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Therapy resistance of approximately one-third of patients with Gilles de la Tourette syn-
drome (GTS) requires consideration of alternative therapeutic interventions. This article 
provides a condensed review of the invasive and non-invasive stimulation techniques 
that have been applied, to date, for treatment and investigation of GTS. Through this 
perspective and short review, the article discusses potential novel applications for 
neurostimulation techniques based on a symptom-guided approach. The concept of 
considering the physiological basis of specific symptoms when using stimulation tech-
niques will provide a platform for more effective non-pharmacological neuromodulation 
of symptoms in GTS.
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inTRODUCTiOn

The use of non-invasive and invasive brain stimulation techniques for relief of specific symptomatol-
ogy in neuropsychiatric disorders should be considered as a young therapeutic intervention. The 
motivation for such a proposal stems from the need for alternatives to current pharmaceutical 
neuromodulation for Gilles de la Tourette syndrome (GTS), as approximately one-third of patients 
with GTS demonstrate therapy resistance or side effects to conventional neuropharmaceuticals, 
with limited current alternatives for symptom management. When considering the role of circuit 
components in learning and plasticity processes, brain stimulation becomes a strategic and valuable 
technique for investigating potential treatment options for neuropsychiatric disorders, since particu-
lar neural circuits have demonstrated abnormal excitability related to symptom manifestation and 
have been linked to aberrations in plasticity-induced learning (1). Such results offer a physiological 
approach to understanding and analyzing circuit aberrancies that are observed clinically as symptoms 
of specific neuropsychiatric disorders. The relationship between specific symptom manifestation 
and the underlying nodal or network participation that accounts for alterations in neural firing is a 
question worth posing, as such differences in analysis would personalize and thereby improve the 
current approach to the application and use of neurostimulation.

Of particular interest is the potential to use neurostimulation in a more discrete and motivated 
manner. Specifically, regions that are analyzed to participate in specific motor and cognitive functions 
are targeted as regions of interest, an approach guided by the concept of “personalized intervention” 
in neuropsychiatric disorders. This deviates from the current dominating avenues where a particular 
structure is chosen for stimulation. Analysis of resulting behavior and physiology, usually at a group 
level, follows. This paper provides an overview of the application, to date, of both invasive and non-
invasive neurostimulation to GTS patients and reflects on the potential benefits and challenges of 
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considering nodal and network participation in aberrant behavior 
as a potential guide for individualized patient stimulation.

FUnCTiOn, STRUCTURe, AnD 
SYMPTOMATOLOGY FOR MOTivATeD 
APPLiCATiOn

The consideration of structures’ functions in the underling 
neural circuit producing symptomatology is not trivial: 
stimulation via electric currents to a complex electrochemical, 
dynamic structure that the brain represents prevents simple 
prediction of potential neurostimulation effects on behavior 
and symptoms. In essence, this process involves at least three 
steps: (i) the analysis of the effect of neurostimulation on 
physiology and (ii) the effect of changes in neurophysiology 
on behavior or symptoms. These last two steps are preceded 
by one challenging, cardinal step (A), which in the era of com-
putational neuroscience is often discounted or overlooked: the 
analysis of the behavioral problem by an experienced pattern 
recognizer, a clinician. However, some approaches are cur-
rently on the way in an attempt to replace or improve human 
pattern recognition.

So far, in therapeutic neurostimulation for GTS, solid mecha-
nistic rationale for its use is often spared, one reason being that 
applicators are rarely trained in the previously mentioned aspects, 
which include (a) clinical pattern recognition, (b) neurophysiol-
ogy read-outs, and (c) sophisticated stimulation strategies. This 
delays the development of more effective stimulation protocols. 
Thus, the need for unconventional options to available treatment 
can perhaps be best understood by reorienting the manner in 
which GTS symptomatology is analyzed and framed.

The cardinal behavioral symptoms in GTS are tics. Tics can be 
sudden and meaningless movements, simple movements (such as 
blinking, eye rolling, and head nodding) or complex (touching, 
jumping, squatting, etc.). Often motor tics, including eye blinking 
and neck turning, are only abnormal and different from regular 
movements due to the intensity of reoccurrence and frequency 
(2). Many can develop over time into more purposeful, longer 
duration movements (complex motor tics). Consequently, a tic is 
not a tic is not a tic and, hence, requires initial analysis in step (A). 
To add to the complexity, a scenario like this would inadequately 
reduce the abnormal motor behavior to a one-dimensional behav-
ioral problem (tic), which in GTS, with its frequent comorbidities 
(obsessions, compulsions, etc.), is often a mixture of faulty motor 
patterns.

For example, in children, throat clearing and other cold-related 
behavior is often reported by parents as persisting after the cold 
recedes and observed to adopt a recurrent and frequent inclusion 
in motor tic repertoire. Such repeated activation of potentially 
learned motor memories seems to occur with various motor 
actions that, if not for their frequent repetition or misplaced 
execution, would otherwise be considered as regular movements 
(2). It could be hypothesized that these represent “invasive motor 
memories,” i.e., learned and stored patterns. Clinical observa-
tions such as these frame GTS symptomatology in such a way 
that allows for a more inclusive approach to analyzing underlying 

causes of symptoms, as it aims to bridge the underlying physiol-
ogy with the clinical manifestation reflecting neural aberrancies.

Traditionally, neural nodes that have been attributed to GTS 
symptoms are elements forming part of the cortico-basal ganglia 
(BG) network. Such models suggest that involuntary movements 
are related to decreased inhibitory output from the BG. This 
reduction in output is thought to underlie excessive frontal corti-
cal activity (2–5). More recently, contributing models have been 
extended to include cerebellar circuits using functional magnetic 
resonance imaging (6) and animal models (7). The specific timing 
with a tic-preceding time interval in the cerebellum and primary 
motor cortex suggests that both structures function as origins 
of tic movement release. Furthermore, the match in latency of 
cerebellar and primary motor cortex discharges proposes that tic 
expression can be considered to represent a “global network dys-
rhythmia.” By contrast, local field potential discharges have been 
recorded in the BG outside tic expression (7). Such difference 
of involvement in tic production suggests that different nodes 
function in distinct ways and at varying time points, implying 
tic-generating networks encompass multiple and distributed 
areas in neural circuits.

Can both, clinical observation with potential underlying con-
tribution of these various, mentioned nodes to circuit involve-
ment exemplifies be considered in combination? The apparent 
and observable lack of movement extinction (i.e., in the case of 
tics: the erasure or inhibition of the undesired movement pat-
terns) could be a faulty pattern in negative reinforcement medi-
ated by aberrant BG processes. Yet, it could be speculated that 
the early manifestation of tics is mediated via cerebellar learning 
abnormalities, such as the deficient, early correction of error 
signals and cerebellar eye blink, conditioning type of learning. 
By contrast, the BG are crucial for the persistence or retention 
of these same aberrant movements that are impeded from full 
erasure due to deviant punishment and reinforcement learning. 
Moreover, the role of the cerebellum and its interaction with ante-
rior nodes, including the amygdala, hippocampus, and prefrontal 
cortex for extinction of learned movements, but also emotion, 
fear, and cognitive patterns, has to be taken into consideration. 
The involvement of different nodes in distinct characteristics of 
the manifesting symptoms points to the importance and need of 
considering inter-individual differences in patient tic repertoire 
or behavioral problems, as such dissimilarities in manifestations 
among patients could point to variations in nodal participation. 
Looking at the individual development of tics over time and based 
on the knowledge we have on learning mechanisms, it becomes 
plausible that the source of such varied and diverse symptomatol-
ogy as that present in GTS patients can not be solely attributed to 
one structure, rather, should be tied to the involvement of wider 
neural circuit involvement.

How do these patterns, however, persist long enough to be 
integrated into motor tic repertoire? The nature of certain tics 
hints at a more diffuse and interconnected network involved in 
more complex repertoires of tics. These inquiries point to the 
multidimensional system that is contributing to symptom mani-
festation. A multidimensional view allows for the consideration 
that early manifestation of tics is mediated via other nodes, for 
example, the cerebellum, with cerebellar learning abnormalities 
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manifesting as deficient, early correction of error signals and clas-
sical conditioning type of learning, while the BG are crucial for 
the persistence or retention of aberrant movements that cannot 
be extinguished because of deviant punishment and reinforce-
ment learning.

Parsing out of specific symptom characteristics and their 
corresponding possible origin allows for a more precisely guided 
contribution to analyzing nodal participation and circuit level 
involvement. Such dissection is crucial when considering the 
application of stimulation, especially in the often comorbid 
nature of GTS and associated symptoms. This reflection raises 
two questions: (i) How would stimulating one component of the 
circuit imply network level effects in remote areas? and (ii) In 
what way can effects on aberrant motor behavior be extrapolated? 
One approach to answering such questions could be to shift the 
focus of stimulation from specific brain targets to stimulation of 
particular brain networks.

invASive AnD nOn-invASive 
neUROSTiMULATiOn FOR GTS 
TReATMenT

Neurostimulation for GTS has thus far been applied without 
much mechanistic rationale with regard to the underlying 
neurophysiology mentioned, the specific contribution of nodes 
and time points in a neural network, nor has the knowledge gap 
between neurophysiological effects and behavioral effect—if 
present—been bridged. The following gives a short overview of 
the approaches that have been used to ameliorate symptoms. 
This overview provides insight into the fact that stimulation thus 
far has been target driven stimulation not fully rooted in clear 
physiological rationale. This serves as a basis for understanding 
the perspective of symptom-guided targeted neurostimulation 
explained in previous sections.

Discrete stimulation of anatomical structures to improve aber-
rant movements has been examined in a wide array of disorders 
yet, a personalized consideration of the role these areas play 
as participating nodes in wider neural circuits, and how these 
circuits come to manifest certain symptoms over others, has 
not been explicitly attempted nor analyzed in GTS. If clinical 
benefits outweigh the possible lack of response to stimulation or 
side effects, this could be considered acceptable, but not having a 
deeper understanding of underlying mechanism delays progress 
in development of efficient treatment and leads to dead ends. 
A tighter analysis of the connection between specific symptom 
manifestation and nodal structures that could be stimulated 
for symptom improvement, therefore, could be more fully 
explored to ground results in physiology and not just in potential 
epiphenomena.

Relevance of a discussion of DBS or other neurostimulation 
for movement disorders other than GTS becomes clearer when 
considering parallels in regards to certain symptomatology. For 
example, dystonic muscle contractions cause abnormal posturing 
of limbs, as can occur in certain GTS motor tics. Additionally, 
dystonic symptoms can resemble GTS tics in their repetitive and 
involuntary nature. Certain GTS patients also manifest dystonic 

tics, with movements that are relatively slow and temporarily 
persistent actions, such as twisting, pulling, or squeezing move-
ments, resembling movements in dystonia patients. Patients 
exhibiting typical (i.e., clonic) tics have been found to manifest 
dystonic tics, a common motor manifestation present in 57% of 
the cohort studied (8). Potentially, this points to similarities in 
their contributing physiological cause and motivates approaches 
to studying the application of respective neurostimulation tech-
niques to GTS patients.

In the case of invasive stimulation specifically for GTS, treat-
ment has been applied for severe cases of the disorder. DBS of vari-
ous thalamic nuclei, the centromedian–parafascicular (CM–pf) 
and the internal portion of the ventralis oralis anterior, has been 
used to treat refractory GTS patients (9). Additionally, there have 
been further tic reduction surgeries for refractory GTS patients 
following DBS to the anteromedial and postero-ventrolateral 
portions of the internal globus pallidus, the anterior limb of the 
internal capsule, subthalamic nucleus, and nucleus accumbens 
[for an overview, see also Ref. (10) and more recently (11)].

Although such stimulation results indicate the presence of 
participating anatomical centers in the manifestation of aberrant 
movement, there appears to be a lacking amount of analysis in 
terms of the role these various structures have on the produc-
tion of such erroneous movement, one of the missing factors 
previously mentioned as necessary for providing neurophysi-
ological backing for stimulating one anatomical component over 
the other. This lack of bridging between symptomatology and 
physiological activity indicates that there should be a growing 
consideration for the stimulation of different, discrete structures 
for various movement disorders depending on (a) the symptom 
being targeted and (b) the known, or hypothesized, physiology 
of nodes of participation in wider neurocircuits underlying such 
aberrations.

The aforementioned consideration of DBS application in dis-
orders other than GTS sustains relevance when considering simi-
larities. DBS applied to the ventral intermediate nucleus (Vim) of 
the thalamus has more or less replaced the use of thalamotomy 
to treat essential tremor (12). In dystonia, the application of DBS 
to subcortical structures has been used (13). DBS has also been 
applied to the ventral anterior internal capsule and subgenual cin-
gulate white matter to treat medically intractable forms of certain 
neuropsychiatric disorders, such as obsessive–compulsive disor-
der and depression (14). The amygdala has also been proposed 
as a participating mediator of various neuropsychiatric disorders 
including anxiety and depression (15). In terms of its role in GTS 
symptomatology, projections from the superficial nuclei of the 
amygdala have been considered as important for tic suppression 
due to the nuclei’s interactions with the frontal cortex (16). Such 
a neuromodulatory role in tic suppression would implicate the 
amygdala as another node in the participating circuitry for GTS.

Apart from invasive techniques such as DBS, other physiologi-
cally grounded and non-invasive approaches have permitted a 
relation between symptom manifestation and underlying neural 
circuits. Abnormal excitability related to symptom manifestation 
has been linked to aberrations in plasticity-induced learning 
using transcranial magnetic stimulation (TMS) (1). The electro-
magnetic stimulation techniques offer both measurement and 
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potential for modulation of neurophysiology using minimal risk 
and high tolerability methodology. The use of such non-invasive 
stimulation techniques has been used to activate Purkinje cell 
circuits of the cerebellar cortex, potentially inducing inhibition 
of the disynaptic, dentate–thalamocortical facilitatory connec-
tion and production of inhibition of the primary motor cortex 
(M1) (17–19).

Additionally, other stimulation studies have quantified activity 
of specific structures, such as the cerebellum, involved in aberrant 
neural circuits and correlated this activity with the severity of 
specific symptoms, such as motor tics. Such assessment permits 
relevant circuit activity to be monitored, facilitating targeted 
application for potential neuromodulation. Specific paradigms 
have been developed to monitor and quantify structural activity 
non-invasively. For example, the use of TMS for cerebellar con-
ditioning in healthy subjects, when implemented 5–7 ms prior to 
the test stimulus, results in inhibition of motor-evoked potentials 
(20, 21), a decrease in amplitude referred to as cerebellar brain 
inhibition (CBI). This type of inhibition is mediated through 
pathways between the cerebellum and M1.

The CBI protocol is an example of a non-invasive neurostimu-
lation paradigm that allows quantification of structural (cerebel-
lar) activity. The amount of activity assessed by the CBI paradigm 
might be correlated with tic severity, potentially demonstrating 
that more selective modulation of certain aberrant pathways can 
be achieved.

Studies have shown that the application of 1-Hz, low-fre-
quency repetitive TMS (rTMS) over the supplementary motor 
area (SMA) of the cortex in children with GTS led to amelioration 
of motor tics, with tic symptoms improving over the 12 weeks 
of the study duration (22). Such improvement is attributed to 
normalization of bihemispheric hyperexcitability (23). Clinical 
applications are supported by TMS studies demonstrating that 
decreased motor inhibition is present in GTS patients, who 
show physiological differences from non-GTS patients, with 
a shorter cortical silent period when using cortical inhibition 
TMS paradigms (24). Additionally, the use of short interval 
short intracortical inhibition TMS paradigms on children with 
GTS shows that cortical inhibition is inversely associated with 
severity of motor tics (25).

Additionally, low-frequency (1  Hz) rTMS has also been 
applied to normalize overactive motor cortical regions (specifi-
cally, the SMA) (26) and improve GTS symptoms. This is based 
on imaging studies showing that metabolism is increased in 
premotor, prefrontal, and motor cortex during tic suppression 
and tics, indicating increased activity in these regions which 
implicates that hyperexcitability is tied to tic manifestation (27–
29). Yet, it has been shown that higher intensities of stimulation 
(100% of resting motor threshold) administered over more than 
2 days has a more significant, long-lasting, and beneficial effect 
on tics (30) than that of lower frequencies (31). Subjects with 
GTS who were treated with this TMS paradigm showed clinical 
improvement during the first week of rTMS and continued to 
improve during the second week of treatment. This improvement 
in symptoms was correlated with a significant increase in resting 
motor threshold, which remained stable 3 months following the 
study. Clinical improvement is attributed to normalization of 

the right hemisphere hyperexcitability present in these patients, 
potentially indicating a restoration of hemispheric symmetry 
(30).

However, the use of TMS for clinical application remains 
limited, in part due to the rather narrow interpretation of how 
these techniques can be best applied. Current problems with 
stimulation can perhaps be considered to be rooted in the 
bottom-up approach to its application rather than the top-down 
proposal previously mentioned: that is, observing clinical mani-
festation of behavior in order to propose underlying circuits 
that have structures accessible for specific neurostimulation 
paradigms designed to modulate particular aberrant firing. 
The benefit of such a proposal is that it allows consideration of 
individual symptoms as guides to the physiology involved in 
their production.

The application of non-invasive neurostimulation techniques 
for premeditated, symptom-guided application correlated with 
known or proposed circuit level participation in aberrant physiol-
ogy has not been clearly described as the prime motivation behind 
structure targeting or specific clinical improvements. As a result, 
although there are improvements in certain symptoms resulting 
from the application of neurostimulation to various anatomical 
components participating in the underlying circuits of aberrant 
movements, it must be noted that without a clearer, symptom-
guided application of neurostimulation to participating circuit 
nodes, such modulation of symptoms to specific paradigms or 
parameters applied cannot decisively be attributed to the result-
ing changes.

Gilles de la Tourette syndrome patients have been treated with 
DBS since 1999, and approximately 48 published studies report 
some degree of motor tic reduction (32). While initial trials have 
been promising, the mechanisms subserving the effectiveness 
of DBS in reducing GTS signs and symptoms have yet to be 
identified. A condensed list of invasive stimulation is provided 
in Table 1.

Current models of GTS hypothesize that thalamocorti-
cal–BG dysfunction is a key network underlying many of its 
symptoms. A recent study provided evidence that different 
types of tics, for example, are paralleled by different types of 
electrophysiological signatures (47): studied patients with GTS 
implanted with bilateral DBS electrodes with depth leads in the 
CM–pF as well as subdural strips over the precentral gyrus. 
Low-frequency (1–10 Hz) CM–pf activity was observed during 
tics, as well as modulations in beta rhythms over the motor 
cortex. The division of tics in the study (three categories: long 
complex, complex, and simple) showed that long complex tics, 
tics involving multiple body regions and lasting longer than 5 s 
were synchronized with detectable thalamocortical signatures. 
Such symptom-categorized monitoring of neural activity in 
circuitry implicated in GTS physiology highlights the need for 
more discrete and motivated application of neuromodulation 
and monitoring, so as to provide firmly guided evidence for 
prioritizing stimulation and ideally predicting potential out-
comes. Acute trials of closed loop stimulation using the human 
tic detector are currently underway. Such results further indicate 
that there is neurophysiological evidence for divergent symptom 
signatures rooted in particular network-firing aberrancies.  
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TABLe 1 | examples of invasive Stimulation in GTS. The table provides a condensed overview of invasive stimulation approaches presented in this 
article, as well as additional studies of interest, that have been used thus far to ameliorate or investigate symptoms in GTS.

Reference n Target Outcome

Visser-Vandewalle et al. (33) 3 Thalamus: centromedian nucleus, substantia 
periventricularis, and nucleus ventro-oralis 
internus

Tic reduction ranging from 72.2 to 90.1% reduction at long-term follow-up, 
although specific tic persistence was reported for the 3 patients

Maciunas et al. (34) 5 Thalamus: centromedian–parafascicular (CM–
Pf) and ventralis oral complex (Voi)

3 out of 5 patients’ improvement in [Yale Global Tic Severity Scale (YGTSS) and TS 
Symptom List scores]. 2 patients did not improve after 3-month follow-up

Servello et al. (35) 18 Thalamus: bilateral CM–Pf and Voi 6 patients showed progressive improvement in tic severity, and 12 showed 
recurrent motor and phonic tics after stimulation, with 3 showing waxing and 
waning of symptoms

Welter et al. (36) 3 Thalamus: bilateral CM–Pf GPi: ventromedial 
locations

YGTSS showed that GPi stimulation reduced tic severity to 65, 96, and 74%, 
respectively. Bilateral stimulation of the CM–Pf produced a 64, 30, and 40%, 
respectively, reduction in tic severity. In patient 2, the improvement decreased after 
2 months

Porta et al. (37) 15 Thalamus: bilateral CM–Pf and Voi 15 out of 18 patients improved in tic severity and behavioral ratings (including 
anxiety and depression)
Data not available for 3 patients

Kwon et al. (23) Transcranial magnetic stimulation (TMS). 
Supplementary motor area (SMA) of the cortex

Normalization of the right hemisphere hyperexcitability leading to clinical 
improvement

Martínez-Fernández et al. (38) 5 GPi: 2 patients in the bilateral posterolateral 
location, 2 patients in the bilateral anteromedial 
location, 1 initially in the posterolateral was 
switched to the anteromedial location after 
18 months

2 patients with stimulation the bilateral posterolateral location: 1 patient showed 
a 54.7% reduction in motor tics and the second patient only showed a plateau in 
motor and phonic tics but still interfered with lifestyle according to YGTSS
2 patients in stimulation in bilateral anteromedial location: 1 patient showed a 60% 
reduction in motor tics. Motor and phonic tics resolved for the second patient
1 patient with anteromedial location switch after 18 months: only a 19% reduction 
for motor tics in the YGTSS

Cannon et al. (39) 11 GPi: bilateral anteromedial globus pallidus 
internus

10 patients (91%) showed improvement in tic severity, with a 48% reduction in 
motor tics and a 56.5% reduction in phonic tics. 6 patients (54.5%) had more 
than 50% reduction; sustained for at least 3 months in YGSS. 2 patients required 
pharmacotherapy for tics after surgery. 1 patient was a non-responder

Maling et al. (40) 5 Thalamus: bilateral CM–Pf and Voi 3 out of 5 patients showed significant YGTSS decrease. The remaining 2 showed 
only a small clinical improvement corresponding to small changes in gamma 
power

Porta et al. (41) 18 Thalamus: bilateral CM–Pf and Voi Reduction in tic severity, as well as improvements in the comorbid obsessive–
compulsive behaviors (OCB), and co-existing psychopathologies (anxiety and 
depressive symptomatology). However, only 7 out of 15 patients did the overall 
global assessment of improvement indicate improvement

Huys et al. (42) 8 Thalamus: bilateral for 6 patients; ventral 
anterior and ventrolateral motor areas

YGTSS showed a 51% reduction in motor tics and a 53% in vocal tics, with a total 
of 58% reduction score compared to baseline

Dehning et al. (43) 6 GPi: bilateral postero-ventrolateral location 2 patients did not respond to stimulation, and the mean YGTSS score for 
the remaining 4 patients was 29.5 at the last follow-up, with a mean Tourette 
Syndrome Quality-of-Life Scale (TSQOL) of 7.75

Zhang et al. (44) 13 GPi: bilateral posterolateral location YGTSS scores at the last visit compared with baseline were reduced in all 13 
patients by a mean of 52.1%. 12 of the 13 showed a mean TSQOL of 45.7%, 
with 1 patient denying improvement. Only 6 patients reported a significantly high 
response with overall marked reduction in all tic types

Bloch and Levkovitz (45) 12 TMS. Bilateral SMA inhibition Improvement in clinical symptoms in children with GTS for at least 6 months

Kefalopoulou et al. (46) 15 GPi: bilateral anteromedial location Mild improvement in YGTSS, with 80.7 for the off-stimulation period, and 68.3 for 
the on-stimulation period form a baseline of 87.9. No significant improvement in 
mean quality-of-life scores (GTS-QOL)

The table provides a condensed overview of invasive stimulation approaches presented in this article, as well as additional studies of interest, that have been used thus far to 
ameliorate or investigate symptoms in GTS. Beyond the demonstration of DBS as a therapeutic option, the number of insufficient responders is shown.
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A recent study by the same group also modified the stimulation 
patterns to intermittent stimulation of the thalamus and despite 
reached responder status in the majority of the small patient 

group (48). A recent review discusses the relevance of different 
anatomical structures and modes of stimulation, closed loop, 
open loop, etc. (49).
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THeRAPeUTiC APPLiCATiOn OF 
neUROSTiMULATiOn TeCHniQUeS 
BASeD On PLASTiCiTY-inDUCeD 
LeARninG

The relevance of such physiological considerations versus epi-
phenomena of therapeutic neurostimulation can be illustrated 
by reflecting on the possible symptom improvement outcomes 
of such a circuit-based model of application, i.e., demonstration 
of causality relationships of stimulation, effects on physiology 
(perhaps using non-invasive stimulation), and ultimately effects 
on behavior.

Considering differences in learning specialization, one can 
propose that targeting particular nodes based on their involve-
ment in specific tic repertoire might be a more efficient manner 
of using currently available neurostimulation techniques. The 
cerebellum is important during early phases of abnormal motor 
learning based on faulty encoding of errors. BG might point to 
a more context dependent role in the reinforcement of tics, such 
as reward-based reinforcement (50). As a result, abnormal rein-
forcement may facilitate repetitive behaviors and may be involved 
in higher cognitive symptoms of GTS.

Additionally, it is also crucial to consider neural mechanisms 
that occur offline, more specifically, a consideration of the process 
of forgetting such retained movements (tics). When contemplat-
ing the effects on symptomatology related to such potential 
decrease in “forgetting mechanisms” (51), aberrancies in this type 
of synaptic modulation could be proposed to manifest, or at least 
retain, the erroneous reinforcement of aberrant movements (tics) 
in these patients.

Therefore, when contemplating the therapeutic applica-
tion of neurostimulation for GTS symptomology, it is worth 
considering that plasticity-induced learning is faulty in GTS 
in more than one way and might originate symptoms that 
require stimulation of particular nodes over others. There 
is no simple extrapolation possible to predict an outcome 
on behavior with current strategies. The analysis to the 
use and application of neurostimulation requires an inter-
disciplinary approach to patient symptoms, one in which 
there is a bridging between clinical eye and investigative 

complex methods of studying effects on neurophysiology and  
behavior.

COnCLUSiOn

The parameters for therapeutic use of neurostimulation in neu-
ropsychiatric disorders, as well as the reliability of stimulating 
certain nodes over other regions for specific symptoms, have yet 
to be established. Regardless of these present uncertainties of the 
benefits of neurostimulation techniques for neuropsychiatric 
disorders and the exact role of certain structures in GTS symp-
tomatology, it is apparent that promising therapeutic alternatives 
for patients can be developed by considering the application of 
brain stimulation to neural circuits. However, such application 
is dependent on finding its use on the modulation of plasticity 
mechanisms and alteration of learning at a circuit level. Although 
the benefits of applying neurostimulation techniques as therapy 
remain to be precisely defined, it is evident that utilizing non-
pharmacological neuromodulation techniques is a consideration 
worth making.
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