus GAL4 control. For posterior hindg

versus UAS control). n = 12–18/set for body wall, 22–27/set for guts.

(J) Larval neuroanatomy of the two subsets of insulin-producing neurons: Ilp2, Ilp3

producing neurons located in the posterior segments of the VNC (in red) send long

(K) The two hindgut nerves (labeled in red with the broad neuronal marker 22C10

posterior hindgut of a 1st-instar larva (visualized using amembrane-tagged GFP ex

highlight the visceral muscles.

(L) Transmission electron microscopy of a posterior hindgut cross-section highli

tracheae (in green).

Scale bars, 10 mm in all images except for (A), (D), and (G), 100 mm and (L), 2,00
paracrine fashion; it increased branching of the adjacent visceral

tracheal branch of the posterior hindgut and the tracheal terminal

cells of the neighboringmid-hindgut, but did not redirect those of

the anterior hindgut or other regions (Figures 5E and 5F, and data

not shown). Hence, in addition to being necessary, Ilp7 neurons

are sufficient to sustain tracheal growth in the hindgut.

The Organ-Specific Modulation of Tracheation Is
Metabolically, but Not Developmentally, Significant
The finding that tracheal branching is directly regulated by

nutrient-responsive neurons suggests that tracheal terminal

cells may be used by the nervous system as effectors of

metabolic adaptations to nutrient availability. To investigate

this possibility, we recapitulated the differential effects of nutrient

restriction on tracheae by either reducing tracheal terminal

cell growth in all tissues (except for the CNS tracheae, using

DSRF>btl-RNAi), or specifically in the gut tracheae (using

DSRF > InR-RNAi). Reduced tracheation of all tissues did not

affect larval development (Figure 6A) or carbohydrate meta-

bolism (Figures S7A–S7C) but resulted in leaner larvae (Fig-

ure 6C) with reduced lipid stores (Figure 6D) and increased

hemolymph glycerol (a metabolite derived from the hydrolysis

of triglycerides) (Figure 6E), consistent with reduced lipid storage

capacity in the fat body. These larvae did manage to eclose as

adults but were sick and short-lived even in the presence of nutri-

tious food (Figure 6B and data not shown). By contrast, when

reduced tracheation was confined to the gut, no developmental

or metabolic phenotypes were apparent in larvae (Figures S7D–

S7H), and there was no difference in adult lifespan between the

experimental flies and controls on nutritious food (Figure 6F). We

then hypothesized that the specific effect of nutrient restriction

on gut tracheae may fulfil an adaptive role to allow flies to deal

with poor nutritional conditions. To test this idea, we exposed

the DSRF>InR-RNAi flies with reduced gut tracheation to a

low-calorie diet throughout their adult lifetime, and found them

to be significantly more resistant to nutrient scarcity than control

flies: a tracheal phenotype that was confirmed using the recently

published tracheal driver 14D03-GAL4 (Guo et al., 2013) (Fig-

ure 6G and data not shown). Metabolic profiling of these adult

flies revealed no differences in carbohydrate metabolism but

showed a reduction in lipid stores in poor nutritional conditions

(Figures 6H, 6I, and S7I–S7L).

In summary, manipulations that recapitulate the effects of

nutrient restriction and reduced insulin signaling specifically in
gut (E), but not hindgut (F) in well-fed and genetically matched Ilp2,3,5mutants.

ntrol larvae upon silencing of the hindgut-innervating Ilp7 neurons. No effect is

osterior hindgut is significantly reduced (I). For body wall: p = 0.048 (Ilp7 > kir2.1

ut: p < 0.0001 (Ilp7 > kir2.1 versus GAL4 control) and p < 0.0001 (Ilp7 > kir2.1

, and Ilp5 (in green) are released from the brain mNSCs into the circulation. Ilp7-

axons that exit in the posterior nerves that innervate both sides of the hindgut.

) are found in close proximity to the posterior visceral tracheal branches in the

pressed from the pan-tracheal driver btl-GAL4). Phalloidin (in blue) was used to

ghting the proximity between the hindgut nerve axons (highlighted in red) and

0 nm. See also Figure S4.
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(legend on next page)
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tracheal terminal cells show that these cells are important meta-

bolic mediators.

DISCUSSION

Nutrient-Responsive Neurons as Effectors of Adaptive
Tracheal Changes
Our work has uncovered a new mechanism coupling nutrition

and metabolism. In response to specific nutritional cues, small

subsets of neurons are activated to regulate tracheal branching

in an organ-specific and metabolically significant fashion. At

least one of the two yeast-responsive neuronal subsets also re-

sponds to reduced oxygen—the other environmental modulator

of tracheal branching in flies—so it will be interesting to deter-

mine the contribution of these neurons to the previously reported

tracheal adaptations to hypoxia. Importantly, our identification of

a shared neuronal substrate for both nutritional and hypoxic

stimuli is, to our knowledge, the first of its kind in invertebrates

and one remarkably similar to the mammalian carotid body: a

cluster of chemoreceptors that monitors arterial oxygen concen-

tration and nutrient levels to regulate breathing and cardiovascu-

lar tone (Pardal and López-Barneo, 2002; Prabhakar, 2000).

Future work will aim to establish whether these Drosophila neu-

rons are able to sense oxygen and/or nutrients directly and

whether they do so using mechanisms akin to those described

in the carotid body. This would lend further support to the exis-

tence of an evolutionarily conserved link between oxygen and

nutrient neuronal sensing.

Molecularly, the neuronal control of different tracheal subsets

involves both local and systemic actions of insulin- and VIP-like

neuropeptides: neuronal mechanisms that are particularly com-

plex and combinatorial along the digestive tract (Figure 7) and

that differ from the known adaptive target-derived signals that

sculpt tissue-specific angiogenesis (Cao, 2007; Fraisl et al.,

2009). In this regard, tracheal cells can be seen as ‘‘metabolic

motor neurons’’; as the nervous systemmodulatesmotor neuron

activity to regulate muscle contraction, it also modulates the

branching of tracheal terminal cells to control themetabolic state

of cells such as those of the fat body or the gut epithelium. It will

be of interest to investigate whether similar mechanisms are de-

ployed in vertebrates to effect long-lasting, tissue-specific and
Figure 4. Regional Regulation of Intestinal Tracheae by Multiple Ilp an

(A) Expression of Ilp7 (green) and Pdf (red) neuropeptides in a 1st-instar VNC. Note

used to visualize the CNS. Anterior is to the left.

(B) Higher magnification image of these posterior cell bodies: four of the eight

coexpress Pdf. Pdf is also expressed by four additional neurons in these segme

(C) Regional expression of the Ilp7 and Pdf peptides produced by the neurons in

highlighted in blue with phalloidin. Both peptides are present in varicosities along t

(D–F) Representative hindgut tracheation in well-fed control larvae. The specifi

hindgut (F).

(G–I) Ilp7 mutation does not affect branching in the anterior or posterior hindgut

(J–L) A severe reduction in branching is apparent in the entire hindgut of mutant

(M–O) Pdf mutation does not affect branching in the anterior hindgut (M) or post

(P–R) Downregulation of the Pdf receptor specifically in tracheal terminal cells usin

hindgut (R) but leads to significantly reduced growth in the mid-hindgut (Q).

(S–U) The intestinal tracheal coverage in double mutants lacking both Pdf and Ilp7

but it is strongly reduced in both the mid-hindgut (T) and posterior hindgut (U).

See also Figure S5 for quantifications and Figure 7 for a summary of this regiona

except for (A), (B), and (C), 100 mm, 50 mm, and 100 mm, respectively.
metabolically significant changes in angiogenesis in response

to nutrition, in a manner distinct from (but reminiscent of) the

acute changes in blood supply effected by neurons by acting

on blood vessel musculature (see, for example, Matheson

et al., 2000).

Organ-Specific Regulation of the Tracheal System by
Local and Systemic Insulin- and VIP-like Neuropeptides
In Drosophila, previous gain- and loss-of-function experiments

had failed to reveal unique functions for most of the eight

known Ilps (Brogiolo et al., 2001; Grönke et al., 2010). The

regional regulation of tracheal subsets hence provides one

possible explanation for the apparent redundancy of the Ilp

gene family in Drosophila: while all these Ilps may indeed

have the same function (in this case, to modulate tracheal

growth in response to nutrition), they may carry it out in different

places—for example, in the posterior hindgut in the case of Ilp7

and in other parts of the digestive tract for Ilp2, Ilp3, and Ilp5.

This regional control of tracheal growth may extend to other

regions: gut visceral musculature and CNS glia are known

to activate Ilp3 and Ilp2/Ilp6 gene expression respectively in a

nutrient-dependent fashion (Chell and Brand, 2010; O’Brien

et al., 2011; Sousa-Nunes et al., 2011). In light of our findings

and the recent discovery that intestinal tracheae can regulate

stem cell proliferation (Li et al., 2013), it is possible that local

regulation of tracheal branching by Ilps contributes to their re-

ported action on intestinal or neuronal stem cell proliferation

(Chell and Brand, 2010; O’Brien et al., 2011; Sousa-Nunes

et al., 2011).

Effects of insulin and VIP on blood vessels have been

described in vertebrates (Chaudhuri et al., 2012; Holzer, 2006).

Indeed, although the effect of Pdf on intestinal tracheal branch-

ing is unexpected in Drosophila (where this peptide is known for

its central role in clock neurons; Taghert and Nitabach, 2012),

neurally derived VIP has a vasodilatory effect on the arterioles

of small intestine and colon (Holzer, 2006). However, the physi-

ological significance of these (largely ex vivo) observations has

not been entirely elucidated (Matheson et al., 2000). In contrast

to this mode of regulation, involving acute modulation of endo-

thelial muscle tone, the evidence for longer-lasting effects of

these peptides on angiogenesis—which would be more akin
d Pdf Neuropeptides

the cell bodies in the posterior-most segments (to the right). DAPI (in blue) was

Ilp7-expressing neurons (those located in the two posterior-most segments)

nts. Anterior is to the top.

(B) in a 2nd-instar hindgut. Anterior is to the left, and the visceral muscles are

he hindgut nerves, but the anterior-most nerve endings are only positive for Pdf.

c gut regions are boxed in the cartoons: anterior (D), mid- (E), and posterior

but results in mildly reduced branching in the mid-hindgut.

s lacking Ilp7 as well the systemic Ilp2, Ilp3, and Ilp5 peptides.

erior hindgut (O) but leads to reduced tracheal growth in the mid-hindgut (N).

g DSRF-GAL4 does not affect branching in the anterior hindgut (P) or posterior

peptides is indistinguishable from that of control flies in the anterior hindgut (S),

l regulation of tracheae by different peptides. Scale bars, 10 mm in all images
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Figure 5. Regulation of Ilp7 Neuronal Activity by Nutrients and Hypoxia, and Its Effect on Tracheal Branching

(A) Exposure to yeast leads to a transient Ca2+ rise in Ilp7 neurons. Activity returns to basal levels after one minute. No such response is observed in control Va

neurons.

(B) A switch from 21% to 1% ambient O2 elicits a rapid rise in Ca2+ in Ilp7 neurons that persists while O2 is low. Upon return to normoxia, the basal activity of the

Ilp7 neurons is immediately abrogated. No Ca2+ rise is triggered in control Va neurons, which display a subtle drop in Ca2+ levels in response to hypoxia, as has

previously been observed for different types of neurons in various species (Cheung et al., 2006; Fujiwara et al., 1987; Krnjevi�c, 1999). Error bars denote SEM.

(C and D) False color-coded single frames depicting GCaMP fluorescence in representative movies illustrating the response to yeast (C) or hypoxia (D) observed

in Ilp7 neuronal cell bodies. Yellow/white indicates strong responses, red, low Ca2+ (false color scale is shown to the left).

(E and F) 25�C thermogenetic activation of the TrpA1 channel expressed in Ilp7 neurons through larval development results in increased tracheal coverage of the

midgut (F) relative to controls (E forGAL4 control). Quantifications are displayed to the right of these two panels (p < 0.001 versus GAL4 control, p < 0.0001 versus

UAS control, n = 23-27/set).

Scale bars, 25 mm (C) and (D) or 10 mm (E) and (F). See also Figure S6.
to their action on the Drosophila tracheal system—is more

tenuous and often contradictory (see, for example, Ogasawara

et al., 1999; Ribatti et al., 2007). Our findings suggest that their

effects may have been underestimated because they act in

partially redundant fashion and in response to specific nutritional

cues. Mechanistically, it has been proposed that the vertebrate

peptides regulate proangiogenic target-derived signals. By

contrast, our tracheae-specific receptor downregulation exper-

iments clearly indicate that these peptides can act directly on

the tracheal cells, so it will be of interest to establish whether

both modes of action contribute to their effects on vertebrate

angiogenesis.
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Metabolic Significance of the Tracheal Nutritional
Plasticity
In Drosophila, whole-organism manipulations of insulin signaling

such as ablation of insulin-producing cells or Ilp mutation result

in both slower development and ‘‘diabetic’’ phenotypes, high-

lighting their dual insulin/IGF-like role (Grönke et al., 2010; Rulif-

son et al., 2002). Strikingly, downregulation of insulin signaling

only in one cellular target—the tracheal terminal cells—uncou-

ples the developmental from the metabolic phenotypes of these

peptides, thus identifying the tracheal system as an important

and previously unrecognizedmetabolic target of insulin signaling

in the fly. Hence, the tracheal involvement in previously reported
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Figure 7. Regional Specificity of the Gut

Neuron/Tracheae Interactions

(A) The different visceral tracheal terminal

branches of the posterior midgut and hindgut, as

visualized in green in a 3rd-instar larva using a pan-

tracheal reporter to express a membrane-tagged

GFP (btl>cd8-GFP). 22C10 staining (in red) high-

lights the two hindgut nerves and phalloidin (in

blue) labels visceral muscles.

(B) Illustration summarizing the different kinds of

visceral tracheal terminal cells, their positioning

relative to the hindgut nerves, and their regulation

by systemic and paracrine neuropeptides at

the 3rd-instar stage. In the posterior midgut and

anterior hindgut, there is no apparent dorsoventral

patterning with regard to the positioning of

tracheal terminal cells. In these intestinal portions,

tracheal terminal growth is exclusively under the

control of the systemic mNSC-derived Ilps. In the

mid-hindgut, the visceral tracheal terminal cells

reach the hindgut from its ventral side and extend

branches that eventually cover the dorsal domain.

Mutation of Pdf or Ilp7 alone, as well as the triple

Ilp2,3,5mutation, all lead to reduced branching. In

the posterior hindgut, where the Ilp7/Pdf axons

abut the posterior hindgut tracheal branches, Ilp7

is partially redundant with Pdf and the systemic

Ilps.
insulin-modulated phenotypes, such as lifespan or resistance to

oxidative stress (Grönke et al., 2010), deserves further investiga-

tion. Interestingly, a pan-tracheal reduction in insulin signaling

results in normal carbohydrate metabolism but leads to reduced

adiposity. This is suggestive of abnormal lipid metabolism in the

fat body and is consistent with the recent finding that reduced fat

tissue vascularity leads to fat mass reduction without affecting

glucose homeostasis in young mice (Sung et al., 2013)—

although in both mice and flies this phenotype may eventually

prove to be deleterious (Sung et al., 2013 and Figure 6E).

Reduced adiposity is a phenotype that, although also consistent

with one of the classic symptoms of type I diabetes in humans,

had not previously been observed in flies with a ubiquitous

reduction in insulin signaling or lacking the systemic Ilp peptides

(puzzlingly, these flies were actually found to accumulate triglyc-

eride; Böhni et al., 1999; Grönke et al., 2010). We suggest that
Figure 6. Distinct Effects on Energy Homeostasis Resulting from Pan-T

(A) Reduced growth of most tracheal terminal cells (achieved using DSRF>btl-R

controls are significantly different from one another, p < 0.001, n = 40 larvae/set

(B) This genetic manipulation leads to shorter-lived adult male flies in the presenc

(C) DSRF>btl-RNAi larvae have an increased length to width ratio (p < 0.001 vers

larvae/set).

(D) They also have a reduced fat/protein content ratio (p < 0.0001 versusGAL4 con

(E) An increase in free glycerol is also apparent in their hemolymph (p = 0.002 ver

larvae/set).

(F) A gut-specific reduction in tracheal terminal cell growth (achieved using DSRF

(n = 60–140 flies/set).

(G) The same genetic manipulation leads to enhanced survival when adult male fli

GAL4 versus UAS controls, n = 110–120 flies/set).

(H and I) The lipid stores of these adult males are relatively normal in well-fed cond

p = 0.002GAL4 versus UAS controls, n = 7 samples/set, total 70 flies/set), but the

versus either UAS or GAL4 controls, n = 7 samples/set, total 70 flies/set). See al

80 Cell 156, 69–83, January 16, 2014 ª2014 The Authors
this increased adiposity may have been secondary to the IGF-

like effects of Ilps on developmental time, and only by uncoupling

these developmental from the metabolic effects of Ilps, as

we have done with the tracheal-specific reduction of insulin

signaling, can some of the ‘‘true insulin-like’’ phenotypes of

Ilps be unmasked.

We have also found that subtle changes in insulin signaling or

in the nutritional content of the fly’s diet (some of which are within

the range of those normally found in diets used for fly rearing in

different labs) have a striking effect on an unexpected tracheal

population: that of the digestive tract. It will be of interest

to explore the cellular mechanisms underlying their dif-

ferential sensitivity. These might result from differences in re-

ceptor levels or composition—the Ret-like receptor tyrosine

kinase Stitcher, recently shown to synergize with InR in mitotic

tissues, is a possible candidate (O’Farrell et al., 2013).
racheal or Gut-Specific Reductions in Tracheal Terminal Branching

NAi) does not affect the time between egg laying and pupation (only the two

).

e of nutritious food (p < 0.0001 for all three comparisons, n = 70–120 flies/set).

us GAL4 control, p < 0.0001 versus UAS control, n = 30 samples/set, total 300

trol and p = 0.013 versusUAS control, n = 19 samples/set, total 190 larvae/set).

sus GAL4 control, p < 0.001 versus UAS control, n = 13 samples/set, total 130

>InR-RNAi) does not affect the survival of adult male flies in well-fed conditions

es are subject to nutrient restriction (p < 0.0001 versus either control, p < 0.001

itions (H, p = 0.001 versusUAS control but not significant versusGAL4 control,

y are more reduced than those of controls upon nutrient restriction (I, p = 0.002

so Figure S7.



Alternatively, it could be caused by differences in downstream

signaling components such as Foxo, which has been shown to

account for some organ-specific responses (Tang et al., 2011).

Functionally, by uncovering gut-specific effects of tracheation

on adult survival and lipid mobilization upon nutrient scarcity, we

have identified the tracheal system as a possible anatomical

substrate for the previously reported effects of nutrient acquisi-

tion during developmental and growth periods on a variety of

adult features (Foley and Luckinbill, 2001; Zwaan et al., 1991).

Enterocytes would appear to be the obvious cellular mediators

of these effects; changes in oxygen supply may modulate the

metabolic state of these absorptive cells, and long-term adapta-

tions to nutrient scarcity may result from differential nutrient

absorption and/or utilization. However, enterocytes need not

be the only intestinal targets of the nutrient-driven tracheal

changes: the tracheal regulation of stem cell proliferation

described above (Li et al., 2013) provides an alternative (or addi-

tional) target. Consistent with this idea, there is correlative aswell

as (more limited) functional data implicating neuronal factors in

the regulation of angiogenesis in tumor environments (Jang

et al., 2000; Madden et al., 2011; Toda et al., 2008). Furthermore,

oxygen need not be the sole mediator of the gut tracheae-driven

adaptations: Li et al. (2013) also found that tracheae produce

Dpp, an important TGFb-like signaling molecule. In future,

it will be of interest to explore not only these intestinal targets,

but also whether the intestinal tracheal plasticity is more

widely regulated by other environmental stimuli—such as gut

epithelial infection or damage. From a more translational

perspective, most studies of adaptive angiogenesis in verte-

brates have focused on the adipose vasculature (Cao, 2010; Lij-

nen, 2008). In light of our Drosophila findings, it will be of interest

to explore the nutritional plasticity of the gastrointestinal vascu-

lature, as well as its contribution to pathologies such as obesity

or to the metabolic improvements following gastric bypass

interventions.
EXPERIMENTAL PROCEDURES

Visualization and Scoring of Tracheal Growth

Tracheae were imaged and blindly scored using DIC optics (see Extended

Experimental Procedures for details). Quantifications were performed as

follows:

Body Wall Tracheae

The stereotypical endings of the third dorsal branch, directly posterior to the

large tracheal commissure on the third segment, were counted as described

in (Centanin et al., 2008).

CNS Tracheae

Tracheal coverage was quantified in the VNC—a relatively flat tissue with

well-defined anatomical boundaries—as the ratio between the total length of

tracheal arbours (which are complex and nonstereotypical) divided by total

VNC area (mm/mm2). Tracheal length was measured using a custom-written

ImageJ macro (Schneider et al., 2012). After median filtering (radius = 3 pixels)

to reduce image noise, a polygonal region of interest (ROI) wasmanually drawn

to mark the tissue area. Following background subtraction to enhance the

visibility of tracheae, the image was segmented and the tracheal area within

the ROI was measured.

Gut Tracheae

In the mid-hindgut, where the tissue surface and three-dimensional properties

allowed semiautomated quantification, the same procedure as for the VNC

was used, but the segmented image was subsequently skeletonized. Parts

of gut tissue wrongly identified as tracheae or segments of the tracheal tree
missed by the programwere manually edited before counting the total number

of pixels in the skeletonized tracheal tree. In other intestinal portions, where the

ruggedness and/or bends and twists of the target tissuemade semiautomated

quantification impractical, tracheal coverage was blindly scored using Likert-

type scales ranging from no difference to wild-type (3) to strongly increased (5)

or strongly reduced (1) (see Figure 1 legend for color coding of displays). The

validity of this scoring systemwas confirmed in the body wall andmid-hindgut,

where Likert-quantified scores were comparable to those obtained by count-

ing or by semiautomated quantification respectively (data not shown). Likert

rank data were displayed as the mean (circled) on diverging stacked bar

charts, with the percentage of samples assigned to each Likert rank reflected

in the length of each differently colored segment.

We refer to Extended Experimental Procedures for details of statistical ana-

lyses, fly stocks, diets, and more standard methods (immunohistochemistry,

transmission electron microscopy, metabolic assays, survival assays, devel-

opmental rate and size quantifications, and in vivo recordings of neuronal

activity).
SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures, seven

figures, and twomovie and can be foundwith this article online at http://dx.doi.

org/10.1016/j.cell.2013.12.008.
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Géminard, C., Rulifson, E.J., and Léopold, P. (2009). Remote control of insulin

secretion by fat cells in Drosophila. Cell Metab. 10, 199–207.

Gervais, L., and Casanova, J. (2011). The Drosophila homologue of SRF acts

as a boosting mechanism to sustain FGF-induced terminal branching in the

tracheal system. Development 138, 1269–1274.

Ghabrial, A., Luschnig, S., Metzstein, M.M., and Krasnow, M.A. (2003).

Branching morphogenesis of the Drosophila tracheal system. Annu. Rev.

Cell Dev. Biol. 19, 623–647.

Grönke, S., Clarke, D.F., Broughton, S., Andrews, T.D., and Partridge, L.

(2010). Molecular evolution and functional characterization of Drosophila

insulin-like peptides. PLoS Genet. 6, e1000857.

Guo, Z., Driver, I., and Ohlstein, B. (2013). Injury-induced BMP signaling nega-

tively regulates Drosophila midgut homeostasis. J. Cell Biol. 201, 945–961.

Holzer, P. (2006). Neural regulation of gastrointestinal blood flow. In Physiology

of the gastrointestinal tract, L.R. Johnson, ed. (Amsterdam: Elsevier Academic

Press), pp. 817–840.

Jang, Y.C., Isik, F.F., and Gibran, N.S. (2000). Nerve distribution in hemangi-

omas depends on the proliferative state of the microvasculature. J. Surg.

Res. 93, 144–148.

Jarecki, J., Johnson, E., and Krasnow, M.A. (1999). Oxygen regulation of

airway branching in Drosophila is mediated by branchless FGF. Cell 99,

211–220.

Javerzat, S., Auguste, P., and Bikfalvi, A. (2002). The role of fibroblast growth

factors in vascular development. Trends Mol. Med. 8, 483–489.

Kerbel, R.S. (2008). Tumor angiogenesis. N. Engl. J. Med. 358, 2039–2049.

Krnjevi�c, K. (1999). Early effects of hypoxia on brain cell function. Croat. Med.

J. 40, 375–380.

Kumar,M., Nagpal, R., Verma, V., Kumar, A., Kaur, N., Hemalatha, R., Gautam,

S.K., and Singh, B. (2013). Probiotic metabolites as epigenetic targets in the

prevention of colon cancer. Nutr. Rev. 71, 23–34.
82 Cell 156, 69–83, January 16, 2014 ª2014 The Authors
Leevers, S.J., Weinkove, D., MacDougall, L.K., Hafen, E., andWaterfield, M.D.

(1996). The Drosophila phosphoinositide 3-kinase Dp110 promotes cell

growth. EMBO J. 15, 6584–6594.

Li, Z., Zhang, Y., Han, L., Shi, L., and Lin, X. (2013). Trachea-derived dpp

controls adult midgut homeostasis in Drosophila. Dev. Cell 24, 133–143.

Lijnen, H.R. (2008). Angiogenesis and obesity. Cardiovasc. Res. 78, 286–293.

Madden, K.S., Szpunar, M.J., and Brown, E.B. (2011). b-Adrenergic receptors

(b-AR) regulate VEGF and IL-6 production by divergent pathways in high b-AR-

expressing breast cancer cell lines. Breast Cancer Res. Treat. 130, 747–758.

Matheson, P.J., Wilson, M.A., and Garrison, R.N. (2000). Regulation of intesti-

nal blood flow. J. Surg. Res. 93, 182–196.

Metzger, R.J., Klein, O.D., Martin, G.R., and Krasnow, M.A. (2008). The

branching programme of mouse lung development. Nature 453, 745–750.

Miguel-Aliaga, I., Thor, S., and Gould, A.P. (2008). Postmitotic specification of

Drosophila insulinergic neurons from pioneer neurons. PLoS Biol. 6, e58.

Mukouyama, Y.S., Shin, D., Britsch, S., Taniguchi, M., and Anderson, D.J.

(2002). Sensory nerves determine the pattern of arterial differentiation and

blood vessel branching in the skin. Cell 109, 693–705.

Mukouyama, Y.S., Gerber, H.P., Ferrara, N., Gu, C., and Anderson, D.J. (2005).

Peripheral nerve-derived VEGF promotes arterial differentiation via neuropilin

1-mediated positive feedback. Development 132, 941–952.

O’Brien, L.E., Soliman, S.S., Li, X., andBilder, D. (2011). Alteredmodes of stem

cell division drive adaptive intestinal growth. Cell 147, 603–614.

O’Farrell, F., Wang, S., Katheder, N., Rusten, T.E., and Samakovlis, C. (2013).

Two-tiered control of epithelial growth and autophagy by the insulin receptor

and the ret-like receptor, stitcher. PLoS Biol. 11, e1001612.

Ogasawara, M., Murata, J., Kamitani, Y., Hayashi, K., and Saiki, I. (1999). Inhi-

bition by vasoactive intestinal polypeptide (VIP) of angiogenesis induced by

murine Colon 26-L5 carcinoma cells metastasized in liver. Clin. Exp. Metas-

tasis 17, 283–291.
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