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Abstract
Ultrasound, or sound at frequencies exceeding the conventional range of human hearing, is not only audible to mice, microbats, and 
dolphins, but also creates an auditory sensation when delivered through bone conduction in humans. Although ultrasound is utilized 
for brain activation and in hearing aids, the physiological mechanism of ultrasonic hearing remains unknown. In guinea pigs, we 
found that ultrasound above the hearing range delivered through ossicles of the middle ear evokes an auditory brainstem response 
and a mechano-electrical transduction current through hair cells, as shown by the local field potential called the cochlear 
microphonic potential (CM). The CM synchronizes with ultrasound, and like the response to audible sounds is actively and 
nonlinearly amplified. In vivo optical nano-vibration analysis revealed that the sensory epithelium in the hook region, the basal 
extreme of the cochlear turns, resonates in response both to ultrasound within the hearing range and to harmonics beyond the 
hearing range. The results indicate that hair cells can respond to stimulation at the optimal frequency and its harmonics, and the 
hook region detects ultrasound stimuli with frequencies more than two octaves higher than the upper limit of the ordinary hearing range.
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Introduction
Ultrasound refers to those frequencies that exceed the upper limit 
of audibility in humans, which lies at approximately 20 kHz. In 
other species, such as in mice and bats, the cochlea has instead 
evolved to make use of much higher frequencies for communica
tion. Moreover, the capacity of ultrasound to activate brain cir
cuits noninvasively has positioned it as a promising candidate 
for neuromodulation techniques (1, 2). Audible sound elicits a 
wave that traverses the sensory epithelium from the base of the 
cochlea toward the apex and whose amplitude peaks at a 
frequency-dependent location. High frequencies evoke a response 
at the cochlear basal end, whereas lower frequencies stimulate 
the most apical end (3–6). This spatial arrangement of best 

frequencies, called tonotopy, formally demarcates the hearing 
range in various animal species (7–9). In humans, total frequency 
response extends from approximately 16 to 24 kHz (10). Ultrasonic 
frequencies, by definition, fall outside the range of tonotopically 
arranged frequencies. However, ultrasound whose frequency 
ranges up to 120 kHz can still be perceived when presented 
through bone conduction (11, 12). This extraordinary feature, 
known as ultrasonic hearing, is utilized for hearing aids and tin
nitus sound therapy (13, 14).

Although the neural circuit including auditory cortex can be 
activated by ultrasonic stimuli (2, 15–17), the physiological basis 
of both ultrasonic hearing and ultrasound-induced brain activa
tion remains unclear. The fact that neurons and ion channels 
can be stimulated by ultrasound has led some to propose its 
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potential for directly activating the auditory cortex (18–20). At the 
same time, transection of the auditory nerves or removal of coch
lear fluids eliminates the ultrasound-induced neural activities 
(15), and ultrasonic-induced sensations can be masked by audible 
sounds (13, 21). Collectively, these studies imply that the cochlea 
plays a significant role in ultrasonic hearing.

During air conduction, sound travels to the cochlea by way of 
the tympanic membrane and middle ear ossicles. In bone conduc
tion that is increasingly employed in headphones that bypass the 
middle ear, sounds instead engage the cochlea directly through 
the temporal bone (3, 6). Bone conduction is thought to be indis
pensable in ultrasonic hearing. Although theoretical studies have 
demonstrated that both air- and bone-conducted sounds evoke 
similar nanoscale vibrations in the cochlear sensory epithelium 
(22, 23), it remains unclear why only bone-conducted ultrasound 
can be audible. From the mechanical perspective, there are two 
possibilities: First, the bone may mechanically convert ultrasound 
into audible sounds (24, 25). Second, bone-conducted ultrasound 
might bypass the tympanic membrane’s strong low-pass filtering 
effect (26) and directly reach the cochlea. However, no detailed 
studies have been performed in vivo to test these assumptions.

In this study, we measured auditory brainstem response (ABR) 
and cochlear microphonic potentials (CM)—a proxy of the 
mechano-electrical transduction (MET) current through stimu
lated hair cells—in guinea pigs in order to establish the range of 
detectable frequencies in different types of sound conduction. 
Ultrasound above the animal’s hearing range elicited ABR and 
CM not only by bone conduction but also by stimulation through 
the malleus–incus complex with a tapered stainless rod. Based on 
the tonotopic arrangement of the sensory epithelia, we focused 
on the cochlear hook region—the extreme base of the cochlea— 
as the probable location of ultrasound detection. We optically 
confirmed that the hook region receives ultrasound stimuli both 
at the optimal frequency and at its harmonics, exceeding the 
upper limit of the conventional hearing range.

Results
ABR under ultrasonic stimulation through 
middle-ear ossicles
The hearing range is conventionally defined as the band of fre
quencies over which an animal responds to air-conducted sounds 
(Fig. 1A). We first performed control experiments, meant to con
firm the hearing range of the guinea pigs. We measured the ABR 
in vivo by exposing the cochlea to air-conducted sound covering 
frequencies ranging from 10 to 80 kHz. The minimum threshold 
was 30 dB at a frequency of 16 kHz. As the stimulus frequency in
creased to 40 kHz, which is near the upper limit of the hearing 
range, the thresholds increased to 65 dB. During 80 kHz stimula
tion at 80 dB, ABR was not observed (Fig. 1B). This result, which 
is consistent with that of a previous study (27), indicates that 
the conventional hearing range of the guinea pig extends slightly 
above 40 kHz, and that stimuli of substantially greater frequen
cies constitute ultrasound for that species.

We next measured the ABR during bone-conducted sound 
stimulation through the temporal bone (Fig. 1A). Within the con
ventional hearing range, ABR thresholds were similar to those ob
served in air conduction (Fig. 1C). For frequencies exceeding the 
conventional hearing range, the ABR was not detected at inten
sities less than 70 dB but became prominent at intensities exceed
ing 70 dB (Fig. 1C). Thresholds increased monotonically within 

frequencies from 80 to 201 kHz; no ABR was recorded at frequen
cies above 251 kHz with 105 dB stimulation.

During air conduction, a pressure wave is transmitted from the 
tympanic membrane to the cochlea through the middle-ear os
sicles. To avoid the low-pass filtering effect of the tympanic mem
brane (26), we directly applied stimulation to the malleus–incus 
complex (Fig. 1A). Although the stimulation was applied along 
the air conduction pathway, ABR thresholds were similar to those 
in bone conduction (Fig. 1D and E), suggesting that otherwise in
audible ultrasounds can also elicit ultrasonic hearing when deliv
ered through direct stimulation of the ossicles. As a result, the 
detectable frequency ranges in both ossicle stimulation and 
bone conduction are broader than the ordinary hearing range.
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Fig. 1. Auditory brainstem response (ABR) signals and thresholds in air 
and bone conductions. A) Schematic diagrams of air and bone conduction 
and ossicle stimulation. Sound vibrations pass from the external ear 
canal to the cochlea by the tympanic membrane in air conduction, 
whereas bone-conducted vibration directly reaches the cochlea through 
the temporal bone. In ossicle stimulation, vibration is applied through the 
malleus–incus complex in the air conduction pathway. B–D) 
Representative examples of ABR signals under air- or bone-conducted 
stimulation and ossicle stimulation in guinea pigs. The results are plotted 
in 5 dB decrements. E) Grouped ABR thresholds for various types of 
stimulation in guinea pigs. The left, middle, and right panels show the air 
conduction (n = 5), bone conduction (n = 5), and ossicle stimulation (n = 5) 
data, respectively. The dashed rectangles show the hearing range; the 
shaded areas indicate inapplicable pressure levels for each stimulation. 
ABR thresholds under air and bone-conducted stimulations showed 
almost the same thresholds at audible frequencies, but ABR thresholds 
were observed at ultrasound frequencies in bone conduction and ossicle 
stimulation. For each stimulation, data are shown as mean ± SD. The 
open circles indicate that the ABR thresholds are out of range.
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The reference pressures in bone conduction and ossicle stimu
lation differed from those of air conduction. The pressure was 
calibrated with a microphone for air conduction and by means 
of a hydrophone in the cases of bone conduction and ossicle 
stimulation. To roughly compensate for the threshold difference 
between these modes of conduction within the hearing range, 
we defined the standard pressure in bone conduction and ossicle 
stimulation as 2 mPa and show pressure levels in decibels 
throughout this study. In addition, although audible sounds great
er than 105 dB generally induce acoustic trauma when delivered 
through air conduction, they did not elevate the threshold when 
delivered through bone conduction (Fig. S1A–C).

CM during ultrasonic stimulation
Because inaudible ultrasonic stimuli evoke ABR responses when 
delivered through both bone conduction and direct ossicle stimu
lation, we hypothesized that the hair cells of the cochlea must be 
capable of transducing sound stimuli at much higher frequencies 
than previously thought possible. A standard criterion for evalu
ating the proper functioning of hair cells is their ability to generate 
MET currents. To assess the integrity of this mechanism, we re
corded the CM using a silver electrode placed within the middle 
ear cavity (Fig. 2A). The CM is the alternating-current component 
of the local field potential (LFP) generated by excitable cells in the 
cochlea (6, 28, 29). Although CM responses to bone-conducted 
ultrasonic stimulation in guinea pigs have been documented for 
stimuli at 98.8 kHz, its occurrences at other frequencies remains 
unexplored (30).

Prior to analyzing the CM responses to various stimuli, we eval
uated the frequency distribution of the LFP during stimulation 
through the temporal bone. Figure 2B and C display the fast 
Fourier transform of the voltage amplitude measured from the 
round window membrane. First, we delivered a 127 kHz stimulus 

of 100 dB to the temporal bone of the animal. Significant peaks 
were visible at 127, 254, 203, and 246 kHz (Fig. 2B). Figure 2D 
and E exhibit the LFP waveforms with a stimulus waveform at 
the peaks. Waveforms at 127 and 254 kHz, a harmonic of 127 
kHz, were synchronized in time with the presented stimulus. 
When the applied frequency was changed from 127 to 152 kHz, 
the peak was shifted to 152 kHz, but the waveform remained syn
chronous (Fig. 2E). In contrast, the signals at 203 and 246 kHz 
under stimulations both of 127 kHz and of 152 kHz were asyn
chronous (Fig. 2D and E). Based on the frequency dependance 
(Fig. 2B and C), we defined the waveforms at peaks of 127 and 
152 kHz as ultrasonic CMs. Conversely, the asynchrony to the 
stimulus suggests that the waveforms at 203 and 246 kHz repre
sented physical or electrical resonances in the recording. 
Notably, LFP signals within the hearing range were not detected 
(Fig. 2B and C). In additional, harmonics of the ultrasonic CM 
were occasionally observed during the intense stimulation 
through bone conduction (Fig. S2A), whereas no harmonics were 
detected during ossicle stimulation (Fig. S2B). These results indi
cate that objects in the bone conduction pathway do not mechan
ically convert ultrasonic vibration into audible sounds.

In normal hearing, a healthy cochlea nonlinearly processes 
weak inputs while progressively reducing the enhancement of 
stronger stimuli. This level-dependent reception is known as com
pressive nonlinearity based on an active process of the cochlea 
(31), and the sound-evoked CM exhibits its signature (32). To de
termine whether a similar pattern occurs in the ultrasonic CM, 
we analyzed the level function of the amplitude. The 
root-mean-square voltage was acquired while stimulating with 
a sinusoidal stimulus; the frequency and pressure level ranged 
from 80 to 251 kHz and from 70 to 100 dB, respectively (Figs. 3A 
and S3A and B). Under control conditions, the amplitude dis
played clear compressive nonlinearity at frequencies of 80, 103, 
and 127 kHz. In contrast, the amplitude showed slight 
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Fig. 2. Recording of the local field potentials (LFP) in a guinea pig. A) A view of the middle ear cavity with the recording electrode in place. The upper panel 
shows a photo of the middle ear cavity, and the lower panel shows its schematic representation. The tip of the recording electrode was placed on the 
middle ear mucosa near the round window. B, C) Fourier amplitude spectrum of the LFP during stimulation at 127 and 152 kHz at 100 dB in bone 
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at 127 kHz, 254 kHz, 203 kHz, and 246 kHz with a stimulus waveform in (B). E) LFP waveforms at 152 kHz, 203 kHz, and 246 kHz in (C). A zoomed view of the 
LFP at 152 kHz under steady-state stimulation is shown in the insert. Signals at 127 kHz, 254 kHz, and 152 kHz are synchronized with the stimulus, 
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nonlinearity at the frequencies of 152, 176, and 201 kHz (Fig. 3B 
and C). These values were significantly higher than those obtained 
under postmortem conditions, as shown by the limit of detection 
(LOD). These results indicate that the cochlea houses ultrasound- 
sensitive hair cells whose response is actively and nonlinearly 
amplified. In addition, the amplitudes under normal stimulation 
and LOD were almost the same under a high-frequency stimulus 
of 251 kHz (Fig. S3A and B). The upper frequency limit of the CM 
response was almost identical to that of the bone-conducted hear
ing range determined by ABR (Fig. S1E). These tendencies were 
also observed in recordings during ultrasonic stimulation by 
means of the ossicles (Fig. S3C and D).

Location of ultrasound detection in the cochlea
The hook region, which curves in the opposite direction to that of 
the cochlear spiral, represents the base of the cochlea. In the hook 
region of the cochlea, high-frequency sounds near the upper limit 
of the hearing range are thought to elicit a peak wave of epithelial 
motion (4–9, 26). This frequency-dependent spatial arrangement 
underlies cochlear frequency tuning. We hypothesized that the 
hook region can transduce ultrasound at frequencies exceeding 
100 kHz into nanoscale vibrations in the sensory epithelium.

As the initial step in each experiment, we focused the optical 
coherence tomography (OCT) beam onto the epithelium through 
the round window, and positioned the focus of the objective lens 
at the depth of the reticular lamina (RL) (Fig. 4A). The depth of fo
cus was 1.7 μm. The epithelium extends from the RL, which in
cludes the apical surfaces of outer hair cells (OHCs), to the 
basilar membrane (Fig. 4B). On a 2D cross-sectional image, the 
RL was visualized as the apical edge of the organ of Corti 
(Fig. 4C). A representative signal on the pathway of the beam pass
ing through OHCs is shown in Fig. 4B and C. The intensities of RL 
exceeded the background signal in the endolymph by more than 3 
dB (Fig. 4D). To measure the vibration profiles of the epithelium by 
OCT vibrometry, we subsequently administered an ultrasonic 
stimulus between 35 and 130 kHz at pressure intensity levels of 
35, 45, and 55 dB. Figure 4E shows the amplitude of vibrations at 
the RL at the stimulus frequency (f1), whereas Fig. 4F shows those 
at the second and third harmonics of f1 at 55 dB. Figure 4G exhibits 
the frequency distribution of the amplitudes. The amplitudes 
were recorded as the maximal values around the peak signal in
tensities. In general, the stimulus frequency that maximally vi
brates the epithelium with a low pressure at the recording point 
represents the best frequency (BF) (33, 34). During moderate 
stimulation at 55 dB, the vibration amplitudes were highest at 
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Fig. 3. Recording of the cochlear microphonic potentials (CM) in bone conduction. A) Representative trace of stimulation-evoked CM waveforms in a 
guinea pig. The results are plotted in 5 dB decrements. The left and right panels for each stimulus frequency show the control and postmortem 
conditions, respectively. B) Summary profile of CM amplitude and its nonlinear response in the guinea pig. The level function relates to the amplitude of 
CM responses in the cochlea. Control data during 80, 103, and 127 kHz stimulation demonstrate strong compressive nonlinearity at higher pressure 
levels, whereas those during 152, 176, and 201 kHz exhibit slightly nonlinear behavior. The thin dashed lines mark a linear relationship between the 
pressure level and CM amplitude. Because an actuator elicits electrical artifacts synchronized to the applied voltage frequency during stimulation, we 
defined the average amplitude of the recorded artifacts under postmortem as the limit of detection (LOD) (shaded area). The high-resolution ultrasonic 
waveforms with a sampling frequency of 2.4 MHz are downsampled to 24 kHz throughout this study. C) Grouped CM amplitude in five guinea pigs (n = 5). 
The solid line and error bars indicate the averages and standard deviations, respectively, for the control conditions, whereas shadings indicate the 
averages for postmortem. The responses were normalized to the average values of the recorded voltages under control conditions and are shown as 
ratios. *, **, and ***: significant differences (P < 0.32, P < 0.05, and P < 0.01).
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approximately 45 kHz, whereas no significant amplitudes were 
observed at 35 kHz or at frequencies exceeding 60 kHz. Based on 
the frequency response to ultrasound, the epithelium resonated 
at frequencies of approximately 45 kHz within the hearing range. 
Therefore, we categorized the 45 kHz stimuli as near-BF, those at 
35 kHz as sub-BF, and those over 60 kHz as supra-BF in this trial. In 
near-BF stimulations, the amplitude at 55 dB was less than 3.1 
times that at 45 dB, and harmonics were significant (Fig. 4G). 
These phenomena were similar to those at the apical and basal 
turns in previous studies (35, 36). In contrast, no harmonic vibra
tion was observed for sub- and supra-BF stimulation (Fig. 4G). The 
vibrational phases in the epithelium displayed little level depend
ance (Fig. 4H), whereas the phases near the RL led those in the 
OHC body in the near-BF (Fig. S4).

Because harmonic vibrations were detected during near-BF 
stimulation, the hook region resonates physically with harmonics 
as well as the fundamental frequency. We therefore defined the 

double and triple BF as the second and third harmonic BF (2hBF, 
3hBF), respectively. The maximum amplitude of the third harmon
ic was greater than that of the second harmonic (Fig. 4G); thus, we 
further delivered an ultrasonic stimulus at frequencies greater 
than 116 kHz and pressure intensities of 70, 75, 80, and 85 dB. 
Figure 5A shows the frequency distributions of the amplitudes. 
During the stimulation, the vibration amplitudes were largest 
near 122 kHz, whereas the amplitudes were not significant at 116 
kHz. Therefore, we noted the 122 kHz stimuli as near-3hBF, and 
those below 116 kHz as sub-3hBF. In near-3hBF stimulations, the 
amplitude at 85 dB was smaller than 3.1 times that at 75 dB for 
RL (Fig. 5B). This indicates that the amplitudes exhibit compressive 
nonlinearity. In contrast, the amplitudes increased more linearly 
for sub-3hBF stimulation. Although guinea pigs do not seem to 
hear these ultrasounds under ordinary conditions, the result was 
comparable to the vibration response in the epithelium of other 
cochlear turns during stimulation with audible sounds (34, 37). 
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The vibrational phases for RL in reference to the stimulus signal 
and the relative phase distribution inside the OHCs are shown in 
Fig. 5C and D, respectively. There was little variation in phase for 
RL across stimulus levels (Fig. 5C). However, phases near the RL 
led those at OHC’s body (Fig. 5D), and the rates of the phase change 
in near-3hBF stimulation were significantly higher than those in 
sub-3hBF stimulation at lower stimulus levels (Fig. 5E). These 
trends in amplitudes and phases were confirmed in five experi
ments (Fig. 5F and G).

Discussion
According to the conventional understanding of cochlear tonotopy, 
high-frequency sounds near the upper limit of the hearing range 
elicit a peak wave of epithelial motion in the hook region (4–9, 26). 
In ultrasonic hearing (11, 12), ultrasounds well above the animal’s 
hearing range can be perceived not only in humans but also in guin
ea pigs. What enables the sensory epithelium to resonate with and 
transduce ultrasonic frequencies? Previous studies on the sensory 
epithelium provide useful insights into our results. It has been re
ported that harmonic distortions of stimulus frequency occur in 
the apical and basal turns (35, 36, 38). Harmonic distortions result 
from hair cell nonlinear responses and/or from passive nonlinearity 
in the epithelial mechanics (35). Our data are consistent with these 
reports; the frequency analysis of the hook region vibration exhib
ited a harmonic series in single tone stimulations (Fig. 4G). 
Although CM includes no harmonics in the single tone stimulations 
through the ossicle (Fig. S2) (35), hair cells transduce the stimula
tions that match not only the optimal frequency but also the har
monic frequencies into CM (Figs. 3 and 4). This phenomenon is the 
principle of the CM synchronized with ultrasound beyond the hear
ing range and plays a crucial role in both ultrasound-induced neuro
modulation and ultrasonic hearing (11, 15). In these situations, hair 

cells in the hook region transduce the ultrasound, but primarily 
cover the frequency near the upper limit of the hearing range. 
Consequently, afferent nerves connected to these hair cells convey 
information not about ultrasounds beyond the hearing range, but 
rather about audible sound. In ultrasonic hearing, although humans 
never perceive ultrasound through air conduction, we can hear it as 
high-frequency sound (24). Furthermore, its frequency discrimin
ation is less accurate than that within the hearing range (39). In 
ultrasound-induced neuromodulation, ultrasound produces exten
sive brain activation through the cochlear pathway (15). This study 
suggests a potential explanation for the occurrence of these 
sensations.

Our findings suggest that the cochlear compressive nonlinear
ity observed in ultrasound detection rests upon the MET current 
through OHCs. An important biomechanical function of OHCs 
that underlies the active process in mammalian cochleae is som
atic electromotility: the cell bodies of OHCs change in length when 
the membrane potential is altered by the current through the MET 
channels on the hair bundles (40, 41). This modulation is produced 
by the membrane protein prestin (42, 43). Although it has been re
ported that the motility of OHCs is low-pass filtered (44–46), theor
etical and experimental analyses of OHCs and prestin have 
suggested that the power output of somatic motility peaks at 
ultrasonic frequencies (35, 47, 48). In fact, electrical stimulation 
can evoke vibrations in the RL across the entire range of hearing 
frequencies, including ultrasound, in mice (49). OHCs display an
other mechanical function known as active hair bundle motility: 
the hair bundles of hair cells can oscillate spontaneously without 
external force and perform mechanical work to amplify inputs 
(31, 50). To understand the interplay between somatic and bundle 
motilities in the hook region, further experiments, such as 
pharmacological perturbation of these motilities under in vivo 
and in vitro physiological conditions, may be required.
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Tuning curves are not uniform at any level in the auditory path
way (51). However, a tonotopic arrangement is known to be roughly 
conserved from the cochlear turns to the auditory cortex, and 
matches the hearing range in all mammals. In the classical model 
of cochlear frequency tuning for detecting a single tone, hair cells 
at a particular position are activated by a traveling wave, and send 
signals to afferent nerves (Fig. 6A) (6, 51). In this study, we showed 
that hair cells in the hook region are electrically and mechanically 
resonant to both fundamental ultrasonic stimuli and their harmon
ics beyond the conventional range of hearing (Fig. 6B). Recent studies 
suggested that an applied single tone generates harmonic distor
tions in vibrations on the traveling wave (Fig. 6C) (36, 38, 46, 52–58). 
Should hair cells in other turns be inherently resonant to the 
harmonics of the optimal frequency, those cells that are spaced 
at geometric intervals could collaboratively operate under moder
ate or intense single-tone stimulation (Fig. 6D). As a physical and 
biological principle in single-tone detection, the detection of har
monics, as shown in this study, along with harmonic distortion, 
is likely to occur. Additional physiological research on hair cells, 
the sensory epithelium, cochlear afferent nerves, and the auditory 
cortex is necessary to unravel the intricate mechanisms under
lying the harmonics detection in ultrasonic hearing and the 
collaborative role of hair cells in overall auditory function.

From the viewpoints of comparative and physiological hearing, 
interesting proposals have been put forward to explain sound de
tection in animals. Many mammals can potentially sense ultra
sound above the hearing range. In fact, recent studies have 
reported that some pinnipeds can hear ultrasound with higher 
frequencies than previously thought audible underwater (59), 
and some fishes and frogs can perceive the ultrasound in an at
tempt to avoid predation by echolocating animals or to facilitate 
communication (60, 61). Ultrasonic hearing based on the harmon
ics detection by hair cells might be an evolutionary remnant con
served from these ancestral, and traditional boundaries of the 
hearing range should be expanded to include higher frequencies.

These speculations provide a new principle for the treatment of 
deafness. For cochlear implants, otolaryngologists insert through 
the round window an electrode array that stimulates nerves and 
creates an auditory sensation (62). However, based on the theory 
of cochlear tonotopy, the electrodes in a limited position are active 
for each sound frequency. If the electrode array stimulates nerves 
in multiple positions, more electrical channels might be able to 
participate in improving patients’ discrimination of words or 
sounds. In addition, the relationship between ultrasonic hearing 
and deafness, such as acoustic trauma, ototoxicity, presbycusis, 
and Meniere’s disease, has not been fully studied (63). If hearing 
thresholds in ultrasonic hearing can capture the presymptomatic 
states of hair cells’ nonlinearity in these diseases, they could be 
used for prevention, prognostic prediction, and the development 
of treatments. Paste your discussion here.

Materials and methods
Animals and experimental procedures
The study included 190 healthy female guinea pigs weighing 200– 
400 g. The animals were treated in compliance with the Guiding 
Principles for the Care and Use of Animals in the field of 
Physiological Science set by the Physiological Society of Japan. 
The experimental protocol was approved by the Institutional 
Animal Research Committee of Gifu University (Permission 
Number: 2020–227). The experiments were carried out under 
the supervision of the committee and in accordance with the 

Guidelines for Animal Experiments of Gifu University and the 
Japanese Animal Protection and Management Law. Hartley guin
ea pigs (2–3 weeks of age; SLC Inc., Hamamatsu, Japan) were 

A

B

C

18 kHz

9 kHz

6 kHz

60 kHz 6 kHz

60 kHz

180 kHz

40 kHz

80 kHz

120 kHz

2nd harmonic tonotopy

3rd harmonic tonotopy

180 kHz
120 kHz

60 kHz

Fundamental tonotopy

120 kHz

18 kHz

9 kHz

6 kHz

40 kHz

80 kHz

120 kHz

18 kHz

18 kHz

9 kHz

40 kHz

Stapes

Afferent nerves

Round window

Hearing range

Hearing range

Traveling wave

Stimulus
Vibration

18 kHz

36 kHz 18 kHz

36 kHz

Sensory epithelium

80 kHz(40 kHz)

120 kHz(40 kHz)

Hook region

Hook region Base Apex

18 kHz 9 kHz

D
18 kHz 18 kHz

9 kHz 6 kHz18 kHz

18 kHz 18 kHz

54 kHz

54 kHz

Fig. 6. Depiction of stimulus-elicited vibrations on the sensory epithelium 
in the cochlea. A) Basic concept of cochlear tonotopy. Each frequency of 
stimulation excites vibrations at a particular position. In this and 
subsequent illustrations, stimulations and vibrations are highlighted in 
blue. The red solid lines indicate activated afferent nerves under 
stimulation. The shaded band in the lowest panel shows that the hearing 
range corresponds to the frequency distribution of the elicited vibrations 
and nerves. B) Summary of our study. The upper, middle, and lower panels 
show the vibrations under stimulation at 40 kHz, 80 kHz, and 120 kHz, 
respectively. The shaded bands under the cochlea represent the 
frequency distributions of the fundamental, second harmonic, and third 
harmonic tonotopies, respectively. Although the applied frequencies are 
different, vibrations are evoked at the same position in the hook region. In 
the lowest panel, the sum of the frequency bands of the fundamental, 
second harmonic, and third harmonic tonotopies defines the hearing 
range. C) Scheme of the predicted vibrations in harmonic distortions 
under a single audible tone stimulus. The stimulus generates multiple 
traveling waves with harmonic frequencies at harmonic series of the 
fundamental frequency. D) Scheme of the predicted vibrations in 
harmonics detection under a moderate or intense single audible tone 
stimulus. The frequency of the stimulus matches that of the vibrations on 
traveling waves but evokes multiple traveling waves at different positions 
in subharmonic series of the fundamental frequency.

Horii et al. | 7



housed at the animal facility and kept under a 12-h light and 12-h 
dark cycle. All animal handling and reporting complied with the 
animal research: reporting of in vivo experiments (ARRIVE) 
guidelines.

For electrophysiological preparations, we first intramuscularly 
injected atropine sulfate (0.05 mg/kg) as a premedication. The ani
mals were then anesthetized with an intraperitoneal injection of ur
ethane (1.5 g/kg). After tracheostomy, the animals were artificially 
respirated with room air using a respirator (SN-408-7; Shinano 
Manufacturing, Japan). The cochlea was exposed using a method 
similar to that previously described for biophysical measurements 
(33, 37, 64). The head was fixed using a made-to-order stereotactic 
apparatus. The stapedial muscle and tensor tympani were surgically 
cut to avoid the effect of muscle reflexes during strong stimulation. 
Body temperature was monitored with a thermometer and main
tained by a heating pad. Supplemental doses of anesthesia were ad
ministered to ensure areflexia to toe pinch. At the end of the 
experiment, anesthetized animals were injected intraperitoneally 
with an overdose of urethane.

For optical recordings, we performed artificial ventilation in 
urethane-anesthetized guinea pigs as described above. Using a 
ventrolateral approach, the cochlea was exposed by opening the 
bulla as previously described (33, 37, 64). An acrylic plate con
nected to a flexible base stage (SL20/M; Thorlabs, USA) was fixed 
to the head of the animal. The base stage and the body of the ani
mal were placed on a movable platform under the OCT system. By 
orienting the head, the laser was focused on the hook region 
through the round-window membrane. Body temperature was 
monitored and maintained as described above.

Of the 190 animals included in this study, 128 were subjected to 
ABR and CM and 62 were subjected to OCT imaging and vibration 
recording. Without any perturbations, we measured the active 
ABR in more than 75% of the preparations. We recorded active 
CMs and epithelial vibrations in 31 and 15, respectively. During 
these recordings, we monitored the ABR thresholds before and 
after the experiment. If the ABR thresholds changed by more 
than 30 dB at the four frequencies of 16, 22, 30, and 40 kHz, we elim
inated the data from the analysis. The low success rate of CMs and 
vibration recordings stems from invasive surgery, which often in
creases an animal’s hearing thresholds (37, 64). Accordingly, we 
analyzed a limited number of samples that met the ABR threshold 
criteria. Nevertheless, the number of samples was almost equiva
lent to that in previous studies (33, 34, 37, 64).

Calibration of sound and ultrasound stimuli
We used a housed speaker (FT17H; Fostex, Japan) and a cuboidal 
piezoelectric actuator (PC4QM; Thorlabs, USA) as stimulators. 
The speaker and actuator were powered using a function gener
ator (WF1948; NF Corporation, Japan). For air-conducted sound 
stimulation, the tip of the speaker was inserted into the external 
ear canal. In contrast, for bone-conducted stimulation, the piezo
electric actuator was attached to the temporal bone using a ceram
ic rod glued on the actuator. Additionally, for ossicle stimulation, 
we used a tapered stainless rod and attached its tip to the mal
leus–incus complex. To avoid contamination by air-conducted 
sounds, the tympanic membrane was surgically removed during 
the bone conduction and ossicle stimulation experiments.

To calibrate the pressure of the air- and bone-conducted and os
sicle stimulations, an ultrasound microphone (Sokolich ultrasonic 
probe microphone system, USA) and a high sensitivity hydrophone 
(TC4034, Teledyne Marine REASON, USA) with an amplifier 
(EC6081 mk2, Teledyne Marine REASON, USA) were used. The 

microphone was connected to the tip of the speaker by a polyethyl
ene tube for closed field sound stimulation, whereas the hydrophone 
was directly attached to the tips of the ceramic and stainless rods for 
bone-conducted and ossicle stimulations, respectively.

The intensity of a vibration stimulus unavoidably depends on 
the compression force applied to an object. To maintain the force 
constant, we monitored the force between the stimulator and the 
animal using a simple spring scale. During calibration, when the 
force was less than 2 N, the delivered pressure level decreased 
by more than 5 dB (Fig. S5A). Therefore, we maintained the force 
at 5 N in temporal bone stimulation. In ossicle stimulation, the 
compression force was reduced to 0.05 N because the surface 
area of the tip of the ceramic rod was approximately 100 times lar
ger than that of the tip of the stainless rod (Fig. S5B).

Electrophysiological measurements
The ABR was measured as described previously (27). 
Stainless-steel needle electrodes were subcutaneously inserted 
in the parietal region under the pinnae and in the posterior region 
of the neck. For stimuli, 6 ms tone bursts with 0.5 ms rising and fall
ing phases were generated by a function generator. The applied 
frequencies were 10, 16, 22, 30, 40, and 80 kHz in air-conducted 
stimulation, and 10, 16, 22, 30, 40, 80, 103, 127, 152, 176, 201, and 
251 kHz in bone-conducted and ossicle stimulation. A piezoelectric 
actuator with ceramic and stainless rods did not emit secondary 
tone bursts during the stimulation (Fig. S6). Individual signals 
emitted from the afferent auditory pathway were amplified 
5,000-fold and processed with an analog bandpass filter (300 Hz– 
1 kHz) in a modified commercial amplifier (Model 3000, A-M 
Systems, USA). These data were then digitally processed with a 
bandpass filter (300 Hz–1 kHz), and 500 sweeps were averaged us
ing LabVIEW (LabVIEW 2019 SP2; National Instruments, USA). ABR 
thresholds were defined as the lowest pressure level at which wave 
III was detected.

The CM is a LFP elicited by sound or vibration stimulation. The 
basic method of CM recording was similar to that used in previous 
studies (29, 32). A made-to-order silver wire electrode and 
stainless-steel electrode were placed on the cochlear bone wall 
and parietal region under the pinnae, respectively. For the stimuli, 
240 ms tone bursts of 80, 103, 127, 152, 176, 201, and 251 kHz with 
20 ms rising and falling phases were generated by the function 
generator. Local field potentials were amplified 5,000-fold and 
processed using an analog high-pass filter (1 kHz) in the amplifier. 
Acquired data were recorded by a digitizer with a sampling fre
quency of 2.4 MHz (PCIe-6374; National Instruments, USA), and 
eight sweeps were averaged. We modified the commercial AC/ 
DC amplifier that was originally utilized for recording neuronal 
signals. An analog low-pass filter was manually removed to record 
a high-frequency voltage of more than 20 kHz. However, owing to 
the high input resistance of 1,015 Ω, high-frequency signals great
er than 1 kHz nonetheless deteriorated. Therefore, we obtained a 
voltage response curve as a function of stimulus frequency and 
then corrected the acquired voltages using the values shown in 
Fig. S7. Furthermore, because an actuator elicits electrical arti
facts synchronized with the applied voltage frequency during 
stimulation, we defined the average amplitude of the recorded 
artifact as the LOD in the CM recording.

OCT and vibrometry
We used a customized OCT system based on a commercial 
SD-OCT (Ganymede GAN621; Thorlabs, USA) and a supercontin
uum light source (SuperK FIU-15; NKT Photonics, Denmark). 
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This modification was similar to that used in a previous OCT sys
tem termed the SCSD-OCT system (37), in which the light source 
was connected to an optical bandpass filter (SuperK SPLIT; NKT 
Photonics, Denmark), a fiber delivery system (SuperK CONNECT; 
NKT Photonics, Denmark), and a single-mode broadband fiber 
(FD7; NKT Photonics, Denmark). An objective lens (M Plan Apo 
NIR 20×, Mitutoyo, Japan) with a focal length of 10 mm and a depth 
of focus of 1.7 μm was used. The light power applied to the sample 
was 38.2 mW. The effective bandwidth and central wavelength of 
the spectrometer were approximately 300 and 900 nm, respective
ly. The axial pixel size in air was 0.56 μm. To analyze the anatom
ical properties of the sensory epithelium on OCT images, we 
estimated the refractive index of the cochlear lymph fluid to be 
1.35. The sampling frequency of the OCT vibrometry was 248 
kHz. The system therefore permitted direct measurement of vi
brations at frequencies less than 124 kHz according to the sam
pling theorem. In the analysis of vibrations whose frequency 
exceeded 124 kHz, an alias signal for the stimulus frequency 
was acquired as previously reported (35). To precisely evaluate 
the phase of the ultrasound, we used trigger signals generated 
with a high timing accuracy digitizer (National Instruments, 
PCIe-6374). LOD was assessed using the noise floor (NF) and stand
ard deviation (SD) as LOD = NF + SD. To calculate the NF and SD, 
we used 30,000 scans of the vibration amplitudes at frequencies 
ranging from f-1500 Hz to f-500 Hz, where f is the stimulation 
frequency.

Statistics and reproducibility
The means ± SDs are presented as descriptive statistics in Figs. 1, 3, 
S1, and S3. CMs recorded in bone conduction and ossicle stimula
tion were compared using two-way ANOVA with interaction mod
els for the two conditions and all the intensities studied in Figs. 3
and S3. The maximum rates of gain change and rates of phase 
change in the near-3hBF and sub-3hBF stimulation groups were 
compared using paired t tests as shown in Fig. 5. The P values 
were subjected to Bonferroni correction for multiple comparisons. 
All n values are indicated in the main text and the figures. All the 
statistical analysis were carried out using GraphPad Prism 9 
(GraphPad Software, Inc., USA).
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