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ABSTRACT
Increased industrialization demand using synthetic dyes in the newspaper, cosmetics, textiles, food, 
and leather industries. As a consequence, harmful chemicals from dye industries are released into 
water reservoirs with numerous structural components of synthetic dyes, which are hazardous to the 
ecosystem, plants and humans. The discharge of synthetic dye into various aquatic environments has 
a detrimental effect on the balance and integrity of ecological systems. Moreover, numerous inorganic 
dyes exhibit tolerance to degradation and repair by natural and conventional processes. So, the 
present condition requires the development of efficient and effective waste management systems 
that do not exacerbate environmental stress or endanger other living forms. Numerous biological 
systems, including microbes and plants, have been studied for their ability to metabolize dyestuffs. To 
minimize environmental impact, bioremediation uses endophytic bacteria, which are plant beneficial 
bacteria that dwell within plants and may improve plant development in both normal and stressful 
environments. Moreover, Phytoremediation is suitable for treating dye contaminants produced from 
a wide range of sources. This review article proves a comprehensive evaluation of the most frequently 
utilized plant and microbes as dye removal technologies from dye-containing industrial effluents. 
Furthermore, this study examines current existing technologies and proposes a more efficient, cost- 
effective method for dye removal and decolorization on a big scale. This study also aims to focus on 
advanced degradation techniques combined with biological approaches, well regarded as extremely 
effective treatments for recalcitrant wastewater, with the greatest industrial potential.
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1. Introduction

Textile industry contributes significantly to global 
environmental degradation by the emission of unfa-
vorable textile effluent. Textile wastewater comprises 
colors and a variety of pollutants in varying concen-
trations [1-4]. With increased pollution and environ-
mental concern, scientists concentrated on these 
issues, since major water contamination issues not 
only cause health issues but also social issues [5]. As 
a result, environmental regulations often require tex-
tile mills to remediate effluents before discharging 
them into receiving waterways. The rapidly develop-
ing industrial sector particularly the textile industry 
(85%), is a source of harmful synthetic chemicals dis-
charged mostly in the form of toxic dyes [6,7]. 
Globally, almost 80% of wastewater is not properly 
treated [8]. It is imperative to note that approximately 
10–15% of synthetic colorants have oncogenic or 
mutagenic properties that pose detrimental effects on 
all living form [1,9–11]. Water sources that are vital for 
drinking, agriculture and for further purposes like 
domestic and industrial needs are now been contami-
nated by textile colors discharged into wastewater 
[12]. Every large-scale treatment effectiveness may be 
determined by feeding the system either with actual 
textile wastes or with synthetic wastewater with prop-
erties similar to those found in normal textiles manu-
facturing discharge.

Discharging textile toxic chemicals into river sys-
tems modifies the critical properties of the aquatic 
environment by affecting the BOD, COD, TSS, TOC, 
TDS, color and pH [13–16]. This ultimately leads to 
the formation of stink and a deterioration of the 
reservoir’s water quality [17]. Textile dyes’ resistance 
to breakdown in soil and water is a result of their 
complex chemical structure [18]. Textile effluents 
include reactive dyes including triazine that may 
cause cancer, birth abnormalities, and hormone dis-
ruption. Electrochemical degradation of azo reactive 
dye was shown to be beneficial in minimizing the 
formation of carcinogenic compounds during biode-
gradation [19,20]. Textile wastewater contains unfixed 
colours, inorganic and organic compounds, and trace 
metals that are toxic to the environment and may 
result in bleeding, vomiting, dermatitis illnesses, 
tumors, and genomic instability [21]. Hazardous che-
micals’ endurance in aqueous and soil habitats may 
result in their buildup in plankton, fish, and plants. 

Similar to textile industry effluents, municipal sewage 
is also a major contaminant that has been released in 
water bodies [22]. Due to the limitations of both 
inorganic and organic materials, scientists are now 
focusing on the natural materials like bacteria, algae, 
fungi and actinomycetes for development of more 
active and safe materials for dye degradation [23]. 
Phytoremediation is a more efficient and cost- 
effective method of treatment than traditional meth-
ods. It makes use of the root systems of plants to 
absorb nutrients from wastewater. Plant species used 
for phytoremediation have the capacity to accumulate 
a narrow or broad spectrum of contaminants [24,25]. 
The objective of this review is to assess potential of 
several approaches for dye bioremediation. The 
methods of removal and the roles of microor-
ganisms in the removal process are evaluated 
critically. In addition, a comprehensive analysis 
of important literature data on effluent proper-
ties, as well as substances, such as chemicals 
used to manufacture simulated sewage water, 
including dye, and treatments used to treat the 
generated effluents, were explored. Finally, the 
current state of knowledge about bioremediation 
of textile dyes is presented, along with recom-
mendations for strategies enhancement and 
scientific advancement.

2. Review of literature methodology

The relevant literature using the keywords “bior-
emediation of dyes” was search (as on May 2021) 
in Scopus, Google Scholar, and Science Direct to 
understand the significance of this research in 
present era. Figure 1 show the different subject 
areas, where dye bioremediation is used. The 
results were narrowed for the last 2 decades by 
specifying a time range ranging from 2000 to 2021. 
Figure 1 summarizes the number of papers 
describing dye bioremediation from 2000 to 
2021. It may be seen that the number of papers 
on bioremediation of textile effluents has increased 
in recent years.

3. Dyes

Dyes are a class of chemicals that are often used in 
textiles. They are chemically synthesized or 
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derived from plants and animals (Table 1). They 
are unique in that, unlike paint, they do not accu-
mulate on the surface of the fiber but are absorbed 
into the molecule<apos;>s holes. This is conceiva-
ble for two reasons: -

(i) To begin, the dye molecules are smaller 
than the pores in the fiber.

(ii) The dye molecules resemble narrow strips 
of paper in terms of length and width but 
have a comparatively thin thickness.

When the fiber, yarn, or cloth is placed into the dye 
bath, their planar form facilitates them in slipping into 
the polymer system. The main aspect is the dye’s 
attraction for the fiber is due to their attraction forces. 
The dye that has diffused or penetrated into the fiber is 
kept fixed in place because of the dye’s adhesion to the 
fiber [26,27]. According to a recent survey, about 
100,000 dyestuffs are available commercially and 
about one million tons of dyes are manufactured 
yearly, with around 10% of dyes being dumped within 
the realm of natural assets as waste [28]. So, the dye 
removal from the waste water of the cosmetic, plastic, 
textile and paper industries is a current area of 

research in environmental protection. The majority 
of synthetic colors are non-biodegradable and poiso-
nous [29,30]. Their potential pollution of water 
sources in the vicinity of dye-based industry raises 
environmental concerns [31,32].

There are around twenty-five different kinds of 
dyes depending on their chromophore’s chemical 
structure [33,34]. There are over a thousand dyes 
designated as textile dyes that are used for dyeing in 
wide range of clothing and accessories [35,36]. There 
are also several intermediates in the dyeing process 
that acts as a precursor to dyes. They can be produced 
using basic materials such as naphthalene and benzene 
through a wide range of chemical processes [37].

3.1. dye classification

There were just a few natural dyes available prior to 
the introduction of synthetic dyes. As a result of the 
growth in the yearly world output of dyes, categoriza-
tion of dyes has become necessary. They are expected 
to be in the range of many tens of millions of tonnes 
[38]. Dyes may be classified into a variety of classes 
depending upon its source, colour, structure, and 

Figure 1. Summary of research papers published between 2000 to 2021 on dye bioremediation.
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Table 1. Natural dyes obtained from Plant and Animal.

Source
Natural 

Dyes Derived from Colorant Chemical Structure Application

Plant Alkannin Alkanna tinctoria Purple Cosmetics, soaps 
and pigments.

Plant Brazilin Caesalpinia 
echinata 
Caesalpinia 
sappan

Bright red Cotton, wool

Plant Rhamnetin Rhamnus 
petiolaris Bois

Yellow to green organic 
colorant

Textile industry

Plant Quercetin R.cartharticus Bright yellow Textile industry

Plant Chamomile Anthemis tinctoria Dark yellow Textile industry

Plant Chestnut Castanea sativa Brown Textile industry

Plant Cutch Acacia catechu Reddish brown All Dyeing Industries

(Continued )
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manner of absorption (Figure 3: Textile dyes classifi-
cation according to their structure).

3.2. Impact of dyes

The existence of colors in sewage at extremely 
low quantities is very apparent and undesired 
[39]. Over one lakh synthetic dye are in market 
with average production of 7 × 105 tonnes color-
ants are synthesized yearly [40,41]. If exposed to 
light, water, or to any stress many complex dyes 
will not fade [42,43] Because of the complexity 
of their structural configuration and origin, dyes 
are difficult to decolorize. There are several 

structural variants, including acid, alkaline, dis-
persion, aldehyde, diazo, and anthroquinone- 
based dyes. When municipality drainage systems 
process textile dye wastewater aerobically, mini-
mal decolonization occurs [44]. ETAD is 
a worldwide organization launched in 1974 
with member companies located around the 
world. Its mission is to protect the environment. 
Members must follow the ETAD Code of Ethics, 
which is based on the principles of ethical treat-
ment. They must also follow all national and 
international chemical rules [45]. ETAD has 
tested approximately four thousand dyes, which 
had a higher LD50 value of 2 × 103 mg/kg. Basic 

Table 1. (Continued). 

Source
Natural 

Dyes Derived from Colorant Chemical Structure Application

Animal Cochineal Dactylopius coccus Red Food and in lipstick

Animal Lac Kerria lacca Bright red Textile industries

Animal Tyrian Chicoreus 
palmarosae

Reddish-purple Textile industries

Animal Sepia Sepia apama Reddish-brown Pigment in Writing, Art and 
Cosmetics
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and diazo direct dyes are considered as most 
hazardous dyes that considered as major muta-
gens to the all living organism.

3.3. Effect of dyes on health

Sewage contains a range of toxic azo dyes and other 
organic contaminants. The hazardous contaminants 
are often discharged into the surroundings through 
a number of industries, including medicines, dyes, 
chemical synthesis, plastics, and petrochemicals. 
Numerous studies have focused on these toxic com-
pounds due to their detrimental effects because of 
their toxicity which directly or indirectly affects all 
organisms [46–49]. Nitrophenols irritate the eyes 
and cause skin necrosis. Additionally, nitrophenols 
are toxic to all the major organs, mainly the kidney. 
Exposure to 4-nitrophenol, in particular, produces 
a variety of health issues in humans, including vomit-
ing, sleepiness, migraines, and tachypnoea, through 
inhalation or ingestion, because of its cytotoxic, 
embryotoxic, oncogenic, and mutagenesis properties 
[50,51]. The majority of artificial azo dyes have 
a complex structure containing mono-di- azo dyes 
that exhibit severe allergic reactions when released in 
the ecosystem. It may ultimately cause mutation in 
different body parts [52–54] Diazo dyes, such as 
Congo red and Bismarck brown R, contain two azo 
groups and are very oncogenic and genotoxic. 

Additional consequences of azo dyes in water bodies 
include lower penetration of light into the water and 
decreased oxygen levels, both of which have an influ-
ence on the development of aquatic creatures and 
biota owing to lower photosynthetic activity. As 
a consequence, several governments have outlawed 
the use of azo dyes, while many nations continue to 
use those [55,56]. (Figure 2)

4. Biomaterials as adsorbent

Eliminating dye waste by traditional biodegradation 
procedures is unsuccessful because none of the textile 
chemicals are biodegradable [57,58]. Physicochemical 
processes such as membrane separation, filtering, che-
mical oxidation, and coagulation are cost-effective 
[59,60] (Figure 2). While adsorption techniques incor-
porating active carbons are shown efficacy in remov-
ing colors from industrial wastewaters, they are also 
rather costly [61,62]. There has been a surge in 
research interest in recent years on the sorption cap-
abilities of bio-waste materials of plants and animals in 
regulating contaminants. These biomaterials, in con-
junction with other biological processes, are demon-
strating promising as a better solution to currently 
used techniques of remediation and recovery of ions 
of high value derived from wastewater wastes water-
ways [61,62]. Laccases may be used to decolorize 
textile effluents in bioremediation [62]. Such 

Figure 2. Methods in Dye treatment in Industries.
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biological techniques have sparked an explosion and 
the research scientists started exploring biomaterials 
types that can be used as bioremediator in the various 
industrial sectors. The efficacy of many biomaterials 
shows promising results to mention a few: fly ash [63] 
modified calcined diatomite [64] unburned carbon 
[65] sand [66,67] Chitosan beads (Cdstari 2008), 
sugarcane bagasse [68,69] plasma-treated synthesized 
polyester fibers in removing synthetic dyes [70] and 
Mango stone [71] peanut husk [72], date stones [73], 
citrus limetta peel [74], and oil palm [75] have all been 
documented, because to their availability & regenera-
tive character, as well as their active functional groups 
such as hydroxyl and carboxyl groups [76]. Over the 
last decades, many studies have been elicited in the 
sorption potentials of solid waste of flora and fauna 
origin, either in their original condition or chemically 
altered forms, with the purpose of regulating harmful 
contaminating ions in waste waters. These techniques 
are shown themselves to be viable alternatives to con-
ventional and traditional ways of pollution avoidance, 
spurring ongoing and expanded study in this sector

5. Biological methods

Biological approaches, namely the breakdown of dyes 
by biological processes like phytoremediation, are 
a low-cost, high-efficiency approach for removing 

dye from textiles discharge [77]. Biological material 
like algae, bacteria, fungus, and yeasts that can degrade 
and remove a variety of synthetic colors [78]. 
Phytoremediation-based techniques have indeed 
been effectively employed to degrade textile industry 
wastewater. Especially compared to other approaches, 
biological treatment (i.e., bioremediation) is cost- 
effective, environmentally beneficial, and creates less 
sludge [79]. It results in the oxidation of reactive 
polymers to a less hazardous inorganic product (i.e., 
chromophoric group) which ultimately aids in elim-
inating toxic compounds [80]. Recently adsorption of 
synthetic dyes was being analyzed by using 
a synergistic plant-microbe combination that main-
tains a sequential anaerobic-aerobic phase [81]. 
Synthetic dye like azo dye degradation takes place by 
a two-step procedure: first, the dyes are broken down 
to generate aromatic amines, and then the aromatic 
amines are further hydrolyzed to generate tiny non- 
toxic compounds in aerobic condition [82,83]. The 
strategies are been designed to reap the benefits of 
bacteria’s ability to survive both in aerobic and anae-
robic environments in order to completely degrade 
the azo linkages produced inside the dyes. 
Microorganisms are effective at lowering COD and 
turbidity but ineffective at eliminating color [84,85]. 
So, in the coming decades, the usage of biological 
approaches for color removal may include the first 

Figure 3. Textile dyes classification according to their structure °.
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phase as anaerobic processes and the second stage as 
aerobic processes [86].

5.1. Phytoremediation

In the past two decades, phytoremediation has gained 
popularity as an environmentally benign, cost- 
effective, and complimentary technique to other read-
ily available remediation methods [87–89]. Based on 
the properties and hydrophilicity of the pollutant, 
plants using one of two techniques to deal with 
them. They either collect pollutants in their cell orga-
nelles or breakdown to form intermediate metabolites 
or CO2 and water via enzymatic systems [90,91]. 
Antioxidants from plants that are not enzymatic and 
have two critical properties namely phenols and fla-
vonoids. The composition of both substances has been 
attributed to their capability in eliminating generated 
Reactive oxygen species under stressful circumstances 
due to their redox characteristics that enable them to 
operate as singlet oxygen quenchers [92]. The need for 
plant species and microbes to neutralize and detoxify 
textile dyes as well as at the contaminated site defi-
nitely sounds to be a promising solution [9394]. 
Phytoremediation is a renewable energy-based reme-
dial technique that utilizes flora to decontaminate 
polluted places. Plants retain and stabilize toxins via 
their intrinsic enzymatic and absorption systems 
(Figure 4).

5.2. Green remediation of dyes

Green chemistry seems to be an appropriate prospec-
tive method of treatment of pollutants; it is accepted 
for its renewable energy sources, low cost, give the 
most accurate and can be used directly in polluted sites 
due to its long-term degradation potential. Many 
indigenous plants have been offered for dye removal, 
including Typhonium flagelliforme, Phragmites austra-
lis, Rheum rabarbarum (rhubarb), Blumea malcolmii, 
and Rheum hydrolapatum [95–99]. Similarly, 
Glandularia pulchella, Tagetes patula,Petunia grand-
iflora, Aster amellus, Zinnia angustifolia and Portulaca 
grandiflora are prepared flora in dye degradation 
[100–107]. In warmer climates, the use of L. minor 
Linn. favored the elimination of the Basic Red 46. 
Diverse species, including Scirpsu grossus, Tecoma 
stans var. angustata, aquatic plant Spirodela polyrrhiza 
and Eichhornia crassipes (water hyacinth), have also 
been considered for their dye degradation capability. 
For their function in dye biodegradation, 
a consortium of P. grandiflora and G. grandiflora 
plants has been created. Additionally, a combining 
method using plant-associated microorganisms in 
combination with M. sativa L. and S. cannabina 
Pers. has been suggested.

Some native species, such as B.malcolmii, 
T. flagelliforme, R. hydrolapathum,R. rabarbarum, 
and P. australis were used to treat nylon effluent 
[108–112]. Aquatic plants are capable of discoloration 

Figure 4. Classification of Bioremediation.
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and detoxify dye-containing effluent. They were 
employed in dye degradation experiments at the 
laboratory scale and in situ [113,114]. Aquatic macro-
phytes like Ammannia baccifera, Typha domingenesis 
Paspalum scrobiculatum Fimbristylis dichotoma, 
Ipomoea aquatica, Alternenthera philoxeroides, 
Typha angustifolia, Phragmites australis and Salvinia 
molesta have recently been used as a decolorizer in 
a variety of manmade pollutants [115]. Most develop-
ing nations have used HRTS practices to achieve zero 
discharge from industrial dyes via the growth and 
maintenance species [116]. Plants such as Accasia 
mangium, Dalbergia sisoo, Azadirachta indica, and 
Eucalyptus sp. have the ability to degrade a huge 
quantity of pollutants. The contaminants adsorbed 
through trees are later evaporated into the atmosphere 
through stomatal pores [117]. Even though the usage 
of blooming and decorative plants seems appealing, 
their dye removal efficiency in the site is still to be 
validated. Panicum virgatum has reported that they 
have the ability to break down popular herbicides like 
atrazine [118]. Vetiver grass, mustard and tomato, and 
have all been shown to absorb EtBr from polluted 
locations [119]. Salix viminalis and B. juncea have 
shown the ability to phytoremediate polycyclic aro-
matic hydrocarbon-contaminated areas [120]. The 
use of S. portulacastrum, T. vulgaris, R. officinalis, 
B. juncea and T. angustifolia was investigated for 
in situ waste water treatment at artificial wetland and 
known to be potential species for dye removal. 
However, field implementation of phytoremediation 
continues to encounter a number of challenges, 
including the pollutants’ bioavailability, absorption, 
phytotoxicity, and evapotranspiration [121,122]. 
(Table 2: List of plant with structure and mechanism 
of the dyes).

5.3. Remediation of dye using plant-microbe 
synergism

One among recent techniques in phytoremediation is 
that using the plant species and microbes (synergism) 
that are indigenous in marshes and upland areas over 
hundreds of years may prove to be more effective at 
cleanup. Plants’ root systems disseminate microbes 
throughout the ground surface and aid in their pene-
tration of such impenetrable subsoil. Metabolic by- 
products from the roots promote the survivability and 
activity of microbes, resulting in an even more 

effective breakdown of contaminants [123]. 
Microbes either increase the bioavailability of con-
taminants to plants or minimize their cytotoxicity. 
Therefore, a synergism approach may increase the 
efficacy of phytoremediation. Several research on the 
synergistic removal of pollutants by flora and micro-
organisms have been documented. The elimination of 
PAHs and TPHs was enhanced in F. arundinacea by 
inoculating with rhizobacterial cultures [124,125]. 
Thlaspi caerulescens rhizospheric bacteria were inocu-
lated in the roots, which resulted in a threefold rise in 
zinc concentration and a fourfold increase in zinc 
accumulation in shoots [126]. Studies show Bacillus 
subtilis SJ-101 promotes nickel building up in Brassica 
juncea [127].B. subtilis is an suitable strain that has 
alkaline pectinase properties, which is unique para-
meter for pretreatment of waste water from both 
paper and fabric industries [128]. In aquatic circum-
stances, O. intermedium BN-3 stimulated lead (Pb) 
absorption in the woody E. camaldulensis [129]. The 
synergy between P. nigra and P.putida has been shown 
to be highly efficacious in degrading diesel oil [130]. 
The consortial activity of Z. angustifolia and 
E. aestuarii ZaK resulted in a much more effective 
breakdown of the dye Remazol Black B [131]. 
(Table 3: List of plant-microbe synergism with struc-
ture and mechanism of the dyes).

5.4. Remediation of dye using phytoplanktons

Several macrophytes were recommended for dye 
degradation, and they are few to mention: Spirodela 
polyrhiza, Nasturtium officinale, Paspalum scrobicula-
tum, Alternanthera philoxeroides and Typha angusti-
folia [132–135]. The influence of the plant’s initial 
biomass (1–6 g) on the Acid Bordeaux 
B decolorization efficiency shows raising the plant’s 
initial biomass resulted in a higher ability for dye 
removal [136]. The increased plant biomass may result 
in a large concentration of internal and extracellular 
enzymes involved in dye breakdown, resulting in 
a rapid rate of dye removal [137]. Furthermore, high 
macrophytes abundance provides an abundance of 
surface areas for dye sorption [138]. For example, 
increasing the biomass of Nasturtium officinale, 
Spirodela polyrhiza, and Lemna minor (from 1 to 4 
g) has been shown to increase the decolorization effec-
tiveness of Acid Blue 92, Basic Red 46 and Direct Blue 
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Table 2. Plant in remediation of dyes.
Plant Dyes Structure and formula weight Mechanism Reference

T. erecta L. 
T. ammi L 
H. rosa- 
sinensis L 
C. indicum L 
B. 
fedtschenkoi 
C. roseus L

Triarylmethane dye 80% Efficiency in removing MB and 
CR dyes from inorganic dye

[Navjeet Kaur 
2021.]

C. sativa L Benzo α pyrene and 
chrysene

These species remove 
hazardous hydrocarbons 
from effluents dumped 
region producing a high 
microbial activity

[Campbell S, 
et al. 
(2006), 
Sanjeev 
Kumar 
2017]

Glandularia 
pulchella

3-ethylbenzothiazoline- 
6-sulphonic acid, 
n-propanol

Improved degradation of 
tyrosinase, and 2,6-DCIP 
reductase

[Kabra, A.N 
2011]

T. flagelliforme Reactive Red 2          

Methyl Orange

Potential species for the 
removal of Phenol, 
indophenol reductase

[Kagalkar, A.N 
2010]

(Continued )
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Table 2. (Continued). 

Plant Dyes Structure and formula weight Mechanism Reference

Aster amellus Remazol Red RB-133 Improvement in the activity 
of oxidase,  
myeloperoxidase,  
veratryl methanol 
monoxide & methylene 
reductase.

[Khandare, R. 
V. 2011a]

Petunia 
grandiflora 
and 
Gaillardia 
grandiflora

Brilliant Blue G Laccase, Veratryl alcohol 
oxidase tyrosinase, and 
lignin activity were 
determined

[Watharkar, 
A. et al. 
2014]

Nopalea  
cochenillifera

Reactive Red 141 Removal of 2,6- DCPIP 
reductase

[Adki, V.S 
2012]

Cucurbita pepo Direct Yellow DY106 Extracted peroxidase [Boucherit, 
N et al. 
2013]

Portulaca 
grandiflora

Reactive Blue 172 Increased activity of lignin 
oxidase, tyrosinase and 
DCPIP reductase

Khandare, R.V 
et al. 2011a

Eucalyptus 
sheathiana

Basic Violet 10 Achieved maximum 
adsorption level

Kooh, M.R.R 
2016

(Continued )
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129, and by 29%, 51%, and 58% respectively 
[139–141].

5.5. Remediation of dye using Algae

Algae are prevalent in both fresh and sea water and are 
now being widely explored as a biosorbent [142,143]. 
Microalgae plays pivotal role in the treatment of bio-
logical pollution. Its capacity to biologically purify 
wastewaters from a variety of sources while employing 
effluent as a growing medium has shown considerable 

promise as a sustainable and cost-effective wastewater 
treatment technique [144,145]. Algae have the greatest 
biosorption potential and electrostatic force of attrac-
tion for pollutants due to their enormous porous 
structure and affinity. Developing effective biodegra-
dation strategies for microalgae is a major focus of 
research community [146]. Microalgae bioremedia-
tion is a relatively new technology because it is more 
environmentally friendly and has a smaller carbon 
footprint than other traditional approaches [147]. 
Numerous researches have shown that metabolites of 

Table 2. (Continued). 

Plant Dyes Structure and formula weight Mechanism Reference

T. ivorensis Direct Red 28 Maximum adsorption of MB 
and CR

Babalola, J. O., 
et al. 2016

Thymus 
vulgaris L, 
Rosmarinus 
officinalis L

Allura red AC peroxidase activity Zheng, Z., 
et al. (2000)

Prescaria 
barbata

Reactive black 5 50% dye removed in the 
adsorption

Saba, B., et al. 
2015

Blumea 
malcolmii 
Hook

Malachite Green Decrease in the BOD, COD 
and ADMI values

Anuradha  
N. Kagalkar 
et al. 2011
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toxic chemicals found in effluents, such as PO4
3-, 

RCOO, -OH, and -NH2, are digested by algae [148].
Algae decolorize the pigment in three distinct 

ways:

(i) To begin, algae collect algal biomass, 
CO2, and H2O via the use of 
chromophores;

(ii) algae play an important role in the tran-
sition of chromophore elements to non- 
chromophore element;

(iii) finally the resultant chromophores are 
absorbed on algae [149].

Numerous investigations have shown that the algae 
have more efficacies in decolorizing azo dyes by gen-
erating the azoreductase enzymatic activity [150–152]. 
According to certain research, algae species such as 
S. rhizopus for acid red 247, Chlorella pyrenoidosa for 
methylene blue, N. muscorum, U. lactuca, 
Desmodesmus sp, Cosmarium sp, Sargassum sp and 
Pithophora sp, potential species in degrading azo dyes 
into aromatic amines, which are then catabolized into 
simpler nontoxic forms. Several researchers have 
revealed that algae species use azo dyes as a source of 
carbon and nitrogen for growth [153]. C. vulgaris are 
applied as a natural adsorbent for removing cationic 
dyes. Electrostatic interaction causes the negative 
charged C. vulgaris to absorb the positively charged 
methylene blue [154].

U. lactuca is a tiny algae that is widespread 
across the ocean and is edible, sometimes 
referred to as sea lettuce. Ulva lactuca has been 
authorized as an adsorbent for remediating dye 
effluent [155–158] and hazardous heavy metals 
[159,160]. U. lactuca, green algae, was widely 
used as a biosorption for removing methylene 
blue dye. The capacity of U. lactuca to remove 
dye colour is time-dependent, algal biomass- 
dependent, dye concentration-dependent, and 
pH-dependent. The increased biosorption during 
the first contact period might be a result of the 
dye’s key driver onto the surface of U. lactuca 
[161]. (Table 4: List of macrophytes, structure 
and mechanism of dye) 

5.6. Remediation of dye using Fungi

Fungi-mediated remediation has been shown to be 
successful in the elimination of triphenylmethane 
dyes [162]. Usually, remediation is accomplished by 
the employment of P. chrysosporium, multicolored 
T. versicolor [163,164]. L. lacteus [165], F. solani 
[166], and P. simplicissimum have all shown to be 
potential strain in dye removal [167,168]. Fungi are 
widely used to cultivate and provide a proteolytic 
enzyme that is effective for color degradation 
[169,170]. They produce enzymes that naturally 
degrade hazardous dye compounds into less or harm-
less simplified variants [171]. Coriolopsis sp. (1c3) has 
been reported to decolorize MG, CB, CV and MV 

Table 3. Plant Microbe synergism in remediation of dyes.
Plant/Microbe synergism Dyes Structure and formula weight Mechanism Reference

P. grandiflora and P. putida Direct Red 81 Root help in adsorption of 2,6-DCIP 
reductase

[Khandare, R.V., 
2013]

P. grandiflora with 
B. pumilus

Reactive Blue 
19

98% sorbent rate of flavin reductase activity
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with 52, 91, 94, 52, 97% decolorization respectively 
[172]. It is successively studied that Aspergillus niger, 
Aspergillus oryzae, and Rhizopus arrhizus is capable of 
removing acid orange 7 dye with a stability of 9.97, 
9.76, and 11.43% in a neutralized aqueous media. This 

is because the amino groups on the chitosan molecules 
on the attenuated fungal cell wall were positively 
charged, resulting in positively charged – NH3

+ 

groups that are electrostatically attracted to the acid 
orange 7 dye. The adsorption of acid orange 7 dyes by 

Table 4. Macrophytes in remediation of dyes.
Plant/Microbe 
synergism Dyes Structure and formula weight Mechanism Reference

Sargassum 
glaucescens, 
Stoechospermum 
marginatum

Naphthol Blue 
Black

Amine groups help in binding the dye [Daneshvar, 
E et al. 
(2012)]

Gracilaria verrucosa Phenoxyalkanoic 
acid

The biosorbent strength was determined to 
be 22.3 mg/g

[Garge MS 
(2012)]

Cyanobacteria and 
N. limckia HA 46

Reactive Red 198 At pH 2, the biomass had a maximal 
sorption capacity of 94%.

Chlorella vulgaris yellow 2 G 63–69% of the dark color were removed 
from azo dye

Aravindhan 
R, et al. 
(2007)

Chlorella vulgaris Ramazol golden 
yellow RNL 
(Reactive Orange 
107)

For all dyes, the obtaining maximum 
optimal absorption capacity is at a pH of 
2.0

Aksu Z, 
et al. 
(2003)

Anabaena 
hydrophila

Reactive Blue 5 The optimum dye degradation effect was 
recorded at pH range of 6–9 and varied 
dye concentrations (5–50 mg/L)

Ogugbue, C. 
J., (2012)
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dead fungal cells was at low pH. Instead of using free 
mycelium, the administration of Coriolopsis (1c3) sp. 
in biofilm form was more effective, resulting in 
a much higher level of Crystal violet and Cotton blue 
removal. The decolorization of CB and CV was 79.6 
and 85.1% respectively, with the application of biofilm 
[173]. Aspergillus carbonarius, a dead biomass, is an 
efficient quencher of hexavalent chromium from 
e-waste polluted water [174]. (Table 5: List of Fungi, 
structure and mechanism of dye).

5.7. Remediation of dye using Yeast

Many studies have utilized yeasts to breakdown dye 
from effluents. Debaryomyces polymorphus has been 
used to breakdown the dye Reactive Black 5 [175], 
while several yeast species isolated from tropical rain-
forests, including as Trichosporon, Cyberlindera, 
Barnettozyma, and Candida, have also been used to 
breakdown colors [176]. Baker<apos;>s yeast has also 
been used recently to degrade Astrazone basic dye 
[177] Galactomyces geotrichum MTCC 1360 was 
shown to have an 88 percent removal efficiency in 
mixes of structurally distinct dyes (Remazol Red, 
Golden Yellow HER, Rubine GFL, Scarlet RR, 
Methyl Red, Brown 3 REL, and Brilliant Blue) [178]. 
Staphylococcus epidermidis was used to breakdown 
Crystal Violet, Phenol Red, Malachite Green, Methyl 
Green, and Fuchsin into non-toxic compounds [179]. 
Moreover, a comprehensive investigation on the iso-
lation of yeasts and their capacity to breakdown 
diverse colors was reported [180]. The yeast 
Saccharomyces cerevisiae is often used as 
a biomaterial in textile wastewater remediation [181]. 
The elimination of methylene blue (MB), a reactive 
dye, was investigated using Saccharomyces cerevisiae, 
on the other hand, significantly reduces the color 
absorbance and COD value of azo dyes, ramazole 
blue (Vinyl sulfone), by 100% and 61.82 percent, 
accordingly [182]. The use of yeast as a mediator for 
adsorbing congo red and methylene blue demon-
strated that electrons were transported to anode 
from the substrate through the dyes, resulting in the 
generation of electrostatic force. MOP<apos;>s high 
ability for removing CR paves the way to the develop-
ment of a high-performance biosorbent for the 
removal of anionic dyes from aqueous environments 
[183]. For the treatment of industrial waste, the 

adsorbent containing Brevibacillus parabrevis bacteria 
holds great potential [184]. The energy generated by 
the fuel cell was then used to remove traces of potential 
lead from a dilution water solution [185]. Candida 
tropicalis had the capacity to adsorb basic violet 3, 
and this is due to the smallest particle size (150– 
300 µm) and larger surface area [186].

5.8. Microbial remediation

Microbial degradation has been extensively 
explored and evaluated, mostly with the purpose 
of enhancing dye degradation [187]. 
Microorganisms play a critical role in the full 
breakdown of dyes. Microbial degradation of 
dyes has been proved to be very effective for 
resource recovery and sustainability [188]. 
Various microbes have already been identified as 
bioremediator in various industries [189–193]. 
Microbes based researches have been published 
using a variety of microorganisms in liquid and 
consortiums culture [194–197]. Adsorption of syn-
thetic dyes using laccase enzymes from P. rubidus, 
B. juncea, T. versicolor and T. hirsuta [198–201] 
and lignin peroxidase enzymes from 
B. laterosporus MTCC 2298 show 90% degradation 
potential. There is a surge for bio remediating 
techniques in waste disposal. So, there is a need 
to develop new and innovative procedures for the 
effective and environmentally friendly disposal of 
diverse kinds of pollutants at a low operating cost.

5.9. Genetically modified organism in 
bioremediation

The introduction of a desired gene of interest into 
a microbe for a specific reason that is not nor-
mally found in the target host results in 
a genetically modified organism. Although the 
environment has a self-cleaning mechanism in 
response to climate and ecological stress, there is 
evidence that it would be inadequate and sluggish 
to remove contaminants [202,203]. Numerous 
chemical, physical and biological methods for the 
elimination of toxic chemicals including dyes have 
been explained. These methods may be applied 
alone or in combination [204–206]. Nowadays, 
toxic chemicals from dyes can be easily removed 
by genetically modified microbes, which will have 
high resistance for pH, light and temperature, but 
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it is time consuming and labour intensive techni-
que [207]. Each genetically modified microbe is 
unique in its capacity to degrade, detoxify, and 
decolorize dyes. GMOs are the most often utilized 
organisms in bioremediation with zero toxic dis-
charge in water bodies [208]. 

Genetic modification has revolutionized the con-
cept of bioremediation [209]. Under certain cli-
matic circumstances, it is possible to enhance 
dye removal by employing genetically engineered 
microorganisms. GMOs may be created by 

Table 5. Fungi used in remediation of dyes.
Plant/Microbe 
synergism Dyes Structure and formula weight Mechanism Reference

T. polyzona Bisphenol     

Bromophenol 
Blue

Root help in adsorption of 2,6-DCIP 
Reductase 
Rapidly oxidized bisphenol

Chairin, 
T (2013)

A. bisporus 
T. orientalis

Reactive blue 
49

Combined adsorption capacity was 72.86mgg− 1 [Akar, S.T 
et al. 
(2009a)]

Rhizopus arrhizus Direct Yellow 
86

Metal-complex dye biosorbed by 85.4-mg dye g − 1 Aksu, Z., 
et al. 
(2010)

Aspergillus 
fumigatus

Methylene 
blue

Kalyani, P., 
et al. 
(2017)

Aspergillus 
fumigatusXC6

Reactive 
Yellow 3

While nourished with 1% sucrose, the strain destrain 
the discharge at initial pH

Xian-Chun 
Jin. et al. 
(2007)

Phanerochaete 
chrysosporium

4-Nitrotoluene Capability of partly or effectively degrading 
recalcitrant organic contaminants

Barr  
D. P et al. 
(1994)

Trametes versicolor Indigo 
carmine

Laccase was the enzyme responsible for dye 
degradation

Wong,  
Y. (1999)
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genetic modifications across species or via 
genetic manipulation [210–213]. To create 
GMOs, functional genes from a variety of bac-
teria were isolated from R. eutropha, B. idriensis, 
P. putida, M. marinum, E. coli and 
S. desiccabilis. The organism modified showed 
the elimination of toxic chemicals, including 
synthetic dyes [214]. Many innovative techni-
ques were available to determine microbial gen-
ome expression, including polymerase chain 
reaction (PCR), single-stranded conformation 
polymorphism, 16S rDNA sequencing, randomly 
amplified polymorphic DNA and other emerging 
sequencing technologies [215–217]. Genetically 
modified E. coli SS125 were used for the break-
down of Remazol red dye by cloning the azor-
eductase gene from B. latrosporus RRK1 into 
E. coli DH5a and pAZR-SS125 [218]. 
Engineered E. coli JM109 (pGEX-AZR) strain 
in the laboratory that decolorizes direct blue 7 
[219]. Remazol red may be degraded in the pre-
sence of 0.8 mg/L of O2 using the azoreductase 
gene from B. latrosporus RRK1 and inserted into 
E.coli [220]. To break down and denature tri-
phenylmethane dyes, a novel consortium of four 
strains namely A. hydrophila, A. radiobacter, 
Bacillus sp and S. paucimobilis [221], were 
used. CV and MG were triphenylmethane color 
are employed in dyestuff industry sectors and in 
the making of printing paper were successfully 
degraded using the above mentioned 4 novel 
consortiums [222–224]. Certain TPM dyes are 
xenobiotic chemicals, which are commonly 
regarded as a major source of environmental 
contamination [225,226]. The mutagenicity of 
CV and MG were degraded using Salmonella 
typhimurium TA98 and TA100. The bacterial 
consortium has been proven as one of the vital 
techniques to be used in dye industries [227] 
(Table 6: Bacteria/ Bacteria Consortium used in 
the remediation of dyes).

5.10. Bioflocculants in dye removal

Bacteria capable of creating bioflocculants are widely 
separated from wastewater treatment plants. The bio-
flocculants derived from indigenous microorganisms 
were extremely successful in decolorizing the various 

colours. Bioflocculants are used in many industries 
including treating wastewater, household, brewery, 
and pharmaceutical wastewater treatment, textile 
manufacturing, sewage treatment systems, and cos-
metics processing [228,229]. Bioflocculants generated 
by strains xn11 + xn7 were successful in eliminating 
the basic fuchsin (100 mg L1) but comparatively less 
efficient at decolorizing reactive black (50 mg L1), with 
dye removal efficiencies of 93 and 95%, respectively 
[230]. Due to their low cost and ease of application, 
biological approaches have become the subject of 
interest on dye degradation and decolorization [231]. 
Bioflocculants generated by B. subtilis (E1), 
E. acetylicum (D1), K. terrigena (R2), S. aureus 
(A22), P. pseudoalcaligenes (A17), and 
P. plecoglossicida (A14) were capable of decolorizing 
textile industrial effluent with maximum adsorption. 
Fungus F. carnea was used as a bioflocculant, that 
enhanced the reduction and removal of three cationic 
dyes namely Orlamar Red BG, Orlamar Blue G, and 
Orlamar Red GTL [232]. Bioflocculant Rhizopus 
arrhizus was used to degrade Remazol Black 
B reactive dye at optimal adsorption temperature 
35°C.Due to decreased surface activity, there was 
a decrease in adsorption as the temperature increased 
[233,234].

Cations promote flocculation by neutralizing and 
stabilizing functional groups’ residue negative charge 
and by establishing links interconnecting particle. 
Divalent and trivalent cations promote the initial sorp-
tion of biopolymers on suspended solids by lowering 
the negative charge on both the polymer and the 
particle [235]. Mn2+, Mg2+, and Ca2+ have been 
found to form complexes with bioflocculants, so 
increasing flocculation and decolorization [236]. 
However [237,238], demonstrated that the presence 
of any cation, including Ca2+, did not improve the 
flocculating activity of Citrobacter sp. TKF04 and 
G. impudicum KG03. Due to the high salt content 
in dyeing operations, the salt concentration in dye- 
containing effluent is a critical factor affecting bio-
sorption ability [239]. Flocculants may remove dyes 
(anionic azo-dyes) by neutralization of charges as 
well as by bridging effects, with the former being 
the primary mechanism [240,241]. The dye func-
tional elements seem to favour new interactions, 
which results in the development of insoluble dye 
which may be precipitated. Furthermore, the efficacy 
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Table 6. Bacteria/ Bacteria Consortium used in the remediation of dyes.
Plant/Microbe 
synergism Dyes Structure and formula weight Mechanism Reference

A. caviae, 
P.mirabilis 
R. globerulus

Acid Orange 
7

Even at 200 mg/l, 90 percent decolorization 
may be accomplished after 16 hours

[Joshi T, et al. 
(2008)]

Bacillus gordonae, 
Bacillus 
benzeovorans, 
Pseudomonas putida

Acid Blue 
277 
(Tectilon 
Blue)

Dye degradation is accurately simulated 
during a 24-hour at a response rate of 200– 
1000 mg/l

[Walker et al. 
(2000)]

B. subtilis 
E. coli Azotobacter 
Providencia sp. SRS82

Acid Black 
210

Under optimized conditions, 100 mg/L dye 
degrades in 90 minutes

Agrawal et al. 
(2014)

P. polymyxa 
Bacillus polymyxa 
Micrococcus luteus

Reactive 
Violet 5 R

Within 37 hours, it demonstrated a 94 percent 
decolorization ability in alkaline pH

Moosvi, 
S et al. 
(2005)

Alcaligenes faecalis, 
Sphingomonassp. 
Bacillus subtilis, 
Bacillus thuringiensis

Direct Blue- 
15

Most capable of decolorizing at alkaline pH at 
30°C

Kumar 
K (2009)

Proteus vulgaris 
Micrococcus 
glutamicus

Scarlet R After 3 hours, a decrease of over 90% in TOC 
and COD

Saratale RG 
et al. (2009)

(Continued )
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Table 6. (Continued). 

Plant/Microbe 
synergism Dyes Structure and formula weight Mechanism Reference

Bacteroidetes Firmicutes The CODCr elimination rate, the BOD5/CODCr 
value, and the synthesis of volatile fatty 
acids (VFAs) all were almost 95% successful

Liu, N., et al. 
(2016)

Bacillus thuringiensis 
SRDD

Acid Red 
119

Exhibited decolorisation up to 1000 ppm of 
AR-119 dye after 7 days of observation

Dave SR, Dave 
RH (2009)

P.aeruginosa NGKCTS Reactive 
R111

Within 5.5 hours, 91 percent of 300 ppm dye 
was decolorized across a wide pH range

Sheth, N.T., 
et al. (2009)

Sphingomonas 
herbicidovorans FL

Bromaminic 
Acid

98% within 24 h even for the initial 
concentration greater than 1000 mg l-1

Fan L et al. 
(2008)

Pseudomonas sp. strain 
DY1

Acid Black 
172

Adsorption of dyes reached a maximum of 
2.98 mmol/g biomass

Du LN, et al. 
(2012)

(Continued )
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Table 6. (Continued). 

Plant/Microbe 
synergism Dyes Structure and formula weight Mechanism Reference

Pseudomonas 
aeruginosa 23N1

orange 16 
Reactive 
red 21

Exhibit satisfactory ADMI reduction Mishra, S., 
et al. (2020)

Citrobacteria CK3 Reactive red 
180

Decoloration (96%) Wang (2009)

Klebsiella strain Bz4 Brilliant 
Green dye

Following 24 hours of treatment, 
81.14 percent of the dye has been 
removed, and after 96 hours, 100 percent 
of the dyes were removed

Zabłocka- 
Godlewska, 
et al. (2015)

Salinivibrio kushneri 
HTSP

Coomassie 
brilliant 
blue (CBB)

After 48 hours, over 80% of dye removal was 
seen

John J, et al. 
(2020)

Halomonas elongate 
Shewanella 
oneidensis MR-1

Methyl red Methyl red has a specific outcome of 0.27 mol 
min1 mg1

Eslami (2016); 
Cao (2017)
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of decolorization by microbial bioflocculants is 
highly dependent on the kind of dye, pH, exposure 
to light and flocculation concentrations.

6. Recommendation and future perspectives

Although bioremediation had already established as 
an effective treatment option for water purification, 
various obstacles prevent its widespread commercial 
applicability. The current practices must be resolved in 
order to maximize the significance of bioremediation 
technologies in industrial wastewater treatment [242].

● Future research on dye degradation should 
focus on reducing the challenges posed by 
constraints on plants and microorganisms.

● Recent and early successful research must be 
re-examined to optimize their effectiveness.

● A biodegradation method that is effective should 
take into consideration degradation pathways, 
environmental conditions, interfacial properties, 
and degradation processes that impact pollutant 
removal.

● It is vital to ensure that the degraded products do 
not pose a threat to aquatic life or vegetation.

● The notable intent of the research was to 
create marine psychrophilic bacteria with 
novel and unique biodegradation capabilities 
for the biosorption of chemically polluted 
cold environmen.

The investigation of the processes and 
hypotheses behind bacterial degradation of 
dye wastewater would benefit the exploration 
of bacterial degradation kinetics (Figure 5).

7. Pros and cons of plant microbe based dye 
remediation

Pros:

● Despite certain limitations, phytoremediation 
and microbial remediation is mostly beneficial 
and may be incrementally improved using con-
temporary biotechnology approaches including 
the development of more degrading and resistant 
engineered organisms.

Figure 5. Protocol to be followed to achieve remarkable dye biodegradation.
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Cons:

● Effective in removing contaminants at low 
volumes and concentrations. Extremely excel-
lent for removing certain colors

● Resistant against a broad range of colored 
chemicals with a complicated structure.

8. Conclusions

Discharge of textile industry effluents to natural 
water bodies (such as natural ponds, rivers, creeks, 
streams, and river systems) may be classified 
according to the presence of non-degradable col-
ors and hazardous compounds. This chapter dis-
cussed the environmental impacts of dye 
contamination caused by some dye industries, as 
well as the many techniques employed by plants 
and bacteria to efficiently remediate polluted 
reservoirs and ecosystems. It is found that the 
use of bioremediation will be cheaper, and efficient 
for removing dyes from polluted water bodies. It is 
also cost-effective than the traditional than the 
physico–chemical approaches, which take higher 
energy. Microorganisms, yeast, fungi and plants 
are endowed with biological mechanisms that 
enable them to survive under synthetic dye stress 
and degrade the components to a less toxic or 
non-toxic state. These bacteria use a variety of 
activities, including precipitation, adsorption, 
enzyme-mediated ion transformation, sorption, 
and bioconversion strategies, in which the most 
successful techniques are phyto-extraction and 
phyto-volatilization. Furthermore, the changes in 
the environment must be favorable for bioreme-
diation to be effective. The application of biosor-
bents plants and microbes to polluted water bodies 
is dependent on the level of dye present and the 
kind of aqueous solution. Ecological variables are 
important for bioremediation effectiveness, since 
the microorganisms that were used will be killed in 
presence of unfavorable environmental conditions. 
Particularly fast-growing flora with a larger effi-
ciency for phytoextraction should be identified for 
treating wastewater. Additionally, a study of the 
impact of dye stress on beneficial endophytic bac-
teria should be performed, and efficient methods 
for increasing the bioremediation process should 
be recommended. While transgenic micro- 

organisms and plants have the potential to effi-
ciently remediate dye and organic pollutant- 
contaminated environments, their usage should 
be subject to severe biosafety standards to guaran-
tee that there are no health or environmental risks. 
Improved effective methods of using transgenic 
plants and bacteria should be identified that 
would enable successful restoration of contami-
nated habitats without the need for horizontal 
transfer of recombinant plasmids to indigenous 
species, which is presently a significant barrier.

Genetic engineering is an emerging field of study 
that will support the development of synergetic 
microbes capable of degrading and removing colours 
from industrial effluents through the metabolic fea-
tures of these consortia of organisms. This technique 
should be encouraged to enable more effective pollu-
tion treatment. So, plant and yeast microbial-based 
wastewater treatment techniques have now been 
achieved utilizing microbial consortia or a single dye- 
degrading microbial strain. However, metagenomic 
and enzymatic techniques must also be employed to 
investigate the functional makeup of bacterial diversity 
inside the polluted locations. The metal resistance 
genes that may be utilized to enhance particular 
heavy metal degrading strains of microorganisms. 
These concerns the adoption of alternative green tech-
nologies for the remediation of harmful synthetic 
chemicals found in wastewater.

Highlights

● Dyes play a pivotal role in our everyday 
life.

● Categorization, structure, and degradation 
of dyes in textile wastewater effluent.

● Critiques of several physicochemical factors 
on the dye removal effectiveness

● Emphasizes on plant metabolic and extractive 
ability to deal with colorant

● Readers will get insight into the future pro-
spects and pitfalls of remediation.
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