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ABSTRACT

T-cell receptors (TCRs) and B-cell receptors (BCRs)
are critical in recognizing antigens and activating the
adaptive immune response. Stochastic V(D)J recom-
bination generates massive TCR/BCR repertoire di-
versity. Single-cell immune profiling with transcrip-
tome analysis allows the high-throughput study of
individual TCR/BCR clonotypes and functions under
both normal and pathological settings. However, a
comprehensive database linking these data is not yet
readily available. Here, we present the human Anti-
gen Receptor database (huARdb), a large-scale hu-
man single-cell immune profiling database that con-
tains 444 794 high confidence T or B cells (hcT/B
cells) with full-length TCR/BCR sequence and tran-
scriptomes from 215 datasets. All datasets were pro-
cessed in a uniform workflow, including sequence
alignment, cell subtype prediction, unsupervised cell
clustering, and clonotype definition. We also devel-
oped a multi-functional and user-friendly web in-
terface that provides interactive visualization mod-
ules for biologists to analyze the transcriptome and
TCR/BCR features at the single-cell level. HuARdb

is freely available at https://huarc.net/database with
functions for data querying, browsing, downloading,
and depositing. In conclusion, huARdb is a compre-
hensive and multi-perspective atlas for human anti-
gen receptors.

INTRODUCTION

The human adaptive immune system is a branch of the im-
mune system that is responsible for specific antigen recog-
nition and clearance (1). Through interacting with spe-
cific antigens, the adaptive immune system is activated
and can store long-term immunological memories for tar-
geted antigens (2). Long-term immunological memory with
high antigen-specificity can therefore generate a more ro-
bust response during subsequent exposure to the antigens
(2). Adaptive immune response activation requires antigen
recognition by receptors expressed on T or B cells, known
as T cell receptors (TCRs) or B cell receptors (BCRs), re-
spectively (3).

TCRs are composed of paired � and � peptide chains
and BCRs are composed of heavy and light chains, with
each chain consisting of a variable region (V region) and
constant region (C region) (3,4). The V region of each
TCR/BCR peptide chain is encoded by the stochastic
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recombination of the variable (V) gene, diversity (D)
gene, and joining (J) gene (5). During T or B cell devel-
opment, V(D)J gene recombination produces unique
complementarity-determining regions (CDRs) for
TCRs/BCRs on each T or B cell, which endows their
specificity (6,7). The V regions of each TCR/BCR peptide
chain incorporate CDR1, CDR2 and CDR3, with CDR3
playing the predominant role in antigen recognition (8–11).
Diverse V(D)J gene recombination, junctional diversity,
and chain combination together have been estimated to
generate up to 1020 possible different TCRs and BCRs,
allowing the adaptive immune system to recognize almost
an infinite number of antigens (12,13). Characterization of
TCRs/BCRs is critical for biologists to better understand
how the adaptive immune system exerts its effector function
in a pathogen- or antigen-specific manner (14).

Bulk TCR/BCR sequencing has been used for years
to investigate clonally expanded T/B cells during normal
or pathogenic immunological responses (15–17). However,
bulk TCR/BCR sequencing does not provide necessary in-
formation for receptor pairing, which is essential to re-
construct functional TCRs/BCRs for experimental valida-
tion. The recent development of single-cell immune pro-
filing techniques allows the detection of paired full-length
TCR/BCR sequences simultaneously with genome-wide
transcriptomes at the single-cell level. The revolutionary ad-
vance in immune receptor profiling provides a unique op-
portunity for immunologists to study the functional rele-
vance of clonally expanded T/B cells under different set-
tings. With single-cell immune profiling techniques, tumor-
specific TCRs can be identified from individual patients
to guide the development of TCR-T-therapy for eradicat-
ing tumors with high specificity and few side effects (18).
Single-cell immune profiling performed in ulcerative coli-
tis (UC) patients revealed the clonal evolution of T cells
in UC pathogenesis (19). These studies demonstrated that
single-cell immune profiling provides new insights into dis-
ease pathogenesis and may shed light on targeted therapy
of immune-related diseases. These large depositions of pub-
licly available single-cell immune profiling data call for their
in-depth analysis to yield new findings on their immunolog-
ical significance. Such analysis would be aided by a publicly
available single-cell immune profiling database.

Here, we present the human Antigen Receptor database
(huARdb), a single-cell immune profiling database with a
multi-functional and user-friendly web interface. HuARdb
has collected 215 single-cell immune profiling datasets from
fourteen projects and features over 440 000 high confi-
dence T or B cells (hcT/B cells) containing over 880 000
paired TCR/BCR chains. The interactive web interface of
huARdb allows the coupled clonotype-transcriptome anal-
ysis of collected datasets to functionally characterize the
clonally expanded T or B cells.

MATERIALS AND METHODS

Data retrieval and pre-processing

Fourteen human single-cell immune profiling datasets were
collected from various publications and resources includ-
ing Gene Expression Omnibus (GEO) database, Sequence
Read Archive (SRA) database, and Genome Sequence

Archive (20–22) (Supplementary Table S1). Pre-processing
for coupled single-cell (sc) RNA-seq and scV(D)J-seq data
were performed using Cell Ranger (v6.1.0) with default pa-
rameters except for sample C30 R from Boland et al. which
was processed using Cell Ranger (v4.0.0) (Figure 1) (23).
Briefly, mkgtf function was used to retain the protein-coding
sequence (23). Reference index based on human genome as-
sembly GRCh38 (hg38, http://ensembl.org/Homo sapiens/)
was built via mkref and mkvdjref functions (23). Raw data
in FASTQ format for scRNA-seq were then processed by
the count function to generate a unique molecular identifier
(UMI) count matrix for protein-coding genes (23). Mean-
while, raw data in FASTQ format for scV(D)J-seq were pro-
cessed by the vdj function to produce V, (D), J, C gene usage,
CDR3 sequences, and UMI counts of TCR/BCR chains
(23).

Quality control and cell filtering based on transcriptome in-
formation

For each sample, gene expression matrix containing UMI
counts was loaded in R (v4.0.4) with Seurat (v4.0.2) R-
package (24). Cells with unique feature counts <200 or
with >20% mitochondrial features were filtered. Potential
doublets produced in the library construction step was fil-
tered out with DoubletFinder (v2.0.3) R-package, since it
was scored with the highest usability in the computational
doublet-detection methods benchmarking study (25,26). In
brief, DoubletFinder R-package defining doublet based on
transcriptome similarity between test cell and the simulated
artificial doublet.

Cell subtype prediction and clustering

Cell subtype prediction. After doublet filtering, original
gene expression matrix was transformed into Single Cell
Experiment (SCE) Objects by Seurat (v4.0.2) R-package
(24). UMI counts were log-normalized with the LogNorm-
Counts function within scater (v1.18.6) R-package (27). Cell
subtype prediction was performed with SingleR (v1.4.1) R-
package using previously published human T or B cell ref-
erence datasets (Figure 1) (28). Predicted effector memory
CD8+ T cells, central memory CD8+ T cells, terminal ef-
fector CD8+ T cells and naı̈ve CD8+ T cells was classi-
fied as ‘unpredicted’ cells if they expressed CD4. Predicted
helper T cells (Th cells) and follicular helper T cells were
classified as ‘unpredicted’ cells if they expressed CD8A.
Data from Corridoni et al. were generated from FACS
(Fluorescence-activated cell sorting) sorted CD8+ T cells,
cell subtype prediction were limited to effector memory
CD8+ T cell, central memory CD8+ T cell, terminal effec-
tor CD8+ T cell, naı̈ve CD8+ T cell, and MAIT (mucosal-
associated invariant T) cell subtypes. Top 10 marker genes
for each predicted cell subtype were defined and visual-
ized with pl.rank genes groups matrixplot function within
Scanpy Python-package (v1.6.1) (29).

Unsupervised cell clustering. To perform unsupervised
cell clustering analysis, the gene expression matrix con-
taining UMI counts was loaded into Python3 (v3.8.7)
with Scanpy Python-package (v1.7.2) (29). The UMI

http://ensembl.org/Homo_sapiens/
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Data Collection
Data summary

    ▫ 24 tissues / 12 diseases
    ▫ 215 single-cell immune profiling datasets 
    ▫ 444,794 hcT/B cells (with paired TCR/BCR chains)
    ▫ 287,060 hcT/B cell clonotypes
    ▫ 2,068.8 (mean), 1,756.0 (median) hcT/B cells per dataset
    ▫ 44.4 (mean), 14.0 (median) hcT/B cells per displayed clonotype
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      / unsupervised clusters

    ▫ Circos plot for V-gene usage

    ▫ Transcriptome similarity of predicted cell subtypes 

    ▫ Differentially expressed genes between clonotypes

Figure 1. Overview of huARdb workflow and modules. All single-cell immune profiling datasets were retrieved from public databases (SRA, GEO, and
GSA). All datasets were uniformly processed with our workflow. All processed data were stored in PostgreSQL database and HDF5 files, using sample
ID as primary keys. For the web user interface, various interactive visualization and data analysis modules were provided for analyzing transcriptome and
clonotype features.

counts were normalized to counts per million (CPM)
with scanpy.pp.normalize total function, followed by log-
transformation and PCA (principal component analysis)
using scanpy.pp.log1p and scanpy.tl.pca functions (29). The
neighborhood graph was calculated based on the PCA re-
sults (scanpy.pp.neighbors function) and the Leiden algo-
rithm was used to perform unsupervised cell clustering
(scanpy.tl.leiden) (29,30). T-Distributed Stochastic Neigh-
bor Embedding (tSNE) was used for the data visualization
of predicted cell subtypes and unsupervised cell clustering.

Top 10 marker genes for cell clusters were defined and visu-
alized with pl.rank genes groups matrixplot function within
Scanpy Python-package (v1.6.1) (29).

Characterization of high confidence T or B cells (hcT/B cells)

The V(D)J gene annotation and CDR3 sequences of each
TCR/BCR were loaded in Python3 (v3.8.7) with Scirpy
(v0.7.0) Python-package (31). To define high confidence T
or B cells (hcT/B cells), we implemented a stringent two-
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step quality control strategy. In the first step, only cells with
both transcriptome and TCR/BCR information were re-
tained for downstream analysis. Next, only cells with paired
light/heavy chains (BCR) or �/� chains (TCR) were con-
sidered as valid T or B cells in our database. Cells with ex-
tra, orphan, or unpaired (two chains with the same type)
TCR/BCR chains were filtered out. In the end, all the
single-cell immune profiling data displayed in our database
contained transcriptome information and strictly paired
TCR/BCR chains for each cell. Datasets with less than 30
cells were excluded from our database. With this stringent
filtering strategy, 753 385 out of 1 198 179 cells were dis-
carded and 444 794 hcT/B cells were displayed in huARdb.

Clonotype identification

The clonotype of hcT/B cells in our database was defined
via the pp.ir dist and tl.define clonotypes functions within
Scirpy (v0.7.0) Python-package (Figure 1) (31). Briefly, the
nucleotide sequences of CDR3 were used to define clono-
types. Only cells with the same CDR3 nucleotide sequences
in both VJ and VDJ chains (e.g. the same CDR3 on both
light and heavy BCR chains, or both � and � TCR chains)
were characterized as an identical clonotype.

Data analysis functions

To analyze transcriptome similarity for predicted cell sub-
types in top 10 expanded-clonotypes, pairwise Pearson cor-
relation coefficient for the average gene expressions for cells
within a predicted cell subtype for certain clonotypes were
calculated Pandas (v1.2.3) and Numpy (v1.19.5) Python-
package (32). The pairwise Pearson correlation coefficient
can be visualized in a heatmap on the webpage.

To identify pairwise differentially expressed genes (DEG)
for top 10 expanded-clonotypes, gene expression fold
change was first calculated based on the average CPM
over certain clonotype using Pandas (v1.2.3) and Numpy
(v1.19.5) Python-package (32). P-value were calculated us-
ing Student’s t-test followed by FDR (False Discovery
Rate) multiple testing correction using Scipy (v1.7.0) and
Statsmodels (v0.10.1) Python-package (33). The DEG of
any two expanded-clonotypes can be visualized in a volcano
plot on the webpage.

To analyze the V gene usage for all hcT/B cells in a sam-
ple, V genes usage frequency on � (or light) chains and �
(or heavy) chains were calculated and the V gene pairing
information was stored. The top 60%, 80%, 90% ranking
percentile for the most used V genes can be visualized in a
Circos plot on the webpage.

Web implementation for the database

We developed the huARdb, a multi-functional and user-
friendly database with advanced interactivity and visual-
ization to present our uniformly analyzed single-cell im-
mune profiling datasets. The front-end interface was devel-
oped with HTML5 and CSS3 languages, and all data vi-
sualizations were developed through Javascript using D3.js
framework (34). The back-end data containing cell, clono-
type, and metadata information were maintained and could

be queried through the PostgreSQL database manage-
ment system (v2.6.0) (Figure 1 and Supplementary Fig-
ure S1). Python3 (v3.7.9) and Javascript were used to com-
municate between the back-end and the front-end. The
huARdb database is deployed with an Nginx web server
(v1.14.1) on a Linux CentOS (v8.3.2011) cloud server sys-
tem and is freely available at https://huarc.net/database
without any registration or login. All features of huARdb
were thoroughly tested on Google Chrome and Apple Sa-
fari browsers and were also accessible and legible on phone
and tablet screens.

RESULTS

Data summary

Currently, our database contains cells from 24 tissue types
and 12 diseases (Figure 1). We collected 231 coupled
scRNA-seq and scV(D)J-seq datasets. After quality control
and data filtering (see Methods), 215 datasets consisting of
444 794 hcT/B cells with paired TCR/BCR chains were
retained. On average, 2 069 hcT/B cells and 13 493 genes
were captured in each dataset (Figure 1 and Supplementary
Figure S2A, B). In total, we characterized 287 060 hcT/B
cell clonotypes with 1 335 clonotypes on average in each
dataset (Figure 1 and Supplementary Figure S2C). To dis-
cover clonotypes with potential biological significance, we
displayed the top 10 expanded-clonotypes for each dataset
in huARdb. On average, we obtained 44 hcT/B cells per
expanded-clonotype (Figure 1 and Supplementary Figure
S2D).

With cell subtype prediction (see Methods), we classi-
fied 402 557 hcT cells (90.5%) and 42 237 hcB cells (9.5%)
in huARdb (Supplementary Figure S2E). T cells were fur-
ther classified into 13 different subtypes including effector
memory CD8+ T cells, Th1/Th17 cells, T regulatory cells,
etc., while B cells were further classified into naı̈ve B cells,
exhausted B cells, non-switched memory B cells, switched
memory B cells, and plasmablasts (Supplementary Figure
S2F, G). For the top 10 expanded-clonotypes, we observed
the enrichment of plasmablasts and effector memory T cells
(Supplementary Figure S2H-J).

Since the CDR3 amino acid sequences play critical roles
in antigen receptor recognition, we also analyzed the amino
acid length and usage for CDR3 on both VJ chains (� and
light chains) and VDJ chains (� and heavy chains). For hcT
cells, the CDR3 amino acid length peaked around 13 for
� chains and around 15 for � chains (Supplementary Fig-
ure S3A, B). For hcB cells, the CDR3 amino acid length
peaked around 11 for light chains and around 16 for heavy
chains (Supplementary Figure S3C, D). We observed an
enriched usage for Glycine (G), Alanine (A), Phenylala-
nine (F), leucine (L) and Serine (S) for TCR CDR3 amino
acid usage in both � and � chains (Supplementary Figure
S3E, F). For BCR CDR3 usage, Glutamine (Q), Threonine
(T), and S had higher usage rates in the light chain, while
Tyrosine (Y), G, and Aspartate (D) were enriched in the
heavy chain (Supplementary Figure S3G, H). In summary,
huARdb collected amounts of single-cell immune profiling
datasets and formed the human antigen receptor map with
diverse features.

https://huarc.net/database
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Utility of huARdb

All samples included in huARdb illustrated coupled
transcriptome-clonotype information for each hcT/B cell.
For the transcriptome feature analysis, we provided users
predicted cell subtypes as well as unsupervised cell clus-
tering. Users may visualize the composition of predicted
cell subtypes as well as individual gene expression in each
cell. To uncover clonotypes with potential biological sig-
nificance, we displayed the top 10 expanded-clonotypes for
each dataset. The huARdb web interface also enables users
to explore clonotype-transcriptome modules interactively.
For example, a user may explore cell numbers, predicted
cell subtype composition, and individual gene expression
for certain clonotypes concurrently (Figure 1).

Home page. The home page displays the metadata in-
formation for datasets collected in huARdb. To provide a
better user experience, we generated a tutorial video for
huARdb (Figure 2 and Supplementary Video). Users may
query specific datasets performed in tissue types, diseases,
projects and specific samples. The detailed publication and
sample information will be displayed on the home page.
Uniform Resource Locator (URL) links to the raw data are
provided (Figure 2A). After users submit the query, detailed
analysis results of the dataset will be exhibited on a new
webpage. Users may submit no more than four samples to
enable cross-sample comparison function. A link to a de-
tailed tutorial on how to use the database is included on the
home page.

Transcriptome features of the dataset. In the transcrip-
tome module of huARdb, we provide cell subtype predic-
tion and unsupervised cell clustering analysis along with in-
teractive visualization of gene expression level at the single-
cell and cell subtype level. Figures used for demonstration
(Figures 2 and 3) were based on Luoma et al. published
datasets, which were the immune profile of colon CD3+ cells
in checkpoint inhibitor (CPI)-treated melanoma patients
with colitis (sample name: ‘CPIc C2’) (35).

Users may choose to visualize predicted cell subtypes, or
unsupervised cell clustering results via dropdown options
on top of the tSNE plot. In the mode of unsupervised clus-
tering, cells were clustered by the Leiden algorithm with
variable options for parameters controlling clustering res-
olution (30)(see Methods). In the mode of cell subtype pre-
diction, cell subtypes were calculated automatically based
on the transcriptome similarity compared to the reference
dataset (28,36) for hcT/B cells (see Methods). Users may se-
lect certain cell subtypes via the radio buttons on the top of
the webpage, and cells predicted as the selected subtype will
be spotlighted on the tSNE plot (Figure 2B). The predicted
cell subtype composition of the dataset will be displayed on
a bar plot, and the sample ‘CPIc C2’ revealed enriched ef-
fector memory CD8+ T cells in the colon (Figure 2C).

To visualize gene expression levels at the single-cell level,
a colored tSNE plot was employed (Figure 2D). Mean-
while, the gene expression level in each predicted cell sub-
type could also be analyzed via the violin plot, in which
the short red line represents the average expression level in
each predicted cell subtype and the grey dots represent the

gene expression level in each cell (Figure 2E). The expres-
sion level of the marker genes for the predicted cell subtypes
were visualized with heatmap on the webpage (Figure 2F).

To illustrate the use of the transcriptome module of
huARdb, we queried ‘Colon’ for tissue, ‘Ulcerative Coli-
tis (UC)’ for disease, ‘Daniele Corridoni et al.’ for paper,
and ‘S33’ for sample. This is a single-cell immune profil-
ing dataset of UC patient colon CD8+ T cell collected in
the huARdb database. Interleukin (IL)-26 expression was
elevated in inflammatory bowel disease (IBD) and UC, ac-
cording to Corridoni et al. and other investigations (19,37).
To confirm the previous findings, we queried ‘IL26’ in the
text input option on top of the tSNE plot to evaluate IL26
expression patterns across different predicted cell subtypes.
Our analysis indicated that IL26 was highly expressed in UC
patient T cells, particularly in predicted MAIT cells (Sup-
plementary Figure S4A). As a control, we queried IL26 ex-
pression in a healthy control dataset (Sample ‘S22’ from the
same study) and observed a low level of IL26 expression in
all cell subtypes (Supplementary Figure S4B). Furthermore,
IL17A expression was upregulated in the MAIT cells of UC
patients compared to healthy control (Supplementary Fig-
ure S4C, D) (19,38). Altogether, the transcriptome module
of huARdb displays cell subtype prediction, unsupervised
cell clustering and individual gene expression information
for each collected dataset.

Clonotype features of the dataset. We reasoned that the
top ten largest clonotypes in diseases likely exhibit biolog-
ical significance in disease settings. Thus, we allow users
to explore the features of the top ten largest clonotypes in
huARdb. For each dataset, we displayed the frequency of
the top 10 expanded-clonotypes with a network plot and
a bar plot (Figure 3A, C). At the same time, users may ex-
plore and download the paired full-length TCR/BCR infor-
mation including receptor type, V, D, J and C gene usage,
CDR3 sequences, pairing information for VJ (�/light) and
VDJ (�/heavy) chains in the top 10 expanded-clonotypes
(Figure 3B).

Interactive clonotype-transcriptome analysis. In the clono-
type module of huARdb, users can perform interactive
clonotype-transcriptome analysis at the single-cell level.

(i) predicted cell subtypes in each expanded-clonotype.

We allow users to analyze the composition of cell sub-
types in each expanded-clonotype in a network and bar
plot (Figure 3A, F). With this function, biologists may infer
the potential biological significance for certain expanded-
clonotypes.

(ii) gene expression level in each expanded-clonotype.

If users identified an expanded-clonotype of interest, by
clicking on specific bars in the clonotype frequency bar plot
(Figure 3C), users may explore and visualize the gene ex-
pression level and cell subtype information on the tSNE and
violin plot (Figure 3C–E). With this function, users may an-
alyze the expression level of a specific gene for certain cell
subtypes in a specifically expanded-clonotype.
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Figure 2. The transcriptome module of huARdb. (A) Screenshot for the huARdb home page. Users can select samples from various tissues, diseases and
papers. (B) The tSNE visualization module for predicted cell subtype. Users can select a cell subtype on the side menu and obtain a zoomed-in view. (C)
The bar plot shows the number of predicted cell subtype in the dataset. (D, E) The gene expression modules. The web interface provides a feature plot
(D) and violin plot (E) for visualizing individual gene expression level. The red bar in the violin plot represents the average expression level for certain
predicted cell subtype. IFNG and PDCD1 were used as example genes for gene expression modules. (F) Heatmap of marker genes for predicted cell types.
The average expression values are normalized between 0 to 1. Sample ‘CPIc C2’ from Luoma et al. was used as examples in this figure (35). All panels
were exported and downloaded from the web interface.
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Figure 3. The clonotype module of huARdb. (A) The web interface provides clonotype network plot of the top 10 expanded-clonotypes. (B) Summary
table of single cell information. (C) Bar plots showing number of cells of the top 10 expanded-clonotypes. After clicking the bar in the left panel, the bar
will be highlighted, and the tSNE plot (D) and violin plot (E) exhibit the cells in the selected clonotype. (F) Bar plots showing cell subtype composition of
the top 10 expanded-clonotypes. After clicking the bar, the tSNE plot (G) and violin plot (H) exhibit effector memory CD8+ T cells in all top 10 expanded-
clonotypes. (I, J) After clicking a node in (A), the clonotype information including predicted cell subtype (I, upper panel), V(D)J gene usage (I, lower
panel), amino acid/nucleotide sequences of CDR3 (J), and full-length V(D)J sequence (J) of the selected cell will be displayed in the menu bar on the web
interface (I). Sample ‘CPIc C2’ from Luoma et al. was used as examples in this figure (35). IFNG were used as example genes for gene expression modules.
All panels were exported and downloaded from the web interface.
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(iii) gene expression level in cell subtypes of interest for all top
10 expanded-clonotypes.

If users are interested in specific cell subtypes in all top
10 expanded-clonotypes, by clicking on the colored bars in
the clonotype composition bar plot (Figure 3F), users may
explore and visualize the gene expression level and distri-
bution for certain cell subtypes on the tSNE and violin plot
(Figure 3F–H). With this function, users may analyze the
expression level of a specific gene for a specific cell subtype
in all top 10 expanded-clonotypes.

To exemplify the interactive clonotype-transcriptome
analysis with huARdb, we analyzed the clonotype and
clonotype-related transcriptome features from Corridoni
et al. published sample ‘S33’ dataset (19). For clonotype fea-
tures of the dataset, in the UC patient, the cell count of the
largest clonotype was about 2-fold more than the second-
largest clonotype, while the top two clonotypes contained a
similar count of cells in the healthy control from the same
study (sample ‘S22’) (Supplementary Figure S5A, B). In
the largest expanded-clonotype in the UC patient (sample
‘S33’, clonotype 19), most T-cells were predicted as MAIT-
cells with highly expressed IL26 and IL17A (Supplemen-
tary Figure S5C–E). By contrast, in the largest expanded-
clonotype in the healthy control (sample ‘S22’, clonotype
cluster 73), most cells were predicted as effector memory
CD8+ T cells with no expression of IL26 and IL17A (Sup-
plementary Figure S5F–H). Given its enrichment and the
highly expressed IL26 and IL17A, clonotype 21 in sample
‘S33’ may play a critical role in recognizing and targeting
self-antigens, leading to an autoimmune response in the UC
patient.

In summary, huARdb provides the coupled clonotype-
transcriptome analysis. In addition to the overall clono-
type characteristics of the dataset, huARdb provides the
transcriptome features of the enriched clonotypes in each
dataset through variable interactive functions, including the
cell subtype composition and the individual gene expression
pattern for top 10 expanded-clonotypes.

Single cell information. By double-clicking the dots on the
tSNE plot, the violin plot, or clonotype network plot, users
may view the individual cell information displayed on the
side menu, including (i) the predicted cell subtype, (ii) the V,
D, J and (C) gene usage of TCR/BCR, (iii) the full-length
amino acid and nucleotide sequence of V(D)J gene used by
the TCR/BCR, (iv) the amino acid and nucleotide sequence
of TCR/BCR CDR3 and (v) the expression level of a spe-
cific gene (Figure 3I, J).

Data analysis functions. HuARdb also provide users var-
ious analysis function for transcriptome and clonotype
features. Pairwise Pearson correlation coefficient measur-
ing the transcriptome similarity for predicted cell subtypes
within the top 10 expanded-clonotypes could be visualized
via a heatmap on the webpage (Figure 4A). We also allow
users to explore the differentially expressed genes (DEG)
for between any clonotypes of interest within the top 10
expanded-clonotypes. The fold change and statistics signif-
icance for the DEGs could be visualized via a volcano plot
on the webpage (Figure 4B). In addition, the V gene usage

for all hcT/B cells and pairing information could be visual-
ized via a Circos plot on the webpage (Figure 4C).

Cross-sample comparison function. To enable users to
compare multiple samples simultaneously, we allow user to
submit no more than four samples on the homepage to en-
ter the cross-sample comparison mode. In this mode, most
the plots and functions mentioned above could be visual-
ized and analyzed side by side (Supplementary Figure S6).

Data download. HuARdb enables the user to download
detailed information including predicted cell subtypes, V, D,
J and C gene usage, and CDR3 sequences for each cell in the
top 10 expanded-clonotypes.

Data deposit and customized URL generation for publication.
As part of the mission of huARdb is to build a holistic at-
las of human antigen receptors, other scientists are encour-
aged to deposit their single-cell immune profiling datasets
to huARdb. We will generate an interactive visualization
with unique URL subpaths for each dataset. Thus, scien-
tists could incorporate the URL in their publications and
provide readers with a non-static, interactive way to explore
the high-dimensional single-cell immune profiling data.

DISCUSSION AND FUTURE EXTENSIONS

The expanding use of single-cell sequencing technolo-
gies has generated a vast number of publicly avail-
able datasets, including single-cell immune profiling. Our
huARdb database collects, analyses, and provides a com-
prehensive user-friendly web-based resource for biologists
to interrogate the potential biological significance of in-
dividual TCR/BCR sequences under different settings.
Through the multi-functional interactive web interface,
huARdb allows coupled clonotype-transcriptome analy-
sis. The full-length TCR/BCR sequence information at the
single-cell level enables the pairing of TCR/BCR chains and
provides sufficient information for biologists to clone the
receptor subunit genes and perform functional analysis of
TCRs/BCRs of interest. The coupled transcriptome infor-
mation may further assist biologists to infer the cell subtype
and function with specific TCRs/BCRs in different disease
settings.

In the future, we plan to extend huARdb as follows. We
will continue to collect publicly available human single-cell
immune profiling data to expand the tissues and diseases
covered in huARdb. Together with our collaborators, we are
also generating novel single-cell immune profiling data for
various immune-related diseases, and we will include our
data on huARdb. Meanwhile, the algorithm for cell subtype
prediction could be further improved in huARdb. At this
stage, huARdb uses SingleR to predict T or B cell subtypes,
based on the reference dataset published by Monaco et al.
(28,36). However, some T or B cell subtypes may be absent
in the references, such as exhausted T cells (36). To avoid
cell subtype mis-annotation, huARdb also provides unsu-
pervised clustering results based on the Leiden algorithm
(30). Users may manually annotate cell subtypes based on
signature gene expression. In the future, with more compre-
hensive and accurate immune cell reference datasets avail-
able, we would update our reference dataset for cell subtype
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Figure 4. The transcriptome-clonotype analysis module of huARdb. (A) The correlation heatmap of the transcriptome for different predicted cell types in
the top 10 expanded-clonotypes. Pearson correlation coefficient are used to reflect the similarity of the transcriptome. (B) The differentially expressed genes
for any two clonotypes among the top 10 expanded-clonotypes. Users may select any two clonotypes in the web interface for comparison. (C) Circos plot
for V gene usage for all hcT/B cells in the sample. Sample ‘CPIc C2’ from Luoma et al. was used as examples in this figure (35). All panels were exported
and downloaded from the web interface.

prediction. In addition, to define hcT/B cells, huARdb only
includes T and B cells with paired �/� or light/heavy chains.
However, some evidence suggests that a considerable pro-
portion of T cells express two distinct � chains (39). Simi-
larly, some B cells expressed dual surface immunoglobulin
light chains (40). T cells with dual TCRs and B cells express-
ing dual immunoglobins might play important roles in pro-
moting autoimmunity (40–42). Therefore, we will include T
or B cells that express dual � or dual light chains in future
versions of huARdb.

In conclusion, our huARdb will be a rapidly grow-
ing resource available to facilitate the in-depth study of
TCRs/BCRs under different immunological settings. As
more single-cell immune profiling data are generated, we
invite more scientists to deposit their data on huARdb.
Through our collective efforts, huARdb will be a unique
resource that provides the most up-to-date information on
functional immune receptors.
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