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SUMMARY

We proposed a bimodal artificial intelligence that integrates patient information with images to diagnose
spinal cord tumors. Our model combines TabNet, a state-of-the-art deep learning model for tabular data
for patient information, and a convolutional neural network for images. As training data, we collected 259
spinal tumor patients (158 for schwannoma and 101 for meningioma). We compared the performance of
the image-only unimodal model, table-only unimodal model, bimodal model using a gradient-boosting de-
cision tree, and bimodal model using TabNet. Our proposed bimodal model using TabNet performed best
(area under the receiver-operating characteristic curve [AUROC]: 0.91) in the training data and signifi-
cantly outperformed the physicians’ performance. In the external validation using 62 cases from the other
two facilities, our bimodal model showed an AUROC of 0.92, proving the robustness of the model. The
bimodal analysis using TabNet was effective for differentiating spinal tumors.

INTRODUCTION

Spinal cord tumors that originate in the central nervous system can cause severe disruption to the daily lives of patients, and an estimated

70%–80% is intradural extramedullary in location.1 Because 70% of intradural extramedullary tumors are schwannomas or meningiomas,2,3

physicians often face the need to discriminate between the two in clinical practice. Differentiation between these tumors is important because

the resection methods are different for each. However, differentiation is still challenging because the tumors are relatively rare and do not

always present typical imaging findings.4

Some researchers have reported that artificial intelligence (AI)models aid in the diagnosis of spinal tumors.5–9 Automated object detection

and segmentation of spinal tumors yielded a high accuracy that was comparable to that of the physicians.6,7,9 Besides these, classification

models of spinal tumors have been established8 and one of them was a model to discriminate between schwannomas and meningiomas.5

In this study, magnetic resonance imaging (MRI) of 84 patients was analyzed, and the area under the receiver-operating characteristic curve

(AUROC) was 0.88. Although it was reported that the preliminary AI model was comparable to physicians, we believe there is still room for the

improvement of AI.

In daily practice, physicians do not always make a diagnosis based on images alone; in addition, they usually gain patient demographic

information such as age and gender from a medical interview. Some studies have recently reported an AI model, the so-called bimodal
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model, that can analyze data integrated frommedical images andpatient information.10–12 If patient information is combined successfully, the

bimodal model has the potential to outperform the previous unimodal model that analyzes images alone.10–12

Because patient information contains tabular data, traditional machine learning models such as gradient-boosted decision trees (GBDTs)

have been used.13–15 Furthermore, previous studies discussing bimodal AI in medicine used models combining GBDT and a convolutional

neural network (CNN).10,11 Recently, the Google Cloud AI research team invented TabNet as a state-of-the-art deep learning model for

tabular data16 and TabNet has been shown to be more effective than GBDT in a variety of tasks such as classification of forest cover type

and the poker hand.16,17 Additionally, TabNet has been applied in the medical field.18,19 Because TabNet can extract latent features from

patient information, we can establish an end-to-end bimodal model that combines TabNet with CNN.

In this study, we propose a bimodal model by combining TabNet with CNN and conduct three experiments to investigate the efficacy of

the proposed bimodal model. The experiments seek to answer the following questions.

1. Is TabNet, a deep learning model, superior to GBDT, a machine learning model?

2. Is the bimodal model superior to the unimodal model?

3. Is the proposed bimodal model superior to physicians?

RESULTS

Demographics of the patient cohort

There were 158 patients with schwannomas (76 men and 82 women) and 101 with meningiomas (22 men and 79 women) who had

undergone T2-weighted (T2WI) sagittal magnetic resonance (MR) images. We cropped the region containing the tumor as an input image

from each T2WI sagittal slice (Figure 1). We used age, gender, and tumor location as patient information. The demographics of the patients

are shown in Table 1. Themean age of patients with schwannomawas 58 years (age range, 42–74 years) and that of patients with meningioma

Figure 1. Image preprocessing for convolutional neural network model training

We selected themid-slices of the tumor and cropped them to aminimal region containing the tumor (green square) on T2-weighted sagittal magnetic resonance

images. The cropped images were used for training for and testing of the convolutional neural network models.

ll
OPEN ACCESS

2 iScience 26, 107900, October 20, 2023

iScience
Article



was 68 years (age range, 54–82 years). The women-to-men ratio was 1.1 in schwannoma and 3.6 in meningioma. We found the following char-

acteristics in the patient information. In patients with meningioma, the mean age, proportion of women, and thoracic occurrence were higher

than those in patients with schwannoma. The lumbar occurrence was higher in patients with schwannoma. The incidence ratios of schwan-

nomas and meningiomas, as well as patients’ background information, were consistent with previous reports.5,20,21

Advantage of TabNet over GBDT

We compared the performance of the unimodal model with TabNet (UTab) to that of the unimodal model with GBDT (UGBDT). We also

compared the performance of the bimodal model with TabNet (BTab; Figure 2A) to that of the bimodal model with GBDT (BGBDT; Figure 2B).

As a result, there was no significant difference in AUROC between UTab and UGBDT (0.80 vs. 0.79; p = 0.45). However, BTab had significantly

larger AUROC than did BGBDT (0.91 vs. 0.88; p = 0.03). UTab outperformed UGBDT in all metrics (UTab vs. UGBDT; accuracy: 0.76 vs. 0.73, sensi-

tivity: 0.75 vs. 0.75, specificity: 0.87 vs. 0.71, F1 score: 0.79 vs. 0.76), and BTab outperformed BGBDT in all metrics except for specificity (BTab vs.

BGBDT; accuracy: 0.85 vs. 0.83, sensitivity: 0.84 vs. 0.78, specificity: 0.85 vs. 0.86, F1 score: 0.87 vs. 0.86) (Table 2).

Advantage of the bimodal model over the unimodal models

We compared the performance of the bimodal model to that of the unimodal models, namely the image-only (Uimg: Table 3) and patient

information-only unimodal models. Here we adopted UTab and BTab mentioned earlier to represent a patient information-only unimodal

Table 1. Demographic data of patients with schwannoma and meningioma

Schwannoma Meningioma p value

No. of patients 158 101

Age (years) 58 G 16 68 G 14 <0.0001*

Gender (M/F) 76/82 22/79 <0.0001*

Location of tumor (%) <0.0001*

Cervical 21.5 24.8

Thoracic 36.1 68.3

Lumbar 40.5 7.0

Sacral 1.9 0

*p < 0.05.

Figure 2. Proposed and baseline models

Proposed and baseline bimodal models.

(A) BTab: bimodal model with TabNet uses a convolutional neural network (CNN) to encode an image and TabNet to encode patient information. Two extracted

features are combined and then passed to a fully connected (FC) layer to output probability.

(B) BGBDT: bimodal model with gradient-boosting decision tree (GBDT) model uses a CNN to encode an image. The extracted feature of the image is

concatenated to the raw patient information and then passed to a GBDT to output probability.
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model and a bimodalmodel, respectively. As a result, BTab (0.91) had larger AUROC thanUimg (0.84; p = 0.003) andUTab (0.80; p < 0.0001). BTab

outperformed others in metrics except for specificity (BTab vs. Uimg vs. UTab; accuracy: 0.85 vs. 0.81 vs. 0.76, sensitivity: 0.84 vs. 0.73 vs. 0.75,

specificity: 0.85 vs. 0.85 vs. 0.87, F1 score: 0.87 vs. 0.84 vs. 0.79) (Table 2).

Advantage of the bimodal model with TabNet over physicians

We ended by comparing the AI and physicians. Three radiologists and three spine surgeons were recruited to represent physicians. For the

comparative analysis, we established eight BTab models using CNN from EfficientNetB0 to EfficientNetB7. We randomly split the whole data-

set, namely MR images with patient information, into a training set and a test set at a 4:1 ratio. The training set was used for establishing eight

AI models, and the test set was used for evaluating eight AI models and six physicians. As a result, the AUROC, accuracy, and specificity of the

AI models were significantly larger than those of the physicians (AUROC: p = 0.003, accuracy: p = 0.002, specificity: p = 0.007) (Table 4). The

intraclass correlation coefficient (ICC) for the six clinicians was 0.89, indicating ‘‘almost perfect’’.22

External validation

In the above comparison, we investigated the unimodal and bimodal models’ performance with 5-fold cross-validation, which means split-

ting the dataset without separating the facility. This validation is called internal validation, which might include the possibility of overfitting.

On the other hand, external validation uses test data from a completely different facility. To prove the robustness of the models, we also

performed external validation. We collected additional 62 cases from other two facilities and tested the performance of our proposed

models using these other cases (Table 5). Although there were no significant differences between the external validation and the internal

validation in terms of age, gender, and the types of tumors (schwannoma/meningioma), there was a significant difference in tumor

location.

In the external validation, the AUROCs were 0.77 for UGBDT and 0.74 for UTab (Table 6), which were slightly lower than those of the internal

validation (UGBDT: 0.79, UTab: 0.80). As for the bimodal model, the AUROC was 0.87 for BGBDT and 0.92 for BTab, which were comparable with

those of the internal validation (BGBDT: 0.88, BTab: 0.91). These results indicated the robustness of the bimodal models.

Case presentation

For reference, representative MR images of spinal cord tumors are presented in Figure 3.

DISCUSSION

We demonstrated the following points in this study. First, TabNet, which is a state-of-the-art deep learningmodel for tabular data, was effec-

tive in handling clinical data. Second, the bimodal model, which added patient information to images, was superior to the unimodal model,

which handles only images. Third, the diagnostic ability of the proposed bimodal model was superior to that of experienced physicians.

Another strength of this study is that we included the largest number of cases of AI-based research to distinguish between spinal cord tumors.

The robustness of ourmodel was tested in the external validation. Furthermore, the diagnosis (ground truth) was reliable because it was based

on pathology in specimens taken at surgery, rather than consensus of image findings between physicians.

Table 2. Comparison of the performance among AI models

Model Information Algorithm Accuracy Sensitivity Specificity F1 score AUROC

p value

of AUROC

Unimodal Patient demographic GBDT (UGBDT) 0.73 0.75 0.71 0.76 0.79 UGBDT VS. UTab p = 0.45

Patient demographic TabNet (UTab) 0.76 0.75 0.87 0.79 0.80 UTab VS. BTab p < 0.0001*

Image CNN (Uimg) 0.81 0.73 0.85 0.84 0.84 Uimg VS. BTab p = 0.003*

Bimodal Patient demographics and image GBDT (BGBDT) 0.83 0.78 0.86 0.86 0.88 BGBDT VS. BTab p = 0.03*

Patient demographics and image TabNet (BTab) 0.85 0.84 0.85 0.87 0.91 N.A.

AUROC: area under the receiver-operating characteristic curve; GBDT: gradient-boosted decision trees.

*p < 0.05. The Holm method was used.

Table 3. Comparison of the image-only unimodal models’ (Uimg) performance

EfficientNetB

Number 0 1 2 3 4 5 6 7

AUROC 0.911 0.889 0.906 0.910 0.896 0.891 0.901 0.893

AUROC, area under the receiver-operating characteristic curve.
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End-to-end bimodal model can fit the parameters efficiently

TabNet is a new deep learning model specialized for tabular data that can extract a subset of semantically meaningful features from tabular

data such as patient information.16 Although some researchers have studied TabNet, there are few reports in themedical field that have com-

bined TabNetwith aCNN.18,19,23 According to previous studies, TabNet outperformedGBDT, the state-of-the-artmachine learningmodel, in

several datasets, although it was not superior in all datasets.17 Their report may support our result that TabNet andGBDTwere comparable in

the unimodal analysis. In contrast, in the bimodal analysis, TabNet was superior to GBDT. The effectiveness of TabNet in bimodal analysis is

supposed to be attributed to its end-to-end approach. When using TabNet, both the CNN and TabNet are simultaneously trained, allowing

the CNN to incorporate patient information into the analysis. In contrast, when using the GBDTmodel in bimodal analysis, the parameters of

the CNN are fixed, thereby limiting its ability to learn patient information. This difference in processing method may be the reason for

TabNet’s superior performance in our dataset compared to GBDT.

Patient demographic is useful for cases with tumors describing atypical intensities

In the present study, the image-only unimodal model (Uimg accuracy: 0.81, AUROC: 0.84) was comparable to the previously reported image-

only unimodal model (accuracy: 0.80, AUROC: 0.88) (Maki et al.). Our proposed bimodal model (BTab) outperformed both the unimodal

models.

Physicians may consider patient information to make a diagnosis of spinal cord tumor; however, they rarely diagnose spinal cord tumors

based on patient information alone. As indicated by the superior performance of Uimg over UTab (Table 2), the importance of images in the

Table 4. Comparison of the performance between AI models (BTab) and physicians

AI (BTab) Physician

EfficientNetB Radiologist Spine surgeon

Number 0 1 2 3 4 5 6 7 1 2 3 1 2 3

AUROC 0.93

(0.86–

1.0)

0.93

(0.84–

1.0)

0.95

(0.87–

1.0)

0.92

(0.83–

1.0)

0.91

(0.81–

1.0)

0.94

(0.86–

1.0)

0.93

(0.86–

1.0)

0.92

(0.84–

1.0)

0.81

(0.69–0.92)

0.84

(0.72–0.96)

0.86

(0.75–0.97)

0.70

(0.55–0.85

0.81

(0.68–0.95)

0.91

(0.83–

0.99)

Accuracy 0.88

(0.80–

0.97)

0.88

(0.80–

0.97)

0.90

(0.82–

0.98)

0.90

(0.82–

0.98)

0.90

(0.82–

0.98)

0.90

(0.82–

0.98)

0.92

(0.85–

1.0)

0.88

(0.80–

0.97)

0.73

(0.61–0.85)

0.79

(0.68–0.90)

0.79

(0.68–0.90)

0.60

(0.46–0.73)

0.67

(0.55–0.80)

0.85

(0.75–

0.94)

Sensitivity 0.95

(0.85–

1.0)

0.8

(0.62-

0,98)

0.9

(0.77–

1.0)

0.8

(0.62–

0.98)

0.8

(0.62–

0.98)

0.85

(0.69–

1.0)

0.8

(0.62–

0.98)

0.9

(0.77–

1.0)

0.8

(0.62–0.98)

1.0

(1.0–1.0)

0.9

(0.77–1.0)

0.9

(0.77–1.0)

0.95

(0.85–1.0)

0.75

(0.56–

0.94)

Specificity 0.84

(0.72–

0.97)

0.94

(0.85–

1.0)

0.91

(0.81–

1.0)

0.97

(0.91–

1.0)

0.97

(0.91–

1.0)

0.94

(0.85–

1.0)

1.0

(1.0,

1.0)

0.88

(0.76–

0.99)

0.69

(0.53–0.85)

0.66

(0.49–0.82)

0.72

(0.56–0.87)

0.41

(0.24–0.58)

0.5

(0.33–0.67)

0.91

(0.81–

1.0)

AI, artificial intelligence; AUROC, area under the receiver-operating characteristic curve.

The numbers in parentheses represent 95% confidence interval.

Table 5. Demographic data of patients in the external validation and internal validation

External validation (62 cases from two

facilities)

Internal validation (259 cases from 10

facilities) p value

No. of patients 62 259

Age (years) 61 G 13 62 G 16 0.81

Gender (M/F) 25/37 109/150 0.85

Schwannoma/meningioma 45/17 168/91 0.15

Location of tumor (%) 0.002*

Cervical 16.1 26.5

Thoracic 40.3 48.2

Lumbar 38.7 24.5

Sacral 4.8 0.8

*p < 0.05.
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diagnosis of spinal cord tumors is undisputed. Surprisingly, even in the absence of imaging information, UTab had a performance of 0.76 for

accuracy and 0.80 for AUROC. This fact suggests that epidemiological information such as the common age of onset, the gender, and the

favorite location of the tumor cannot be ignored.

Patient demographic information was useful, especially for tumors with atypical images. A typical image of schwannoma has hyper- or

mixed-signal intensity on T2WIs24 (Figure 3A). In this case, both BTab and Uimg diagnosed correctly. Figure 3B shows an atypical image of

schwannoma with iso-signal intensity, and Uimg and half of the physicians could not differentiate such an atypical image correctly; however,

BTab diagnosed it correctly. The reason BTab answered correctly is probably because the tumor occurred at the lumbar spine of amiddle-aged

male, which is consistent with the epidemiology of schwannomas. But, of course, epidemiological information can sometimes contradict im-

ages. Even in such cases, we think that BTab, a deep learning model, can successfully integrate patient information and images to make a

diagnosis. This may be the same reason why an excellent physician had a higher accuracy rate. Although it is difficult to quantify the extent

to which a physician relies on specific information when making a diagnosis, an excellent physician probably may be better at integrating

imaging and patient information.

Conversely, a less excellent physician may be biased in terms of the cases he or she has experienced (the learning data for the physician).

For example, a case in which a physician has recently misdiagnosed a patient may be more memorable to that physician; in contrast, a case

that was correctly diagnosed long ago could be less notable. Humans have such recall biases, but AI has the advantage of being able to

handle all case data without bias.

Limitations of the study

There were some limitations to the study. Firstly, it was difficult to perfectly align the reading conditions of the physicians and the AI. The

physicians did not learn based on data trained by AI. At first glance, this appears to have put the physicians at a disadvantage. However,

Table 6. Comparison of the AUROCs between external validation and internal validation

Model Information Algorithm

AUROC

External validation (62 cases from two

facilities)

Internal validation (259 cases from 10

facilities)

Unimodal Patient demographic GBDT (UGBDT) 0.77 0.79

Patient demographic TabNet (UTab) 0.74 0.80

Image CNN (Uimg) 0.86 0.84

Bimodal Patient demographics

and image

GBDT (BGBDT) 0.87 0.88

Patient demographics

and image

TabNet (BTab) 0.92 0.91

Figure 3. Representative T2-weighted magnetic resonance (MR) images that BTab (bimodal model with TabNet) diagnosed correctly

The red square describes a region containing the tumor.

(A) Typical T2-weighted MR image (hyper-signal intensity) of schwannoma in a patient with typical demographics (44-year-old male at lumbar spine). In this case,

both the Uimg (image-only unimodal model) and the BTab (bimodal model with TabNet) diagnosed correctly.

(B) Atypical T2-weighted magnetic resonance image (iso-signal intensity) of schwannoma in a patient with typical demographics (58-year-old male at lumbar

spine). The Uimg (image-only unimodal model) and three of the six physicians could not differentiate this case correctly. However, the BTab (bimodal model

with TabNet) diagnosed correctly.
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because spinal cord tumors are relatively rare, if a physician learned from themore than 200 cases of data that the AI used as training data this

time, that physician would not be representative of physicians in regular practice. In addition, the physicians had experience gained from their

previous practice, which the AI did not have, so the physicians were not generally at a disadvantage. Secondly, we did not include contrast-

enhanced T1 weighted (T1WI) MRI because not all the patients undergoing T2WI sagittal MRI had undergone contrast-enhanced T1WI MRI

and, thus, adding contrast-enhanced T1WI would induce the smaller dataset. Physicians typically make decision based on contrast-enhanced

T1WI MRI as well as T2WI, therefore it can be challenging for both AIs and physicians to accurately differentiate spinal cord tumors based

solely on T2WI MRI. Thirdly, we did not include intramedullary tumor such as ependymoma or astrocytoma. However, 70%–80% of spinal tu-

mor is extramedullary in location,1 and it is not hard for spine surgeons to tell a difference between intramedullary and extramedullary. There-

fore, we focused on intradural extramedullary tumor.

Despite these limitations, AI achieved diagnostic capabilities comparable to or better than those of the experienced physicians, indicating

the usefulness of bimodal analysis that combines images with patient information. This AI may be a useful tool to support diagnosis in the

future.
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STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for model implementation should be directed to and will be fulfilled by the lead contact, Kosuke Kita (k-

kita@radiol.med.osaka-u.ac.jp).

Materials availability

This study did not generate new unique reagents.

Data and code availability

� Due to privacy concerns and ethical considerations, the data collected and analyzed in this study cannot be publicly shared.
� Source code is publicly available online. The URL is listed in key resources table.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Patient cohort

The institutional review board of the blinded institution approved this study, and the requirement for consent was waived because of its retro-

spective nature. We retrospectively reviewed themedical lists of patients with spinal cord tumors who had undergone tumor resection at two

academic medical centers and eight community medical centers from October 1, 2010 to April 30, 2022. Diagnoses were made based upon

the histology of the surgical specimens. There were 259 patients (Man/Female: 109/150), containing 158 patients with schwannoma and 101

patients with meningioma (Table 5).

We also collected addtional 62 patients (25 men and 37 women, 45 schwannomas and 17 meningiomas) who had undergone tumor resec-

tion at other two facilities from October 1, 2010 to April 30, 2022 for external validation (Table 5).

All participants in this study are Japanese.

METHOD DETAILS

MR images and patient information preprocessing

We targeted T2WI sagittal MR images and tabular data of the patients’ demographics. An orthopedic surgeon (K.K., 8 years of experience)

selected a fewmid-slices of a tumormanually (ranging fromone to three slices per case) from sagittalMR images in order to capture the tumor

in a larger area: there was one slice for small tumors, and there were multiple slices for large tumors near the maximum area. A total of 265

slices were obtained from 158 patients with schwannoma, and 164 slices were obtained from 101 patients with meningioma. We cropped a

minimal region containing a tumor with amargin of approximately 1 cmaround the tumor on each slice as a region of interest for CNN training

(Figure 1). All regions of interest were resized to 224 3 224 pixels, with all pixel values rescaled to a range of zero to one per image.

Patient information comprised three features: age, gender, and tumor location. The tumor location was a categorical variable with four

possible values: cervical, thoracic, lumbar, and sacrum. We one-hot encoded the tumor location, and patient information was represented

as a six-dimensional feature vector.

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

Pyhton https://www.python.org/ Version 3.9.7

Pytorch https://pytorch.org/ Version 1.11.0

Scikit-learn https://scikit-learn.org/ Version 1.0.2

Scipy https://scipy.org/ Version 1.7.3

Statsmodels https://www.statsmodels.org/ Version 0.12.2

R https://www.r-project.org/ Version 4.2.2

pROC https://github.com/cran/pROC Version 1.18.0

lightgbm https://lightgbm.readthedocs.io/en/v3.3.2/# Version 3.3.2

Proposed Bimodal model https://github.com/kosukekita/

bimodal_AI_spinal_tumor

N/A
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Overview of the bimodal models

We proposed a bimodal model with TabNet (BTab) to differentiate spinal tumors based on integrated MR images and patient information

(Figure 2A). The features of the MR images were obtained through a CNN, and those of the patient information was obtained through

TabNet. Finally, both features were combined and passed to a fully connected layer to output probability. In addition to BTab, we established

the conventional bimodal model integrating a CNN and a GBDT (BGBDT). We concatenated the feature for the MR images obtained through

the CNN and the raw patient information. We then passed it to the GBDT to output probability.

To compare each AI model, we used EfficientNetB0 as a representative of the CNN that had been pre-trained with ImageNet, because

EfficientNetB0 performed best among EfficientNetB0-B7 in the cross-validation evaluation comparing AI models (Table 3). For comparison

between the AI models and physicians, we adopted eight models of EfficientNet from B0 to B7.25

Overview of the unimodal models

We built the following three unimodal baseline models: one analyzing only images (Uimg) and two models analyzing only patient information

(UTab and UGBDT). As for Uimg, UTab, and UGBDT, we built and trained theCNN, TabNet, andGBDT, respectively. We used EfficientNetB0 as the

CNN in Uimg and LightGBM26 as the GBDT.

QUANTIFICATION AND STATISTICAL ANALYSIS

Evaluation of the AI models’ performance

The performance of the two bimodal (BTab and BGBDT) and the three unimodalmodels (Uimg, UTab, andUGBDT) was evaluatedwith 5-fold cross-

validation. The dataset was split into five non-overlapping folds. The split was performed at patient level to avoid data leakage. In cases where

multiple slices were obtained fromMRI, the final decision was made based on themean probability over all slices in the models analyzingMR

images (BTab, BGBDT, and Uimg). We compared UTab with UGBDT and BTab with BGBDT to investigate the performance of TabNet. We also

compared the BTab, Uimg, and UTab to investigate the performance of the bimodal model.

Preparation of the dataset for image assessment by physicians

To compare the performance of BTab with that of physicians, all cases were randomly split into a training set and a test set at a ratio of 4:1. Thus,

in the training set, there were 126 cases of schwannomas and 81 cases of meningiomas, and in the test set, there were 32 were cases of

schwannomas and 20 cases of meningiomas. All cases included MR images and patient information (age, sex, tumor location). BTab learned

with the training set and was evaluated with hold-out validation.

Three board-certified spine surgeons (K.T., F.T., and K.Y., with 23, 18, and 11 years of experience, respectively) and three board-certified

radiologists (W.T., S.J., and T.M., with seven, three, and three years of experience, respectively) participated in this study. All six physicians and

BTab reviewed the test set. For each case, each physician made a diagnosis of whether it was a schwannoma or a meningioma and graded the

cases using a stepwise index of 25% increments for suspicion. For example, ‘‘meningiomaat 75%’’ meant that the physician believed there was

a 75% chance that the case was a meningioma (25% chance of schwannoma).

Because reading only a cropped image is not a typical clinical setting for physicians to form a diagnosis, the physician could refer to the

entire image to provide a condition similar to the usual reading environment.

Statistical and data analysis

All statistical analyses were conducted using Scipy 1.7.3, Statsmodels 0.12.2, R 4.2.2, and pROC27 1.18.0. As for patient demographic data,

parametric variables were evaluated using a Student’s t test, and categorical variables were evaluated using a c2 test. We defined AUROC as

the primary outcome to indicate the performance of each model. For comparisons between AI models, the DeLong test was performed. The

accuracy, sensitivity, specificity, and F1 score were also calculated to evaluate the AI models’ performance. These parameters were calculated

at the optimal cut-off point of the ROC curve. For comparisons of AUROC, accuracy, sensitivity, and specificity between the AImodels and the

physicians, we used the Wilcoxon rank-sum test. We calculated single measures ICC for the six physicians using pingouin 0.5.3. All statistical

tests were two-sided, and p values <0.05 were considered statistically significant. The Holm method was used for multiple comparisons.

The learning environment was as follows: Python 3.9.7, Pytorch 1.11.0, PyTorch-Lightning 1.7.0, scikit-learn 1.0.2.
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