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Summary 
Treatment of the WEHI-2131 or CH31 B cell lymphomas with anti-/x or transforming growth 
factor (TGF)-/3 leads to growth inhibition and subsequent cell death via apoptosis. Since anti-/x 
stimulates a transient increase in c-myc and c-Jos transcription in these lymphomas, we examined 
the role of these proteins in growth regulation using antisense oligonucleotides. Herein, we 
demonstrate that antisense oligonucleotides for c-myc prevent both anti-/x- and TGF-/3-mediated 
growth inhibition in the CH31 and WEHI-231 B cell lymphomas, whereas antisense c-Jos has 
no effect. Furthermore, antisense c-myc promotes the appearance of phosphorylated retinoblastoma 
protein in the presence of anti-/x and prevents the progression to apoptosis as measured by propidium 
iodide staining. Northern and Western analyses show that c-myc message and the levels of multiple 
myc proteins were maintained in the presence of antisense c-myc, results indicating that myc 
species are critical for the continuation of proliferation and the prevention of apoptosis. These 
data implicate c-myc in the negative signaling pathway of both TGF-/3 and anti-/x. 

C ross-linking of membrane IgM receptors on a subset of 
routine B cell lymphomas, or addition of TGF-/3 to the 

same cells, can lead to increased transcription of the early 
response genes, cell cycle arrest in late G1, and eventual 
apoptosis (1-5). For example, anti-/x treatment of these cells 
causes c-rnyc messenger RNA to increase within the first hour, 
but message levels for this oncogene then decrease to below 
baseline levels at 4-8 h and completely disappear by 24 h in 
unsynchronized cells (4). Membrane IgM cross-linking on 
the WEHI-231 cell line also has been reported to cause a tran- 
sient increase in c-Jos transcription (5). In these inhibited cell 
lines, the retinoblastoma gene product (pRB) 1 is found in the 
hypophosphorylated, active form within 12 h in unsynchro- 
nized cells (6, 7, and Joseph, L., and D. W. Scott, manu- 
script submitted for publication). Despite extensive studies, 
the role(s) of these genes in regulating cell cycle progression 
and apoptosis in murine B lymphoma lines remains unresolved. 
Our work starts to elucidate the link between early response 
genes (c-myc, c-Jos) and later responses (pRB phosphoryla- 
tion) in these B cell lymphomas. 

G. Fischer and S. C. Kent contributed equally to this manuscript. 

1Abbreviation used in this paper: pRB, retinoblastoma protein. 

pRB, an anti-oncogene that regulates cell cycle progres- 
sion, is differentially phosphorylated throughout the cell cycle 
(8-10). Indeed, the state of phosphorylation of pRB has been 
linked to anti-/x- and TGF-/~-induced cell cycle arrest (6, 8-10). 
Thus, pRB becomes phosphorylated during G1 and remains 
in that state until it is dephosphorylated at G2/M; the 
hypophosphorylated form of the pRB protein is associated 
with the growth arrested phenotype of WEHI-231 B lym- 
phoma cells (6). 

The involvement of the c-myc gene in cell growth regula- 
tion has been well documented in several systems. For ex- 
ample, myc has also been implicated in cell cycle progression; 
thus, antisense oligonucleotides to c-myc have been shown 
to block cell cycle progression into S phase, but not egress 
from Go to G1 in human T cells (11). A role of c-myc has 
been postulated in the development of Burkitt's lymphoma 
since translocation of c-myc places this gene under control 
of the immunoglobulin enhancer. Upregulated and dysregu- 
lated expression of c-myc from this strong enhancer is thought 
to be a prime factor in oncogenesis and uncontrolled growth 
of these tumors (12). Similarly, dysregulated expression of 
the c-myc from the immunoglobulin/x or t~ enhancer results 
in fatal lymphoma in myc transgenic mice (13). Insertion of 
viral sequences, generally long terminal repeat sequences, 5' 
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of c-myc has been implicated in greatly upregulating and dys- 
regulating expression of c-myc and resulting in leukemia or 
lymphoma (14, 15). Thus, c-myc expression and regulation 
are crucial elements in cell cycle progression, oncogenesis, 
and proliferation control. 

Recent data by Evan et al. (16) and Bissonette et al. (17) 
suggest that overexpression of myc protein(s) at critical cell 
cycle barriers could lead to apoptosis and cell death. In addi- 
tion to results with mitogen-activated T cells (11), antisense 
oligonucleotides against the c-myc gene have been used to 
block cell cycle progression or apoptosis in several model 
systems, induding T cell hybridomas (18), human breast cancer 
(19), smooth muscle cells (20), and keratinocytes (8). In all 
of these cells, antisense treatment was shown to lead to a 
loss of myc protein and to cause either cell cycle arrest or 
the prevention of apoptosis. 

Based on the hypothesis that increased myc expression might 
target B lymphoma cells for apoptosis, we utilized antisense 
oligonucleotides for c-myc in order to block the increase in 
myc induced by anti-#. In the present studies, we demon- 
strate that antisense c-myc oligonucleotides, but not antisense 
for c-Jbs, protected against anti-/z- (or TGF-~--) induced apop- 
tosis in B lymphoma cells. However, antisense c-myc surpris- 
ingly acted by protecting against the loss of certain species 
of myc protein and not by decreasing the expressed levels of 
the oncogene product. Our results implicate a critical role 
for the stabilization of myc protein in modulating growth 
arrest by both of these reagents, and allowing continued cell 
cycle progression. 

Materials and Methods 
Cells and Antibodies. CH31 and WEHI-231 are both sIgM § 

murine B cell lymphomas that have been extensively characterized 
(1, 3-5). They were maintained in RPMI 1640 (GIBCO BRL, 
Gaithersburg, MD), supplemented with 5% FBS (Hyclone Labora- 
tories, Logan, UT), 2-ME, t-glutamine, penicillin, streptomycin, 
MEM nonessential amino acids, and sodium pyruvate as previously 
described (GIBCO BRL) (1, 21). Rabbit polyclonal anti-IgM 
(anti-~) was af~nity purified on an IgM, ~ (MOPC104E) column 
by standard methods and used at 0.1-10 ~g/ml for growth inhibi- 
tion. TGFq3 was obtained from R & D Systems, Inc. (Minneapolis, 
MN) and used at 1-10 ng/ml. 

Antisense Oligonucleotides. Phosphorothioate oligonudeotides 
were designed against the translational start sites of the respective 
genes. For c-m F, the oligonucleotide was designed against the trans- 
lational start site in exon 2. The nonsense sequence was derived 
by randomizing the antisense sequence. These oligonucleotides were 
purchased from the Regional DNA Synthesis Lab at the Univer- 
sity of Calgary (Calgary, Alberta, Canada). The sequences are as 
follows: 

routine antisense c-myc 5' GAAGTTCACGTTGAGGGGCAT 3' 

routine nonsense c-myc 5' ATCTGGTGAGGGCAAGCTATG 3' 

murine antisense c-~s 5' GTTGAAACCCGAGAACATCAT 3' 

Centrifugal Elutriation. The method of centrifugal elutriation 
has been reported previously (21). Briefly, 5 x 10 s exponentially 

growing CH31 cells were loaded into the separation chamber at 
rotor speed of 3,250 rpm and a flow rate of 30 ml/min. After loading 
the samples the rotor speed was decreased in increments to 2,770 
rpm, with two 40-ml fractions collected at each increment. The 
cell number and size distribution were measured from each frac- 
tion with a Channelyzer (Coulter Corp., Hialeah, FL) system to 
verify the purity and size of each fraction. The cell cycle stage of 
each fraction was verified by flow cytometry analysis of propidium 
iodide stained cells to stain for DNA content. 

FH]Thymidine Inco~oration Assay and Data Presentation. 100 #1 
of lymphoma cells (2 x lOS/ml) were placed in 96-well plates and 
incubated 24 or 48 h with varying concentrations of anti-~ or TGF-3 
and antisense DNA. 1 #Ci of [3H]thymidine (Amersham Life 
Sciences, Arlington Heights, IL) was added to each well and the 
cells were harvested 4-6 h later on a 96-well plate cell harvester; 
thymidine incorporation was measured on a 96 direct beta counter 
(both from Packard Instrument Co., Meriden, CT). All data are 
presented as percent control thymidine incorporation, using wells 
containing no anti-# as the control for each oligonucleotide treat- 
ment group. Addition of antisense or nonsense oligonucleotides 
did not significantly change the levels of thymidine incorporation 
in these controls by >10-20%. Typically, thymidine incorporation 
in control wells was >105 per sample and errors were <10% (and 
not shown). 

Propidium Iodide Staining for Apoptotic Nuclei. Cells were 
resuspended in 1 m1100% ethanol, placed at 4~ overnight, washed, 
and resuspended in 1 ml PBS containing 10 #g/ml RNase; cells 
were then incubated at 37~ for 0.5 h, after which propidium io- 
dide (50/~g/ml; both RNase and propidium iodide were from Sigma 
Chemical Co., St. Louis, MO) was added. 10 #1 of each cell sus- 
pension was then placed on slides and apoptotic bodies were visual- 
ized by fluorescence microscopy and recorded for the presence or 
absence of fragmented nuclei (22). 

Northern Analysis. Total cellular RNA was extracted from ex- 
ponentially growing WEHI-231 or CH31 cells by the method of 
Huang and High (23). Cells were lysed in 2% SDS, 200 mM Tris- 
HC1, pH 7.5, and 1 mM EDTA, on ice for 20 rain. Protein and 
genomic DNA were precipitated with potassium acetate (4.4 M 
with 2 M acetic acid) and pelleted by centrifugation. The superna- 
tant was extracted twice with chloroform/isoamyl alcohol (24:1). 
RNA was precipitated with cold isopropanol, centrifuged and the 
pellet then washed with cold absolute ethanol. RNA was resus- 
pended in diethylpyrocarbonate (DEPC)-treated (Aldrich Chem- 
ical Co., Milwaukee, WI) water with 40 U RNAsin (Promega, 
Madison, WI) and stored at -70~ until use. 

10/~g of total RNA was loaded onto formaldehyde gels with 
1.26/~M ethidium bromide (Sigma Chemical Co.) and run at 300 
Wh. Equal loading of lanes was confirmed by comparison of 28S 
and 18S ribosomal RNA bands. RNA was transferred to nylon 
membranes (Hybond N+; Amersham Life Sciences) by capillary 
blot. After fixing and prehybridization, membranes were probed 
with a 32p-labeled 1-kb fragment from rat c-myc exon 3, which 
cross-hybridizes with murine c-m F. After washing, membranes 
were exposed to X-OMAT AR film (Eastman Kodak Co., Roch- 
ester, NY) for 7 d. Blots were stripped and reprobed with a labeled 
1.5-kb fragment ofmurine 3-actin. Membranes probed with 3-actin 
were exposed to film for I d. Autoradiographs ofc-myc and 3-actin 
message levels were quantitated by scanning laser densitometry 
(Ultroscan XL; LKB Bromma, Gaithersburg, MD). 

Western Blotting for the pRB protein. Cells were prepared and 
lysed as described previously (6). Briefly, lymphoma cells were lysed 
with SDS stop buffer containing 2-ME, and the extract was boiled, 
electrophoresed, and transferred to nitrocellulose. Western blots 
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were probed using the anti-human pRB monoclonal, Mh-rb-02 
(PharMingen, San Diego, CA), which detects pRB in WEHI-231 
cells (6), followed by goat anti-mouse IgG coupled to alkaline phos- 
phatase (Fisher Scientific Co., Pittsburgh, PA). Nitroblue tetrazo- 
lium (NBT) and 5-bromo-4-chloro-3-indolyl phosphate (BCIP; both 
from Sigma Chemical Co.) were used for visualization of the bands. 

Western Blotting for the myc Protein. 106 cells were treated as in- 
dicated, washed twice in cold PBS, and lysed in RIPA buffer (50 
mM Tris, pH 8.0, 0.1% SDS, 0.5% deoxycholate, 1% NP40, 150 
mM NaC1) in the presence of 10 #g/ml each ofleupeptin, aprotinin, 
and AEBSF (Calbiochem, La Jolla, CA). After boiling, the cell ly- 
sates were separated on 10% SDS-polyacrylamide gels and trans- 
ferred to nitrocellulose. The blots were blocked with 10% goat 
serum (Sigma Chemical Co.) and 1% Nonfat dry milk in Tris- 
buffered saline with 0.5% Tween-20 at room temperature for 
2 h. Protein was visualized by incubation with rabbit anti-mouse 
myc (Upstate Biotechnology, Inc., Lake Placid, NY) at 1 #g/ml 
for 2 h at room temperature. After washing, blots were incubated 
with goat anti-rabbit IgG (1 #g/ml; Fisher Scientific Co.) con- 
jugated to alkaline phosphatase. NBT and BCIP were used for vi- 
sualization of the bands. 

Results 

Antisense c-myc Oligonucleotides Prevent Cell Cycle Arrest by 
Anti-lz. Treatment of murine B cell lymphomas with anti-# 
leads to an increase in c-myc transcription within 30 min (4). 
We hypothesized that expression of  myc protein could lead 
to growth arrest and apoptosis, as described recently in two 
models, including activation-induced apoptosis (16, 18). Ini- 
tially, we cultured WEHI-231 and CH31 cells with phos- 
phorothioate-modified comyc antisense oligonucleotides to de- 
termine the role of myc protein in the continued growth of 
these cell lines. Surprisingly, both cell lines divided normally 
in the presence of up to 10 #M of antisense c-myc oligonucle- 
otides (Fischer, G., and D. W. Scott, data not shown), thus 
allowing us to test the effects of these oligonucleotides on 
external signals and cell cycle progression. 

We next treated the WEHI-231 and CH31 lymphomas 
with increasing amounts of anti-/x and simultaneously added 
oligonucleotides for c-myc antisense sequences or added non- 
sense oligonucleotides of the same base composition as a con- 
trol. The data in Fig. 1 demonstrate that antisense oligonu- 
cleotides for c-myc virtually eliminated the growth inhibition 
by anti-/~ of CH31 (Fig. 1 A) or WEHI-231 (Fig. 1 B) lym- 
phomas, as measured by thymidine incorporation; nonsense 
oligonudeotides had a minimal effect, which was observed 
with all S-oligonucleotides. Growth inhibition was signifi- 
cantly prevented by 0.5 #M antisense c-myc, and the effects 
of anti-# were completely reversed at 1 #M antisense c-myc. 

c-fos Antisense Oligonucleotides Do Not Reverse the Effects of 
Anti-#. It has previously been reported that anti-# not only 
induces an early increase in c-myc transcription, but also elicits 
an transient rise in c-J0s message levels in WEHI-231 cells 
(5). To examine the specificity of the antisense treatment for 
c-myc, we next tested whether antisense for c-J~s had any effect 
on growth inhibition by anti-/x. The data in Fig. 2 demon- 
strate that antisense for c-Jbs did not modulate cell cycle ar- 
rest, whereas antisense c-myc reproducibly prevented anti-/~ 
inhibition of  growth. The minimal effects of unrelated con- 
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Figure t .  Effect of antisense c-myc on anti-/~-mediated growth inhibi- 
tion of CH31 (A) and WEHI-231 (B) B lymphoma cells. Increasing con- 
centrations of S-oligonucleotides were added to the cultures in the pres- 
ence of 1/~g/ml anti-/t or no antibody. [3H]Thymidine ([3H]TdR) was 
added at 20 h, and cells were harvested 6 h later. Nonsense oligonucleo- 
tides were added at equivalent concentrations as controls and had minimal 
effects on growth inhibition, whereas antisense c-myc protected at >0.5 
/xM. The data are expressed as a percent of the untreated control for each 
condition. One of three similar experiments. 

o 
60 '  

8 
c 
8 
~. 40" 

20" 

I 
�9 Anti-# 

[ ]  Antisense c-myc 

[ ]  Nonsense c-myc 

[ ]  Anlisense c-fos 

Treatment 

Figure 2. Specificity of antisense c-myc effect on growth inhibition. 
CH31 cells were treated with anti-/~ in the presence of antisense c-myc 
or antisense c-~s, as well as control oligonucleotides (all at 10 tiM), and 
harvested at 24 h as in Fig. 1. Only antisense c-myc was able to protect 
against growth inhibition by anti-#. The data are expressed as a percentage 
of the untreated control. 
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trol oligonucleotides on [3H]thymidine incorporation were 
nonspecific and have been observed with nonsense c-myc and 
irrelevant phosphorothioate oligonucleotides, as well (Fisher, 
G., and D. W. Scott, unpublished data). 

Effect of Antisense c-myc on TGF-3--mediated Growth Ar- 
rest. TGF-3 treatment of these B cell lymphomas leads to 
Gt/S blockade and subsequent cell death, similar to anti-# 
(6). However, TGF-B addition leads to a decrease in c-myc 
transcription in both lymphomas and epithelial cells (Kent, 
S. C., and D. W. Scott, unpublished data and reference 8) 
and eventual growth arrest. In fact, CAT assays with c-myc 
P1 and P2 promoters demonstrate that TGF-~ downregu- 
lates c-myc transcription, whereas anti-# upregulates c-myc 
via these promoters (Kent, S. C., and D. W. Scott, manu- 
script in preparation). To further examine whether increased 
c-myc transcription is required for growth inhibition, we de- 
termined whether antisense c-myc prevented the effects of 
TGF-3 on these lymphomas. When antisense c-myc was added 
simultaneously with TGF-3 to B lymphomas, growth arrest 
was also prevented (Fig. 3), although the effect was not as 
dramatic as the protection against anti-/z-mediated inhibi- 
tion in all experiments. This suggests that the myc protein 
is an important component of both signaling pathways, but 
the transient increase in c-myc transcription is not necessary 
for growth inhibition. 

Kinetics of Antisense c-myc Reversal of Growth Inhibition. Anti- 
/z-mediated negative signaling occurs at a critical point in 
early Gt (21). To establish the time at which myc acts in 
lymphoma cell cycle control, early G1 cells were collected by 
centrifugal elutriation, placed in culture with anti-/z, and an- 
tisense c-myc added at various times. Fig. 4 demonstrates that 
simultaneous addition of antisense c-myc (or at 2 h after the 
initiation of the incubation) with anti-/z allowed these cells 
to progress normally through the cell cycle. However, addi- 
tion of antisense c-myc 4 or 6 h after the anti-/z did not pre- 
vent cell cycle arrest. Nonsense sequences had minimal effect 
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Figure 3. Antisense c-myc blocks TGF-/%mediated growth inhibition. 
CH31 B lymphoma cells were treated with 1 ng/ml TGF-3 in the pres- 
ence of antisense or nonsense c-myc as in Fig. 1. One of two similar ex- 
periments. 

100 

80 

6o 

c 

~. 40. 

20- 

~. Antisenso c-myc 

O ~ ~ , , , , , , , , , , , , ~ ~ ' ~ ' - O ' - - - N  o . . . . . . . . .  yc 

o 

Time of ollgonucleotlde addlUon (h)  

Figure 4. Requirement for c-myc antisense before mid G1 in order for 
growth inhibition to be prevented. CH31 B lymphoma cells were sepa- 
rated by centrifugal elutriation, and early G1 cells placed in culture _+ 
0.4 #g/ml anti-#. 2 #M antisense or nonsense c-myc was added at indi- 
cated times. 20 h after addition of anti-#, cells were pulsed with [3H]TdK, 
and harvested at 26 h. Data are from one of two similar experiments. 

when added at any time. These data suggest that myc is playing 
a critical role in cell cycle progression/arrest beginning in early 
to mid-G1. Since pRB phosphorylation begins at this point 
in the cell cycle, we next examined the effect of antisense c-myc 
on this process. 

pRB Is Hyperphosphorylated in Antisense c-myc-treated Lym- 
phomas. We and others (6, 7) have demonstrated that anti-# 
or TGF-~ addition leads to the production of underphos- 
phorylated pRB, which is the active growth suppressive form 
of this anti-oncogene. The data in Fig. 5 demonstrate that 
lymphomas treated with anti-/z or TGF-3 and antisense c-myc 
possess pRB in the hyperphosphorylated form, whereas control 
ceils treated with anti-# or TGF-3 alone contain the active, 
underphosphorylated form of pRB. Thus, an event initiated 
by antisense c-myc addition leads to a prevention of cell cycle 
arrest by promoting the phosphorylation of pRB. 

Antisense c-myc Prevents Apoptosis. Anti-# and TGF-3 
growth arrested cells begin apoptosis and die within 24- 
48 h (6, 21, 22) of treatment. The data in Fig. 6 demonstrate 

Figure S. Antisense c-m F prevents the anti-#- (1 #g/ml) and TGF-3- 
(1 ng/ml) mediated decrease in hyperphosphorylated pRB. The state of 
phosphorylation of pRB in anti-/~- or TGF-3-treated WEHI-231 cells 
(in the presence of antisense c-myc) was determined by Western blotting 
(6 x 106 cells/lane). Cells were treated for 24 h with the indicated re- 
agents and then prepared for anti-pRB Western blotting as described in 
reference 6. (CTL, untreated cells; AS, antisense c-mF; NS, nonsense c-m/x; 
or#, anti-IgM.) 
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Figure 6. Antisense c-myc blocks apoptosis induced by anti-/~. Cells 
were treated as with anti-/~ (0.4/~g/ml) _+ antisense (2/~M) or nonsense 
(2 #M) c-myc as in Fig. 5, but were then labeled with propidium iodide 
for detection detection of apoptotic bodies. At least 200 cells were counted 
for each sample. 

that antisense c-myc also prevents apoptosis as measured by 
propidium iodide staining. For example, with the CH31 B 
lymphoma, 45 % of cells treated with only anti-# contained 
apoptotic bodies, but <5 % of cells treated with both antisense 
and anti-# were undergoing programmed cell death. Very 

few apoptotic bodies were seen in the untreated (5.1%), non- 
sense (6.1%), and antisense only treated (5.3%) cells. These 
data were confirmed by gel electrophoresis of genomic D N A  
(data not shown) in that cells exposed to anti-/~ only show 
typical laddering of DNA, whereas in cells treated with anti-# 
and antisense c-myc there was no D N A  degradation, as 
reported for T cell hybridomas (18). Therefore, treatment 
with anti-# and antisense c-myc inhibited the formation of 
apoptotic bodies normally induced by anti-# treatment alone. 

Effects of Antisense c-myc on c-myc Message and Protein 
Leve/s. To determine whether the antisense oligonucleotides 
were acting at the level of transcription or translation, we 
isolated R N A  from cells treated with anti-# or TGF-~ with 
or without antisense or nonsense c-myc. The data in Fig. 7 
A reflect Northern blots in which 32p random-labeled rat 
c-myc exon 3 was used to probe whole cell R N A  blots ob- 
tained at 20 h. The relative abundance of c-myc m R N A  is 
presented relative to actin message in Fig. 7 B for time points 
between 30 min and 20 h. This amount of c-myc mtLNA 
increased at 0.5 h ( ' -  a 2.5-fold increase) after treatment with 
anti-#, and had decreased to below background levels at 
i h, as previously reported for WEHI-231 (4). Interestingly, 
antisense c-myc alone and antisense c-myc plus anti-/~ led to 
an increased amount of  c-myc message at 2, 4, 6, and 20 h 
in CH31 lymphoma cells; by 20 h, c-myc message levels were 
significantly decreased with anti-/~, but were at or above base- 
line levels in the cells treated with antisense plus or minus 
anti-# in both CH31 (Fig. 7 B) and WEHI-231 (data not 
shown). TGF-B also lead to a depletion of c-myc message at 

Figure 7. Effect of antisense c-myc oligonucleotide 
on c-myc mILNA levels at various times after treat- 
ment with anti-/~ or TGF-fl. (A) Northern blot anal- 
),sis of total cellular ILNA (10/~g/lane) of CH31 cells 
incubated for 20 h with medium alone (lane 1); 3 #g/ml 
af~nity purified rabbit anti-# (lane 2); 2/xM antisense 
c-myc plus 3/~g/ml anti-/~ (lane 3); 2/~M antisense 
c-myc alone (lane 4); 2/~M nonsense c-myc (lane 5); 
2/~M nonsense c-myc plus 3/xg/ml anti-/~ (lane 6); 
10 ng/ml TGF-B (lane 7); 10 ng/ml TGF-fl plus 2/~M 
antisense c-myc (lane 8); 10 ng/ml TGF-fl plus 2/~M 
nonsense c-myc (lane 9). One of three representative 
experiments is shown. (B) Northern blot analysis of 
total cellular RNA from CH31 cells treated as in Fig. 
7 A for various times and probed for c-myc and ~-actin. 
Autoradiographs were scanned by laser densitometry 
and presented as a ratio of c-myc to ~-actin message. 
One of three representative experiments is shown. The 
arrow indicates data obtained at 30 rain after addition 
of anti-/~ alone. 
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20 h (Fig. 7 A); antisense c-myc treatment in addition to TGF-~ 
lead to the presence ofc-myc mRNA at 20 h. Antisense c-myc 
did not upregulate c-Jbs or egr-1 m R N A  (Kent, S. C., un- 
published data). Thus, antisense c-myc appears to stabilize c-myc 
message levels, presumably allowing translation of new myc 
protein and continued progression through the cell cycle (see 
below). 

To establish whether the changes in c-myc R, NA correlated 
with myc protein levels, we used Western blotting to examine 
lysates of cells treated with anti-# (or TGF-/3) with or without 
antisense c-myc. At least two myc species have been described 
in erythroleukemia cells by Sports and Hann (24). We not 
only found these species, but also observed that the presence 
of anti-/z or TGF-~ led to the disappearance of these myc 
proteins (Fig. 8). In cells treated with antisense c-rnyc or an- 
tisense c-myc plus anti-#/TGF-/3, normal levels of myc pro- 
teins were detected at all times. Within 30 min of the addi- 
tion of anti-/z, a new species, postulated to be a myc 
degradation product (24) appeared; at this time the original 
(62-67 kD) myc proteins were still present. Cyclohexamide 
treatment was used to show that observed protein species 
turned over rapidly. No similar c-myc mRNA species was 
detected that would account for the appearance of the lower 
molecular weight protein species (data not shown). 

In CH31 cells treated for 5 h with anti-#, there were 
significantly lower amounts of all myc protein species present. 
TGF-B treatment alone caused a gradual loss of myc protein, 
with levels comparable with the anti-# treatment alone being 
reached by 5 h. Again, antisense c-myc maintained the pres- 
ence of these myc species. These results are consistent with 
the c-myc message levels, in that the increased message levels 
appear to correlate with the continued presence of the myc 
protein. We postulate that this c-myc antisense oligonucleo- 
tide is not acting by blocking translation, but rather is 
stabilizing the c-myc message, and allowing continued trans- 
lation of new myc protein. 

Discussion 

Our data demonstrate that antisense oligonucleotides for 
c-myc, but not for c-Jbs, are able to prevent cell cycle arrest 
and apoptosis induced by both anti-/z and TGF-/L Since both 
anti-/z and TGF-~ lead eventually to a loss of c-myc message 
in these cells, despite an initial increase with the former treat- 
ment, we suggest that myc dysregulation is the common 
denominator for growth arrest and apoptosis in these cells. 
Surprisingly, however, antisense c-myc did not protect against 
apoptosis by interfering with myc translation. In fact, we 
found that antisense c-myc, even in the presence of anti-# 
or TGF-~, appeared to stabilize the c-myc message and al- 
lowed for continued translation of myc protein, normal phos- 
phorylation of pRB, and unimpaired cell cycle progression. 
This is a novel function of an antisense oligonucleotide 
molecule. 

These results also indicate that stabilization of myc must 
occur at least 2 h after the addition of anti-/z since addition 
of antisense c-myc 4 or 6 h after anti-/z could not prevent 
cell cycle arrest in synchronized early G1 cells. This implies 

Figure 8. Effect of antisense c-myc on c-myc protein levels at various 
times after addition of anti-/~ (1/xg/ml) or TGF-/3 (1 ng/ml). Protein was 
isolated from samples treated as in Fig. 7. By 5 h, the higher molecular 
weight species of myc protein are decreased in lanes treated with anti-# 
or TGF-/3 in the absence of antisense c-myc. Cyclohexamide was used at 
1 #g/ml to block protein synthesis and to verify rapid turnover of detected 
proteins. The arrows indicate the location of the 69-kD molecular mass 
marker. 

that the irreversible dysregulation of c-myc message and myc 
protein committing the cell to programmed cell death occurs 
quickly after surface IgM ligation. Indeed, in unsynchronized 
CH31 cells, significant modulation of c-myc message begins 
within 1 h of anti-/z stimulation (Fig. 7; references 4, 7), 
but loss of myc protein is not apparent until 5 h. While ex- 
periments are in progress to determine whether this occurs 
in both G1 and in S phase cells treated with anti-#, these 
data imply that myc protein is necessary for G1 progression 
to continue in these B cell lymphomas. 

The phosphorylation state of the retinoblastoma gene product 
has been implicated in cell cycle control; indeed, pRB must 
be phosphorylated in mid- to late G1 in order for cells to 
progress to the S phase (9, 10). We and others have shown 
that treatment with anti-# (or TGF-~) affects the state of 
phosphorylation of pRB (reference 6; Fig. 5) in murine B 
cell lymphomas. Although modulation of the myc protein 
in unsynchronized murine B cell lymphomas occurs within 
5 h of surface IgM ligation, it is interesting that significant 
pRB hypophosphorylation is not detected until 10-12 h after 
anti-# or TGF-/8 addition (Joseph, L., and D. W. Scott, manu- 
script submitted for publication). This suggests that myc 
changes precede, and may be required for, phosphorylative 
effects on pRB, although it will be critical to establish the 
kinetics of these changes in early G1 cells. 
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Recent data also suggest that myc and pRB may directly 
interact (25) and can have opposing effects on cell cycle progres- 
sion. Indeed, transiently expressed pRB was found to sup- 
press c-myc transcription (26). Moreover, microinjection of 
pRB into Saos-2 cells suppressed entry into S phase, while 
co-injection of pRB and myc protein allowed "o50% of the 
ceils to progress into the cell cycle (27). Thus, pRB and myc 
may act together to regulate cell cycle control. 

The ability of antisense c-myc to prevent anti-/z- and TGF- 
B-mediated growth arrest, and our previous elucidation of 
the initial second messengers induced by anti-/z (28), suggest 
the convergence of the signaling pathways at the myc pro- 
tein. Moreover, this result suggests that increases in myc protein 
and message levels per se do not commit these lymphomas 
to an apoptotic pathway. The appearance of the phosphorylated 
form of pRB in cells treated with antisense c-myc and either 
anti-/z or TGF-~ implicates myc in the process of aiding pRB 
phosphorylation, leading to cell cycle progression and avoid- 
ance of cell death. Since phosphorylation of pRB requires 
that critical proteins bind to the pocket region of the RB 
gene product, we propose that the myc protein, either directly 
or indirectly, affects one of these pocket proteins to aid as- 
sociation and subsequent phosphorylation of the RB gene 
product (29). Alternatively, a shift in the interaction of myc 
with myn (30) may affect the ability of myc to trans-activate 
and alter the expression levels of other, yet unidentified, genes, 
including cyclin--cdk complexes. Attempts to identify the pRB 
and myc interacting proteins are underway in this and other 
laboratories. 

Antisense c-myc can be acting through several mechanisms. 
It is known that a block to transcriptional elongation down- 
regulates c-myc mRNA steady state levels (31); antisense oli- 
gonucleotides may interfere with normal transcriptional at- 
tenuation. A second possible mode of c-myc antisense action 
is by direct interaction with the myc protein, causing increased 
apparent protein stability. We consider these possibilities to 
be unlikely. While no attempt has been made here to ex- 
amine the mechanism of antisense oligonucleotide action, we 
favor instead the hypothesis that specific stabilization of c-myc 
mRNA may occur, allowing increased translation. This is 

supported by the fact that elevated levels of c-myc mRNA 
were found when antisense oligonucleotides were added to 
B lymphoma cells, regardless of other treatment (Fig. 7). 
Efforts are underway to elucidate the exact mechanism of an- 
tisense c-myc action. 

Our system, therefore, begins to elucidate the link between 
myc and pRB, a possible effect of one on the other, and the 
control that myc has on cell cycle progression in lymphoid 
cells. These experiments suggest that c-myc may play a different 
role in B lymphoma cells than in other differentiated cells. 
In T cell hybridomas, TGF-B does not induce cell cycle 
blockade, but it does inhibit transcription of c-myc and 
activation-induced apoptosis (Green, D. R., personal com- 
munication). In contrast, in our B cell lymphomas, TGF-B 
is a strong negative regulator of growth. Moreover, DNA 
fragmentation, a distinct sign of activation-induced apoptosis, 
can be seen within 4-6 h in anti-CD3-treated T cell hybrid- 
omas (Green, D. R., personal communication), whereas in 
anti-/z-treated B lymphomas it is seen between 12 and 24 h 
(data not shown). Shiet al. (18) have shown that antisense 
c-myc blocks translation of myc protein in their system and 
prevents apoptosis induced by anti-CD3 activation. In fur- 
ther contrast to results with T cell hybridomas (18), we do 
not see a loss of the myc protein at 24 h with antisense c-myc 
treatment. We suggest, instead, that critical myc mRNA or 
myc protein species are stabilized by antisense oligonucleo- 
tides in these lymphomas, thus allowing continued progres- 
sion through the cell cycle, and preventing apoptosis. 

It is tempting to speculate on the importance of the bal- 
ance of the myc protein and its relation to other anti-oncogenes 
and the cyclin complexes. It is interesting to note that recent 
data (32, 33) suggest that the p53 growth suppressor protein 
may be necessary for certain forms of apoptosis. However, 
in preliminary experiments, we have found that p53 protein 
levels in CH31 B lymphomas were not affected by treatment 
with either anti-/z or TGF-/3 with and without antisense c-myc 
(Fischer, G., and D. W. Scott, data not shown). The role 
of myc and other oncogenes and anti-oncogenes in preventing 
and promoting apoptosis is under investigation. 
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