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1  | INTRODUC TION

Near‐infrared spectroscopy (NIRS) detects the “chemical finger‐
print” of a sample by measuring the amount of near‐infrared energy 
absorbed by biological materials at specific wavelengths (Álvarez‐
Sánchez et al., 2013). The absorption is influenced by the internal and 
external chemical composition of the organism and is mainly gener‐
ated from the stretching and bending of O–H, N–H, and C–H func‐
tional groups (Williams & Norris, 2001). Previously, we successfully 
employed NIRS to determine the species, gender, age, and the pres‐
ence of Wolbachia infections in laboratory Drosophila (Aw, Dowell, 
& Ballard, 2012). There are at least five advantages of using NIRS 
in entomological research. First, it allows simultaneous analysis of 

multiple components from a single spectrum. Second, the operating 
cost for NIRS is low as no reagents or sample‐specific preparations 
are needed. Third, NIRS is a high‐throughput method to analyze NIR 
spectra in which more than 1,000 samples can be scanned per day. 
Fourth, NIRS technology is noninvasive and does not require a highly 
skilled technician for the operation of the instrument or the analysis 
of the acquired data after optimization and development of a calibra‐
tion. Fifth, living organisms can be sampled.

In this study, we investigate the accuracy of NIRS in determining 
metabolites levels by comparing the results to those obtained from a 
commercial assay kit. NIRS has been applied in noninvasive measure‐
ment of a variety of metabolites including blood glucose of patients 
with type I diabetes (Robinson et al., 1992), less invasive quantitative 
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Abstract
Near‐infrared (NIR) spectroscopy is a high‐throughput method to analyze the near‐
infrared region of the electromagnetic spectrum. It detects the absorption of light by 
molecular bonds and can be used with live insects. In this study, we investigate the 
accuracy of NIR spectroscopy in determining triglyceride level and species of wild‐
caught Drosophila. We employ the chemometric approach to produce a multivariate 
calibration model. The multivariate calibration model is the mathematical relation‐
ship between the changes in NIR spectra and the property of interest as determined 
by the reference analytical method. Once the calibration model was developed, we 
used an independent set to validate the accuracy of the calibration model. The opti‐
mized calibration model for triglyceride quantification yielded coefficients of deter‐
mination of 0.73 for the calibration test set and 0.70 for the independent test set. 
Simultaneously, we used NIR spectroscopy to discriminate two species of Drosophila. 
Flies from independent sets were correctly classified into Drosophila melanogaster 
and Drosophila simulans with accuracy higher than 80%. These results suggest that 
NIRS has the potential to be used as a high‐throughput screening method to assess a 
live individual insect's triglyceride level and taxonomic status.
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measurement of lactate in humans (Lafrance, Lands, & Burns, 2003), 
and measurement of glucose, triglycerides, and high‐density lipopro‐
tein of rat plasma (Neves, 2012). In insects, triglycerides constitute 
the main lipid form, representing ∼90% of the total fat body (Arrese, 
Patel, & Soulages, 2006). The content of triglycerides is influenced by 
several factors, including development stage, nutritional state, sex, 
and flight activity. Currently, triglyceride levels in insects are mea‐
sured by commercial assay kits, gas chromatography–mass spectros‐
copy, and liquid chromatography–mass spectroscopy (Tennessen, 
Barry, Cox, & Thummel, 2014). Undesirably, all these technologies 
are costly, invasive, time‐consuming, and destructive.

Additionally, we test the accuracy of NIRS to correctly iden‐
tify wild‐caught Drosophila melanogaster and Drosophila simulans 
by comparing it to an allele‐specific PCR test. There is a need 
for developing accurate, effective, low‐cost and efficient ap‐
proaches that can be used in the field (Falk, Wallace, & Ndoen, 
2011; Nansen & Elliott, 2016). Increasingly, NIRS is being used 
by the entomological community and it has been shown to ac‐
curately identify a range of species including Anopheles mos‐
quitoes (Mayagaya et al., 2015), Zootermopsis termites (Aldrich, 
Maghirang, Dowell, & Kambhampati, 2007), Calliphoridae blow‐
flies (Voss, Magni, Dadour, & Nansen, 2017), and Tetramorium ants 
(Kinzner et al., 2015). Morphologically, male D. melanogaster can 
be differentiated from male D. simulans by the shape of the genital 
arch genitalia, but females are difficult to identify and these taxa 
are considered sibling species. A biochemical approach is to use 
PCR with direct sequencing or allele‐specific PCR. However, the 
processing time and reagent costs often limit their application. 
As a consequence, field studies of wild‐caught Drosophila may be 
based upon a subsample of collected individuals, which may not 
capture the true heterogeneity of the sample.

In this study, we employ the chemometric strategy. Chemometric 
analysis is defined as the development and application of mathemat‐
ical and statistical methods to extract useful chemical information 
from sample measurement (Gould, 1977). In the chemometric anal‐
ysis, the best multivariate calibration model is obtained through 

step‐by‐step optimization compared to a known reference. The cali‐
bration model is the mathematical relationship between the changes 
in NIR spectra and the property of interest as determined by the 
reference analytical method (e.g., regression of measured absorp‐
tion against reference analyte concentration data). In general, the 
sample size for a typical calibration model ranges between 40 and 
90 samples, with smaller sample sizes potentially overfitting the data 
(Lafrance et al., 2003; Schulz, Drews, Quilitzsch, & Krüger, 1998). 
This calibration model is then tested with an independent data set, 
which includes samples not included in the developing of calibra‐
tion model, to estimate its predictive ability (Mayagaya et al., 2009; 
Williams & Norris, 2001).

The aim of this study was to develop and validate a high‐
throughput NIRS methodology for assessing the triglyceride 
levels and taxonomic status of wild‐caught Drosophila. We were 
able to determine triglyceride levels with a coefficient of deter‐
mination of 0.70 and species with greater than 80% accuracy. 
Combined these results suggest that NIRS has the potential to 
be used as a high‐throughput screening method to assess a live 
individual insect's triglyceride levels and species status.

2  | MATERIAL S AND METHODS

2.1 | NIRS scan of wild‐caught Drosophila

Wild‐caught Drosophila flies (Figure 1) were collected in Rosebery, 
NSW, Australia, on six different days (27 February 2017–8 March 
2017). Flies were placed in an empty vial and scanned using NIRS 
within 3 hr of collection. To ensure flies did not move during the 
NIRS scan, they were anesthetized with humidified CO2 for 30 min 
immediately before the scan was performed. The long CO2 sedation 
did not kill the flies but could cause metabolic changes (Colinet & 
Renault, 2012).

The scanning system setup follows Mayagaya et al. (2009). 
About 25 flies were placed on a spectralon plate (ASD Inc., Boulder, 
Colorado, USA), and each fly was sexed and then individually 
scanned. The flies were placed 2 mm below a 3 mm diameter bifur‐
cated fiber‐optic reflectance probe that contained 33 illumination 
fibers and 4 collection fibers. The probe was focused on the dor‐
sal axis of the flies, and the spectra were collected with a portable 
LabSpec 5,000 spectrometer (350–2,500 nm; ASD Inc., Boulder, 
Colorado, USA) using RS3 Spectra Acquisition Software 6.0.10 (ASD 
Inc., Boulder, Colorado, USA). The raw channel data sampling rate of 
1.4 nm in the visible and near‐infrared region (350–1,000 nm) and 
2.2 nm in the short wavelength infrared region (1,001–2,500 nm) 
are interpolated to 1 nm intervals across the full spectrometer range 
from 350 nm to 2,500 nm. The nominal spectral resolution varies 
with the spectrometer region. The visible and near‐infrared region 
has a spectral resolution of 3 nm at 700 nm, and the short wave‐
length infrared region has a spectral resolution of 10 nm at 1,400 nm 
and 2,100 nm. An average of 50 spectra was collected from each 
sample and stored as an average spectrum. All spectra were con‐
verted into SPC format by the Asd to Spc convertor version 6 (ASD. 

F I G U R E  1   Drosophila is a genus of flies belonging to the family 
Drosophilidae. A male with visible sex combs on the forelegs is 
shown
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Inc.). The spectra were then transformed into log 1/R and mean cen‐
tered before analysis. After NIRS scanning, flies were frozen in liquid 
nitrogen and then transferred into a −80°C freezer (Figure 2).

2.2 | Reference

Triglyceride level and species status were independently deter‐
mined. It was not possible to complete both assays on a single fly 
because both assays were performed through destructive wet 
chemistry analytical techniques (fluorometric kit and allele‐specific 
PCR). Due to this destructive sampling, we have limited sample sizes. 
A second limitation of the study is that it is assumed the reference 
data were obtained without error. This is unlikely completely true for 
the triglyceride assay because it is a continuous variable. It is more 
likely true for the allelic PCR because it was a discrete assay (it was 
either D. melanogaster or D. simulans) and independent validation 
corroborated 100% accuracy (Supporting Information Figure S2).

2.2.1 | Metabolite quantification

Reference triglyceride levels were determined using the Abcam fluo‐
rometric kit (AB65336) following the manufacturer's instructions. 
Briefly, triglycerides were hydrolyzed to free fatty acids and glyc‐
erol. The glycerol reacts with the triglyceride enzyme mix to form 
an intermediate product, which in turn reacted with the PicoProbe 
and developer to generate fluorescence that can be detected at Ex/
Em = 537/587 nm. Experimental samples were prepared by grinding 
each adult fly in 100 µl of 5% NP‐40/ddH2O. Samples were slowly 
heated to 85°C for 5 min and then cooled down to room temperature. 

The heating and cooling process was repeated twice, and samples 
were centrifuged for 2 min at 4,000 g to remove insoluble materi‐
als. Triglyceride level was determined in a 384‐well microplate, with 
each well containing 25 µl of samples and 25 µl of working buffer 
(the working buffer consists of 23.8 µl of triglyceride assay buffer, 
0.2 µl of triglyceride probe, and 1 µl of triglyceride enzyme mix). All 
measures were performed at 23°C. Triglyceride level was expressed 
as nmol/well (Supporting Information Figure S1).

2.2.2 | Species identification

Reference Drosophila species data were determined with allele‐
specific PCR (Supporting Information Figure S2). The primers used 
for allele‐specific PCR were species‐specific and were designed by 
downloading and aligning 42 cytochrome c oxidase I (cox I) sequences 
from GenBank (15 D. melanogaster and 27 D. simulans). Cox I is a mito‐
chondrial DNA‐encoded gene which is recognized as a DNA barcode, 
capable of accurate species identification in a broad range of animals 
(Hebert, Cywinska, Ball, & deWaard, 2003). The primers were vali‐
dated with DNA samples from known species of laboratory flies, and 
the PCR products were sequenced to confirm the specificity of the 
primers. D. simulans was identified by amplifying a 784 bp region of 
cox I gene using primers 1856F (5′‐ TATCTGCTGGAATTGCCCAC‐3′) 
and 2642R (5′‐ GCTATAATAGCAAATACAGCTCC‐3′), while D. mela‐
nogaster was identified by amplifying a 600 bp region of cox I gene 
using primers 2041F (5′‐ GCTTTATTATTATTATTATCACTT‐3′) and 
2642R (5′‐ GCTATAATAGCAAATACAGCTCC‐3′). Briefly, two sets of 
primer pairs were run in separate reactions and the allele was identi‐
fied based on the band size on a gel. DNA was extracted from flies 
using a Gentra Puregene® Cell kit (Gentra Sytem Inc., Minneapolis, 
MN, USA). Each 10 µl reaction contained 2 µl of Crimson™ buffer 
(NEB, New England Biolabs), 2.56 µl of 25 mM MgCl2, 0.4 µl of 
10 mM forward and reverse primer, 0.08 µl of 25 mM dNTP, 0.05 µl 
of Taq polymerase, and 2.51 µl of H2O and 10 ng of DNA. The PCR 
cycling program involved four separate phases. Phase 1 was the 
initial denaturation which was 94°C for 2 min. Second, the 5 cycle 
touchdown phase (denaturation: 94°C for 10 s, annealing: 64°C for 
15 s with the temperature gradually reducing 1°C per cycle until it 
reached 59°C, and extension: 1 min at 72°C). Third, the 20 cycle 
phase (denaturation 94°C for 10 s, annealing 59°C for 15 s and 1 min 
at 72°C). Fourth, a final 72°C extension step for 6 min.

2.3 | Calibration models

The NIR scan and the reference data (triglyceride and allele‐spe‐
cific PCR) were individually paired to develop four calibration 
models. One calibration model was developed for the triglycer‐
ide quantification, and three models were developed for species 
identification. The calibration models were constructed with par‐
tial least square (PLS) regression leave‐one‐out cross‐validation 
method using GRAMS IQ version 9.1 (Thermo Fisher Scientific, 
Salem, NH; Williams & Norris, 2001). PLS regression analysis 
was calculated to determine the quantitative relation between 

F I G U R E  2   Strategy for metabolite quantification and species 
identification. (a) Calibration set included 159 wild‐caught flies. 
Flies were scanned using a NIR spectrometer and then frozen. 
For the reference, triglyceride content of 65 was determined by 
an assay kit. For species identification, the taxonomic status of 
94 was determined by allele‐specific PCR. Chemometric analyses 
were employed to calculate calibration models. (b) Independent 
set included 121 flies. Again, flies were scanned using a NIR 
spectrometer and then frozen. The triglyceride level and species 
status of each fly were then predicted by the calibration model. 
For the reference, triglyceride levels were determined from 47 
flies using the triglyceride assay kit, and species status of 74 adults 
was determined by the allele‐specific PCR. The accuracy of the 
calibration model was estimated by comparing the NIRS predicted 
value from the calibration model with the reference value (blue 
equal symbol)
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raw near‐infrared spectra and chemical composition of the sam‐
ple. Cross‐validation is carried out by dividing the population of 
samples into equal “blocks” and eliminating samples one block at 
a time. Consequently, all samples were used in the development 
of the calibration equation. This technique is appropriate for small 
sample sizes. A regression coefficient plot was used to analyze PLS 
models for each composition and to determine noises region in 
the model. This plot shows noise increases outside 500–2,200 nm, 
and these regions were excluded.

All spectra were smoothed using the Savitzky–Golay first de‐
rivative method (Savitzky & Golay, 1964). Calculating derivatives of 
spectral data by the Savitzky–Golay numerical algorithm is a widely 
used pretreatment method that can effectively resolve overlapping 
signals, enhance signal properties, and suppress unwanted spectral 
features that arise from nonideal instrument and sample proper‐
ties (Chen, Song, Tang, Feng, & Lin, 2013; Zimmermann & Kohler, 
2013). Considering the vast range of possible signal bandwidths 
encountered within a typical spectrum, it is not possible for us to 
employ a general smoothing function with set parameters for spec‐
tral preprocessing using the Savitzky–Golay procedure. Therefore, 
we optimize each model independently. The point smoothing func‐
tion with maximum accuracy in the independent test set was cho‐
sen. The outlier samples were identified by Mahalanobis distance 
(Mahalanobis, 1936). There were less than 5% outliers in all models.

2.3.1 | Metabolite quantification

A calibration model was generated using 65 wild‐collected flies 
(Figure 1a). In the model, the spectra were assigned with the refer‐
ence value obtained from the fluorometric assay. All spectra were 
processed using the Savitzky–Golay first derivative with 35 point 
smoothing function. We did not develop sex‐specific models be‐
cause sample sizes were less than 40, and this may have resulted 
in the calibration model overfitting the data (Lafrance et al., 2003; 
Schulz et al., 1998).

2.3.2 | Species identification

An initial calibration model (Model 1) was developed using the 
mixture of 94 male and female flies (Figure 1a). To determine 
whether the accuracy of species identification could be improved 
when sexes are considered separately, we then divided the sam‐
ples into males and females and then developed sex‐specific mod‐
els (Guan et al., 2013). Model 2 was a calibration model for the 
50 males. Model 3 was a calibration model for the 44 females. 
Necessarily, the sex‐specific models reduced the sample size, 
which concomitantly increases the likelihood of overfitting the 
data. As such, caution should be exercised in interpreting the re‐
sults from Models 2 and 3.

In all the calibration models, the spectra of D. melanogaster flies 
were assigned a value of 1, and D. simulans were assigned a value of 
2. The value of 1.5 was considered as the cutoff point for species 
identification. Flies with predicted value less than 1.5 were classified 

as D. melanogaster, whereas those with a predicted value equal to 
or greater than 1.5 were classified as D. simulans. All spectra were 
processed using the Savitzky–Golay first derivative with 5 point 
smoothing function.

2.4 | Independent set

To minimize the potential problem of calibration model's overfitting 
the data, we included an independent data set. If a model developed 
fit to the training set also fits the test set well, minimal overfitting 
has taken place (Subramanian & Simon, 2013). The independent 
sets were analyzed using GRAMS IQ Predict version 9.1 (Thermo 
Galactic, Salem, NH).

2.4.1 | Metabolite quantification

The independent set was generated using 47 wild‐collected flies. 
The predicted value for triglyceride level was then determined using 
the metabolite calibration model and compared with that deter‐
mined by the fluorometric assay.

2.4.2 | Species identification

Three independent sets were used to estimate the accuracy of each 
calibration model. Independent set 1 was developed using both male 
and female flies (74 flies). Independent set 2 included males (44 flies) 
and set 3 females (30 flies). Spectra with species identified using 
allele‐specific PCR were then compared with the three calibration 
models.

2.5 | Accuracy

Accuracy represents the combination of the sum of the trueness 
(systematic error) and precision (random error; Baratloo, Hosseini, 
Negida, & Ashal, 2015). Here, the best multivariate calibration model 
was chosen based on the highest accuracy of prediction of the inde‐
pendent set.

2.5.1 | Accuracy of metabolite quantification

The optimized calibration model for triglyceride quantification was 
chosen based on coefficients of determination. Triglyceride levels 
determined from the fluorescent kit were continuous, and the ac‐
curacy of the triglyceride level quantification was determined by 
measuring the root‐mean‐square error of calibration, coefficient of 
determination (R2), root‐mean‐square error of prediction (RMSEP), 
and the ratio of the standard error of performance to the standard 
deviation of the reference data (RPD). Root‐mean‐square error of 
calibration (RMSEC) and R2 were used to measure goodness of fit 
between the reference data and the calibration model. The RMSEP 
and the RPD, computed from the independent set, were used to 
measure the differences between the predicted value and the refer‐
ence value. The closer the predicted scan result is to the actual or 
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known result the lower the RMSEP value and the higher the RPD. A 
good model should have lower RMSEC, lower RMSEP, higher RPD, 
and higher R2. To enable comparison with the species identification 
results, we focus upon R2 as a measure of accuracy.

2.5.2 | Accuracy of species identification

Species identification using allele‐specific PCR was discrete (1 for 
D. melanogaster and 2 for D. simulans), and accuracy could be deter‐
mined as a percentage. The accuracy was calculated by comparing 
the allelic‐specific PCR result with the scan result. The closer the 
predicted result is to the allelic‐specific PCR result the greater the 
accuracy.

3  | RESULT AND DISCUSSION

3.1 | Metabolite quantification

The regression coefficient plot for triglyceride quantification 
showed peaks in the regions around 920 nm, 1,040 nm, 1,140 nm, 
1,370 nm, 1820 nm, and 1900 nm (Figure 3), which were consist‐
ent with the absorptions of functional groups associated with 
glycerol and fatty acids. These functional groups include methyl 
group (–CH3), methylene group (–CH2), alkene group (C=C), and 
ester group (COOC). The peaks at 920 nm, 1,040 nm, 1,140 nm, 
and 1,370 nm are characteristic of the 2nd overtone and the 
combination of C–H stretching. Notably, similar absorbance coef‐
ficient peaks around 920 nm and 1,040 nm were also observed in 
tissue samples with high‐fat content (ElMasry & Nakauchi, 2016; 
Wilson, Nadeau, Jaworski, Tromberg, & Durkin, 2015). The peak 
at 1,820 nm shows the 1st overtone of C–H stretching, whereas 
peak on 1,900 nm corresponds to the absorption of COOC func‐
tional groups (Williams & Norris, 2001).

Reference triglyceride concentrations of the wild‐caught flies 
were determined using a commercial fluorometric kit and ranged 
between 0.312 and 1.526 nmol/fly (Supporting Information Figure 
S1). The optimized calibration model for triglyceride quantification 
yields a RMSEC of 0.19, RMSEP value of 0.26, and RPD of 1.92. An 

RPD of 1.92 indicated poor NIR reflectance predictions (Williams 
& Norris, 2001). Considering male and female flies can differ dras‐
tically in their metabolite level (Rong et al., 2014), future studies 
should increase the sample size and then developed sex‐specific 
models to increase the efficiency of NIR predictions. The calibra‐
tion model has a R2 of 0.73 and 0.70 for the calibration set and 
independent test set, respectively (Figure 4). In contrast to our re‐
sults, Neves et al. (2012) developed a NIRS calibration model with 

F I G U R E  3   Regression coefficient plot for triglyceride 
quantification was generated with eight partial least square 
regression factors. (a) 920 nm, (b) 1,040 nm, (c) 1,140 nm, (d) 
1,370 nm, (e) 1,820 nm, and (f) 1,900 nm

F I G U R E  4   Relationship between the reference fluorometric 
kit and the NIRS predicted triglyceride values in the calibration 
set and independent test set. (a) The calibration model has a 
coefficient of determination of 0.73 for the calibration set. (b) The 
calibration model has a coefficient of determination of 0.70 for the 
independent test set

F I G U R E  5   Regression coefficient plot for classifying Drosophila 
melanogaster and Drosophila simulans was generated with six partial 
least square regression factors. (a) 1,040 nm, (b) 1,450 nm, (c) 
1,720 nm, (d) 1,820 nm, and (e) 1,900 nm
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a correlation coefficient of 0.96 for triglyceride quantification in 
animal plasma.

3.2 | Species identification

The regression coefficient plot show peaks in the regions around 
1,040, 1,450, 1,720, 1,820, and 1,900 nm (Figure 5). Notably, the 
peak around 1,450 nm was observed in our previous study on spe‐
cies identification of laboratory Drosophila (Aw et al., 2012). The peak 
at 1,450 nm is characteristics of the 1st overtone and the combina‐
tion of C–H stretching and has been shown to increase with the rise 
in moisture content of the sample (Yang et al., 2013). Peaks at 1,040, 
1,820, and 1,900 nm were observed in the regression coefficient 
plot for triglyceride quantification (Figure 3) but not observed in the 
species identification of laboratory Drosophila (Aw et al., 2012). This 
implies that lipid may play an important role in species discrimination 
of the wild‐caught flies but are less important in the species identifi‐
cation of laboratory flies raised in a standard diet. This finding is con‐
sistent with Fischnaller, Dowell, Lusser, Schlick‐Steiner, and Steiner 
(2012) who showed that validation sets obtained from wild‐caught 
flies cannot be apply to laboratory‐reared flies, and vice versa.

In this study, we categorized the wild‐caught flies as either D. melan‐
ogaster or D. simulans using allele‐specific PCR (Supporting Information 
Figure S2). Model 1 developed using the mixture of both sexes correctly 
classified flies as D. melanogaster and D. simulans with 80% (n = 74) ac‐
curacy. Dividing the samples into males and females improved the ac‐
curacy of species identification. In calibration Model 2, male flies were 
correctly classified as D. melanogaster and D. simulans with 93.2% ac‐
curacy. Model 3 correctly identified female flies as D. melanogaster and 
D. simulans with 83.35% accuracy (Figure 6). The optimized calibration 
model for species identification of wild‐caught Drosophila (Figure 6) and 
of laboratory‐reared Drosophila (Aw et al., 2012) had greater than 80% 
accuracy of prediction. Similarly, the NIRS calibration model for two 
field‐collected mosquito species also had an accuracy of approximately 

80% (Mayagaya et al., 2009). In comparison, the accuracy of identifying 
four Tetramorium ant species was lower (13.3%–66.7%; Kinzner et al., 
2015).

4  | CONCLUSION

The current methods for metabolite quantification and sibling species 
identification can be difficult and laborious. To overcome these difficul‐
ties, we tested the potential use of NIRS for triglyceride quantification 
and species identification. The major advantages of NIRS technique for 
entomologists include the cost saving after initial purchase of the in‐
strument, nondestructive sampling, and the potential for high‐through‐
put analysis. Our study demonstrated NIRS can quantify triglyceride 
with an R2 of 0.70 and identify wild‐caught Drosophila with an accuracy 
of higher than 80%. The major limitation is that the methodology is not 
100% accurate. In cases where very high accuracy is required, NIRS 
may be able to provide an initial screening of the data as the specimens 
are not damaged.

Ongoing goals are to increase the accuracy and usage of NIRS. 
Here, we show that the accuracy of species identification improved 
when calibration models were independently developed for males 
and females. Necessarily, this reduced our overall sample sizes. Future 
studies should include a sufficient number of samples so that calibra‐
tion models can be independently developed for males and for females. 
Future studies may also include perturbation assays and simulations 
so optimal sample sizes can be determined and biases associated with 
over fitting the data can be determined. Additional challenges include 
linking additional metabolites with NIRS spectral patterns and simul‐
taneously identifying more than two species. Kinzner et al. (2015) 
demonstrate that four species of ant (Tetramorium) could be classified 
by NIRS using one versus all strategy with an accuracy of 13%–67% 
(Rifkin & Klautau, 2004). We conclude that NIRS is a promising method 
for monitoring of insect's metabolite level and taxonomic status, and 
further optimization may well improve the accuracy of the technique.
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