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Abstract: Tyrosinase (TYR, E.C. 1.14.18.1), a critical enzyme participating in melanogenesis, catalyzes
the first two steps in melanin biosynthesis including the ortho-hydroxylation of L-tyrosine and the
oxidation of L-DOPA. Previous pharmacological investigations have revealed that an abnormal level
of TYR is tightly associated with various dermatoses, including albinism, age spots, and malignant
melanoma. TYR inhibitors can partially block the formation of pigment, which are always used
for improving skin tone and treating dermatoses. The practical and reliable assays for monitoring
TYR activity levels are very useful for both disease diagnosis and drug discovery. This review
comprehensively summarizes structural and enzymatic characteristics, catalytic mechanism and
substrate preference of TYR, as well as the recent advances in biochemical assays for sensing TYR
activity and their biomedical applications. The design strategies of various TYR substrates, alongside
with several lists of all reported biochemical assays for sensing TYR including analytical conditions
and kinetic parameters, are presented for the first time. Additionally, the biomedical applications
and future perspectives of these optical assays are also highlighted. The information and knowledge
presented in this review offer a group of practical and reliable assays and imaging tools for sensing
TYR activities in complex biological systems, which strongly facilitates high-throughput screening
TYR inhibitors and further investigations on the relevance of TYR to human diseases.

Keywords: tyrosinase (TYR); enzymatic activity; optical substrates; TYR inhibitors; high-throughput
screening

1. Introduction

Tyrosinase (TYR, E.C. 1.14.18.1), a type-3 binuclear copper-containing oxidoreductase,
efficiently catalyzes o-hydroxylation of monophenols to diphenols (monophenolase activity)
and the oxidation of diphenols to quinones (diphenolase activity), without any additional
cofactors (Figure 1) [1,2]. It is ubiquitously distributed in organisms ranging from bacteria
to eukaryotes and plays a pivotal role in the enzymatic browning of fruit or fungi, as well
as mammalian melanin synthesis [3,4]. In mammals, melanin is exclusively synthesized in
melanosomes via complex biochemical reactions (Figure 2), and this endogenous substance
is primarily responsible for the pigmentation of retina and skin [5,6]. TYR catalyzes the
first two steps in melanin biosynthesis: the o-hydroxylation of L-tyrosine and the oxidation
of L-DOPA. Since the remainder of the reaction sequence can proceed spontaneously at
physiological pH, the conversion of L-tyrosine to dopaquinone (DQ) has been implicated as
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a crucial rate-limiting procedure in melanogenesis [7,8]. DQ could spontaneously convert
into dopachrome, which gradually decomposes into 5,6-dihydroxyindole (DHI) and 5,6-
dihydroxyindole-2-carboxylic acid (DHICA) through a succession of redox reactions [5,9].
Ultimately, these dihydroxyindoles are oxidized to eumelanin. Alongside, in the presence
of cysteine or glutathione, DQ is converted to 5-S-cysteinyl dopa or glutothionyl dopa,
finally yielding pheomelanin [10,11]. The types and relative amounts of these melanin
constitute color-based ethnic diversification. Three tyrosinase-like enzymes co-regulate
melanogenesis, including TYR and TYR-related proteins 1 (TRP-1) and 2 (TRP-2). TRP-1
shows DHICA oxidase and low tyrosine hydroxylase activity when zinc is replaced by cop-
per. TRP-2 contains two zinc ions at the active site and isomerizes dopachrome to DHICA.
They are metal-containing glycoproteins and share ~40% amino acid sequence identity and
~70% similarity [1]. Despite TYR and TYR-related proteins 1 (TRP-1) and 2 (TRP-2) being
necessary for melanogenesis, TYR is the most critical rate-limiting enzyme [10].
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Figure 2. Biosynthetic pathway of melanin [7,8,10]. DQ: dopaquinone; L-Dopa: L-3,4-
dihydroxyphenylalanine; DHICA: 5,6-dihydroxyindole-2 carboxylic acid; DHI: 5,6-dihydroxyindole;
ICAQ: indole-2-carboxylic acid-5,6-quinone; IQ: indole-5,6-quinone; HBTA: 5-hydroxy-1,4-
benzothiazinylalanine.

Recent pharmacological investigations have revealed that the abnormal metabolism
of melanocytes and imbalance in TYR activity are indirectly or directly responsible for
various dermatoses [1,12,13]. For example, functional mutations in the gene encoding TYR
(TYR, 11q14-21, MIM 606933) would inactivate TYR and cause a deficiency in melanin,
thereby resulting in oculocutaneous albinism type 1 (OCA1, MIM 203100), an autosomal
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recessive disorder characterized by the absence of pigment in hair, skin, and eyes [14]. On
the contrary, excess melanin accumulation or abnormal distribution would give rise to
hyperpigmentation disorders, including age spots, post-inflammatory hyperpigmentation,
and even malignant melanoma [13,15]. In particular, the overexpression of TYR and TRP 1 is
significantly associated with the risk of melanoma, a fatal skin carcinoma [16–18]. To this end,
it has been viewed as a relatively specific biomarker and therapeutic target for melanoma
lesions. Additionally, the abnormal level of TYR induces dopamine neurotoxicity and
neurodegeneration, which is related to Parkinson’s disease (PD) [19–21]. Monitoring TYR
activity in complex biosystems undoubtedly remains critical and challenging for biomedical
research and drug high-throughput screening (HTS).

In recent decades, various analytical techniques, including immunochemical analy-
sis, mass spectrometry-based proteomics, and substrate-based biochemical assays, have
flourished for the quantification of TYR. However, only the substrate-based biochemical
assay could rapidly and sensitively determine the real activity of TYR in complex bio-
logical systems, leading to its common use in drug discovery and clinical studies [22].
Herein, we will review the role of biochemical detection based on optical substrates in
TYR detection in the past 40 years. This review covers breakthroughs in the development
of probe substrates and corresponding analytical methodologies for sensing TYR activity.
By listing the substrate information and kinetic parameters of several optical methods
for the first time, the advantages and defects of these various approaches are sufficiently
compared and analyzed. Ultimately, the challenges and future perspectives in this field are
highlighted. Collectively, this review provides a practical reference for developing new
TYR substrates and methods, which is of great significance for related diseases studies and
medical screening.

2. Biochemical Characteristics of TYR
2.1. Structural Feature and Catalytic Mechanism of TYR

Human TYR is a glycoprotein (13% carbohydrate) predominantly located in the
melanosome membrane of melanocytes [23,24]. The presence of the transmembrane do-
main and glycans renders it difficult to isolate homogeneous TYR from melanocytes, which
impedes crystallographic studies. Fortunately, the most characteristic TYR can be acquired
from Streptomyces glausescens, the fungi Neurospore crassa, or Agaricus bisporus [7,25,26].
To compare the conservation of catalytic cavity, the crystal structures of TYR from bac-
teria (Streptomyces castaneoglobisporus [25] and Bacillus megaterium [27]), fungi Agaricus
bisporus [28], and walnut leaves [29] were retrieved from Protein Date Bank. A salient
feature of TYR from various sources (Figure 3) is the presence of strictly conserved bin-
uclear copper atoms at the active site, each of copper atoms is coordinated with three
conserved histidines, respectively [3]. Moreover, the normal redox state of copper atoms
is exceedingly significant for enzyme activity. Due to the relatively high similarity and
homology with mammalian TYR, mushroom TYR from Agaricus bisporus acts as a model for
enzyme kinetics and inhibitor screening [28,30,31]. Although extensive studies are devoted
to TYR, its catalytic mechanism remains controversial. According to the presence/absence
of oxygen and the oxidation state of copper ions [Cu (II)/Cu (I)], three enzymatic forms
(Eoxy, Emet, and Edeoxy) participate in the catalytic cycle (Figure 4) [3,32]. The resting form of
TYR is found to be a mixture of 85% met and 15% oxy forms, while only the latter could act
on the monophenol [7,33,34]. During the monophenolase cycle, to form Eoxy-monophenol
complex (EoxyM), the oxygen atom on the deprotonated monophenol is coordinated with
the coppers of Eoxy. Then, the phenol is o-hydroxylated to generate Emet-diphenol (D)
complex (EmetD) [26,35]. Reducing agents could well draw the Emet into the Edeoxy, with
concomitant oxidation to the corresponding o-quinone [36]. Since the deoxy form is the
only one capable of reacting with oxygen to regenerate Eoxy and continue the catalytic ac-
tion, monophenolase activity usually manifests as a characteristic lag time until a sufficient
amount of catechol helps Emet to become Edeoxy [36]. Remarkably, this period depends
on several factors, including enzyme concentration, monophenol concentration and the
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presence of reducing agents, especially o-diphenol derivatives (such as L-DOPA) that could
shorten and even abolish the lag time [30,33,37]. In the diphenolase cycle, Eoxy continues
to bind o-diphenol to originate the EoxyD complex, while both Eoxy and Emet are capable
of oxidizing the diphenol to the o-quinone. After this, Emet is regenerated to complete the
catalytic cycle continuously [30,34].
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2.2. Substrate Specificity of TYR

Based on the broad substrate spectrum, in principle, any simple monophenol or cor-
responding catechol appears to be its substrate [38]. Besides, TYR also oxidizes various
aromatic amines, o-aminophenols, and aromatic o-diamines (Figure 5), despite the reaction
rates being orders of magnitude smaller than the corresponding phenols or catechol [39,40].
In terms of phenols, mammalian TYR tends to be relatively specific for its physiological
substrate (L-tyrosine and L-DOPA) and has a higher affinity for the L-isomers [41]. A preva-
lent characteristic in monophenol substrates is without substituents in the ortho-position of
the phenolic hydroxyl group. Understandably, large side-chain substituents increase the
difficulty of substrate interaction with the key catalytic residues; this is unpropitious for the
recognition and catalytic process between the enzyme and ligand [36]. A kinetic study [42]
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quantitatively discussed the effects of substituents in the 1-position of the aromatic ring
on the rate of hydroxylation catalyzed by TYR. The results revealed that monophenols
with a high electron donor tend to be oxidized faster [42]. In sharp contrast, the oxidation
rate of catechol is positively correlated with the electron-withdrawing capacity of the para-
substituents [36]. As such, the steric hindrance, stereochemical characteristics, and electronic
effects of substituents have a distinct influence on the rate of TYR-mediated catalysis.
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According to the chemical stability of the corresponding o-benzoquinone, phenolic
substrates (Table 1) can be roughly divided into the following three categories [42,44].
(1) The first sort of substrates catalyzed by TYR could yield stable o-quinones. For example,
4-tert-butylcatechol (TBC) is detectable for the diphenolase activity, whose o-quinone is
exceedingly stable. (2) The second substrates produce a highly unstable o-quinone but
evolve into a stable product via a first-order reaction. Targeted at diphenolase activity, the
common determination is based on the formation of dopachrome using L-DOPA as a sub-
strate. Moreover, there is 3,4-dihydroxymandelic acid (DOMA) [45], dopamine (DA) [46],
and isoproterenol (ISO) [47]. (3) The third kind of substrates are oxidized to an unstable
o-quinone that is vulnerable to potent nucleophiles (N) and yields chromatic adducts (NQ)
with a clear stoichiometry. Commonly used nucleophiles include L-proline (Pro) [48],
L-cysteine (Cys) [49], and especially 3-methyl-2-benzothiazolinone hydrazone (MBTH) [42].
Related substrates mainly include 4-hydroxyphenylacetic acid, 4-hydroxyphenylpropionic
acid, L-DOPA, DA, etc.

Table 1. Properties of the detectable species from several substrates.

Substrates Chemical Structures Metabolite
Stability

Coupled
Reagent

Detectable
Species

λ
(nm)

ε
(M−1·cm−1) Ref.

4-Tert-
butylcatechol

(TBC)
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toring bioactive species, especially real-time analysis in vivo [50–53]. The current optical 
methods, including spectrophotometry and fluorometric detection, exhibit distinct per-
formance. In this paper, we review the research advances of various methods by empha-
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3. Optical Assays for Sensing TYR Activity

The development of analytical techniques mainly focuses on improving and moni-
toring bioactive species, especially real-time analysis in vivo [50–53]. The current optical
methods, including spectrophotometry and fluorometric detection, exhibit distinct perfor-
mance. In this paper, we review the research advances of various methods by emphasizing
on both their pros and cons, and we also summarize the non-fluorescent substrates and
fluorescent substrates.

3.1. Spectrophotometric Assays

Due to its intrinsic sensitivity, low cost, and continuous study of the reaction pro-
cess, the spectrophotometric technique has become the most widely used method [44,54].
Hitherto, in vitro assays of the oxidase activity of TYR are predominantly comprised of
the dopachrome formation methods that use L-tyrosine or L-DOPA as substrate [55–58].
However, this mainstream approach also has inherent flaws. It relies on the hypothesis that
DQ (an oxidation product of L-DOPA) is completely converted to dopachrome, instead
of directly measuring DQ [57]. The instability and relatively low absorption coefficient
of dopachrome in an aqueous system mean that the test must be performed quickly and
at a low sensitivity. Considering the high reactivity and instability of intermediates and
the interference of external factors (such as temperature and oxygen), many other assays
are subsequently improved. Many nucleophiles start appearing on the stage by capturing
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highly reactive DQ as stable-colored products [59]. Under acidic conditions, MBTH gener-
ate a pink adduct with high molar absorptivity and solubility, whose clear stoichiometry
and high stability endow great measurability [42,44,60].

Distinct from the above, the quinonization product of 4-tert-butylcatechol (TBC) is
remarkably stable, simple to accumulate in the reaction mixture, and facile to detect.
Lamentably, its affinity (Km = 990 µM) toward TYR is exceedingly poor, which restricts its
application [37]. More typical substrates and their optical parameters are documented in
Table 2.

Table 2. Non-fluorescent substrates of TYR.

Substrates Chemical Structures Enzyme
Sources Metabolites Enzyme

Activity
Km

(µM)
Vmax

(nmol/min/mg) Ref.

L-Tyrosine
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In recent years, some breakthroughs have been made in substrates identification and
detection means. Several sensing platforms utilized the reducibility of catechol to capture
some chromogenic reagents for quantitative analysis [62,63]. For instance, Ag+ could
oxidize 3,3′,5,5′-tetramethylbenzidine (TMB) to the oxidized 3,3′,5,5′-tetramethylbenzidine
(oxTMB), accompanied by remarkable changes in color and absorbance [64,65]. The intro-
duction of reducing substances (such as DA) directly decreases oxTMB, resulting in faded
blue and a decrease in absorbance (Figure 6). Accordingly, using TMB as a chromogenic
probe, a facile colorimetric assay was proposed to sense TYR activity in human serum
samples and to screen inhibitors [66]. In a similar vein, Deng et al. demonstrated that
catechol could suppress the activity of oxidase-mimicking chitosan-stabilized platinum
nanoparticles (ChPtNPs), thereby significantly decreasing acidified TMB products [67].
With the oxidation of catechol, a linear relationship between the amount of restored color
and the TYR activity was evaluated. In terms of detection means, inspired by specific
chromogenic and fluorogenic reactions between resorcinol and catecholamines [68], an
absorbance–fluorescence dual-readout assay was established. With tyrosine as a substrate,
this assay achieved the determination of TYR in serum samples and inhibitor screening [69].
Notably, these innovative assays are consistent with the L-DOPA oxidation-based method.

As a classical analytical method, the spectrophotometry assay still exhibits promising
prospects for in situ quantitative analysis. Furthermore, when establishing an experimental
methodology, the enzyme activity in the presence of substrates, absorption coefficient or
stability of products, anti-interference and sensitivity, incubation time, and even reagent
consumption, ought to be taken into account [54,67].
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3.2. Fluorometric Assays

Despite spectrophotometry being commonly used for the detection of TYR activities
in vitro, this method is insufficient when it comes to high-throughput screening (HTS)
or dynamic tracking [70]. Owing to their superior sensitivity, ultrahigh spatiotemporal
resolution, and without isolation and derivative, the fluorescent substrate-based tech-
niques have shown unprecedented developments in real-time visualizing and detecting
biomolecules in vitro or in vivo [71–73]. To date, a great number of TYR-activated fluores-
cent substrates have flourished, primarily including organic fluorescent molecules and
nanometer material-based probes [74].

3.2.1. Small Molecule-Based Fluorescent Substrates

The current probes are mainly designed by the specific phenolic substrates (recognition
moiety) in conjugation with fluorophore scaffolds through an appropriate linker [75,76].
Given the metabolic characteristics of TYR, the recognized fragment should contain a
phenolic hydroxyl, without substituents in the ortho position; this facilitates the formation
of catechol [77]. To the best of our knowledge, 4-hydroxyphenyl and 3-hydroxyphenyl are
the two main types of responsive unit (Figure 7a). However, 4-hydroxyphenyl, as a classical
responsive moiety for TYR, could react with both reactive oxygen species (ROS) and TYR
in most cases [70]. Owing to H2O2, HOCI and some free radicals are usually at a relatively
high concentration (about µM levels) especially in tumor cells; this cross-interference may
result in false-positive signals and inaccurate results [78,79]. Rejoicingly, the replacement of
4-hydroxyphenyl with 3-hydroxyphenyl not only preserves binding affinity towards TYR
but also avoids the influence of cross-interference from ROS. Mainstream designs primarily
include the oxidization-cleavage mechanism and the inhibited photo-induced electron
transfer (PET) process (Figure 7b) [80]. The former is oxidized to an unstable o-quinone
in presence of oxygen and TYR, which undergoes an intramolecular 1,6-rearrangement-
elimination, further releasing free fluorophore and triggering a fluorescence response. In
the latter, the initial hydroxyphenyl group exerts a PET effect on the parent. Accompanied
by the formation of o-quinone and the blocked PET effect, the probe is lit up. By rationally
adjusting the TYR-recognition unit and fluorophore structure, a variety of probes could be
acquired. The newly developed TYR fluorescent substrates and their biological parameters
are presented in Table 3.
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zebrafish (Figure 9). Real-time in vivo imaging of melanoma and metastasis in xenoge-
neic mouse models suggested that NBR-AP may be a reliable approach for the early di-
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4-Hydroxyphenyl Recognition Units

The classic structure of 4-hydroxyphenyl is covalently coupled with fluorophore
via a carbamate linkage. A novel probe Mela-TYR with melanosome-targeting ability
first imaged the distribution of TYR in organelles (Figure 8) [89]. This probe utilized
morpholine as a melanosome-targeting group and 4-aminophenol as a responsive warhead.
Since the acidic environment (about pH 4.2–4.6) of melanosomes, the protonated form of
morpholine enhanced the hydrophilicity of morpholine and facilitated its accumulation
in melanosomes. Subsequently, the colocalization experiments with mCherry-tagged
melanosomes and DND-99 (a commercial dye) validated this targeting ability. Through
Mela-TYR imaging, it was found that TYR was significantly up-regulated in live B16
cells stimulated by psoralen/ultraviolet light A, which was further verified by standard
colorimetric methods. To observe another representative example, the near-infrared (NIR)
probe NBR-AP was activated through an oxidization-cleavage reaction and displayed a
linear relationship over the range of 1~200 U/L [88]. Moreover, NBR-AP accomplished the
sensitive and selective detection of endogenous TYR activity in B16F10 cells and zebrafish
(Figure 9). Real-time in vivo imaging of melanoma and metastasis in xenogeneic mouse
models suggested that NBR-AP may be a reliable approach for the early diagnosis of
metastatic melanoma during cancer surgery. To the best of our knowledge, this was the
first investigation to utilize a fluorescent substrate for the diagnosis of early melanoma
in a rodent model. Follow-up studies demonstrated that a longer linker between the
recognition moiety and the dye skeleton might prominently decrease the steric hindrance
of the probe entering the catalytic site. By combining thermodynamic computation with
molecular docking simulation, Li et al. analyzed the Gibbs free energy change of different
urea bonds during spontaneous hydrolysis, as well as the distance between the phenolic
hydroxyl group (metabolic site) and the catalytic site [92]. Thus, a rapidly responsive
and ultra-sensitive NIR probe MB1 was rationally designed. As a specific substrate of
TYR (Km = 4.6 µM; Vmax = 0.45 µM/min), the fluorescence intensity of MB1 could increase
>100-fold within 20 min, providing immense convenience for drug screening. Notably, this
sensor could effectively kill melanoma cells by photodynamic therapy (PDT). As such, this
sensor held great potential in melanoma-specific imaging and treatment.
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3-Hydroxyphenyl Recognition Units

When ROS reacts with the hydroxyl recognition unit, it tends to form quinone deriva-
tives rather than hydroxylated product. On this premise, to eliminate the interference
from ROS, 3-hydroxyphenyl is proposed. Wu et al. developed NIR probe 1. This sensor
displayed a specific response to TYR, even when the concentration of ROS was much
higher than that found at physiological levels. The high specificity of probe 1 facilitated the
accurate detection of TYR activity in live cells and zebrafish, which was further verified
by ELISA [82]. Inspired by the excellent work of predecessors, Peng et al. constructed a
NIR melanosome-targeting probe (HB-NP) for the highly selective detection of TYR at the
subcellular level (Figure 10) by incorporating 3-hydroxyphenyl moiety and the morpholine
unit (melanosome-targeting group) into the salicyladazine skeleton [80]. Compared to
Mela-TYR, the probe exhibited a large Stokes shift (195 nm) after PET effect inhibition.
HB-NP successfully visualized and quantified intracellular TYR activity in various living
cells. Moreover, HB-NP distinguished two human uveal melanoma cells with different in-
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vasive behaviors and evaluated the effects of the inhibitor (kojic acid) and the up-regulating
treatment (psoralen/ultraviolet A). Zhang et al. designed a novel, water-soluble probe that
detected the endogenous TYR in living cells and zebrafish [83]. The recognition fragment,
3-hydroxybenzyloxy, could specifically identify TYR instead of ROS. In particular, the
probe successfully realized the diagnosis of melanoma in a xenogeneic mouse model.
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Figure 9. (a) The schematic diagram of NBR-AP for TYR detection. (b) Images for 3-day-old zebrafish incubated with
various concentrations of the probe and kojic acid. (c) Fluorescent and bright field images of 4-week-old mice injected
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injection with B16F10 cells for 14 days. (e) Relative intensity values (n = 3) obtained from (d) and calculated using Image
J2x software, while the relative intensity from tumor is defined as 1.0 [88]. Copyright permission is granted by American
Chemical Society.

In brief, each of the above probes exhibits unique performance. For high-throughput
screening at the target level in vitro, the sensitivity and rapid response of tool molecular
demonstrate more importance [96]. On the other hand, the tracing and visualization
analysis of TYR activity in vivo requires long emission wavelengths and specificity [97,98].
In the near future, combining computational means such as molecular docking, more
superior sensors for various purposes are expected to be rationally designed; these sensors
have broad application potential in the field of bioanalysis.
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Figure 10. (a) The mechanism of TYR activity detected by HB-NP. (b) Colocalization of HB-NP and Alexa Fluor 488 (a
commercial dye) in B16 cells [80]. (1) Bright-field image of the B16 cells; (2) fluorescence image of the red channel for HB-NP;
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(yellow line in images (2)–(4)). Copyright permission is granted by American Chemical Society.

3.2.2. Nanoparticle-Based Fluorescent Probes

Other than small molecular probes, nanometer material-based biosensors have also
aroused considerable interest in the detection of biological analytes. Some emerging
nanomaterials utilize the characteristics of TYR-mediated metabolism to trigger a linear
fluorescence response with intermediates. For example, under aerobic and alkaline con-
ditions, dopamine is converted to polydopamine via oxidation and self-polymerization.
Enlightened by the intrinsic fluorescence properties of polydopamine, Liu et al. prepared
the fluorescent polymethyldopa nanoparticles (PMNPs) [99]. Metyrosine acted as a sub-
strate of TYR to yield methyldopa (a dopamine analog). The latter further reacted with
ethanolamine to produce PMNPs (Figure 11a). Ultimately, the strategy of in situ formation
of fluorescent PMNPs performed well in screening inhibitors. Using a similar principle,
Ding et al. introduced tyramine as a model substrate, which could be converted into DA
by TYR. Based on the specific sensing between silicon nanoparticles (Si NPs) and DA, the
solution color and fluorescence emission changed significantly (Figure 11b). Subsequently,
a novel ratiometric fluorescence analysis was established for screening TYR activators
and inhibitors [100]. Wang et al. developed a fluorescence-sensing platform utilizing
rare-earth-doped upconversion nanoparticles (UCNPs) [101]. Tyramine was oxidized to
DA and further yielded melanin-like polymers, leading to the effective quenching of UC-
NPs (Figure 11c). Collectively, most nanoparticle-based fluorescent probes have fulfilled
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relevant drug screening protocols. Some potential factors, including complicated synthesis,
time-consuming sample pretreatment, homogeneity, and stability of nanoparticles, deserve
adequate consideration. Furthermore, compared to traditional colorimetry, both methods
seem to be suitable only for TYR activity evaluation in vitro.
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4. Biomedical Applications of TYR Activity Assays
4.1. Sensing and Imaging TYR Activities in Biological Systems

Melanoma is the most aggressive malignancy in skin cancer. It is characterized by
high metastatic potential, poor prognosis, and the up-regulation of melanocytes [102].
Reintgen et al. determined the order of melanoma nodal metastases and showed that
cutaneous melanoma usually first metastasized to the regional nodal basin via the regional
lymphatics [103,104]. About one-third of melanoma patients have a local recurrence, while
distant metastasis at the initial site of relapse is also relatively common [105]. The most
characteristic metastatic sites are lymph nodes, lungs, liver, brain, and bones [106]. The
precise detection of subclinical metastases for early diagnosis and treatment of melanoma
is a matter of urgency. Human TYR (11q14-21, MIM 606933) is primarily expressed in epi-
dermal, follicular, and ocular melanocytes. It is essential for pigment formation [107]. The
overexpression of TYR and TRP 1 is significantly associated with the risk of melanoma [1].
B16F10 cells are often selected as cell models due to the high TYR expression. TYR has acted
as a valuable tumor marker and therapeutic target for the early diagnosis and treatment of
melanoma lesions. As a critical melanoma-associated antigen, TYR can be recognized by
autologous T lymphocytes, thus inducing effective tumor-specific responses.

Currently, a serum assay remains the mainstream approach for biomarker detec-
tion [88]. Reverse transcription-polymerase chain reaction (RT-PCR) analysis was devel-
oped to detect circulating melanoma cells (CMCs) in the peripheral blood. This method
was based on the amplification of the messenger RNA (mRNA) for TYR, while normal
melanocytes are not thought to circulate in the peripheral blood [108–110]. However,
test results are often controversial and can show false positives; the latter may be due
to sample processing and the transient presence of metastasizing tumor cells [111]. By
adopting in vivo fluorescent imaging strategy, the elevation of the TYR level (or activity) at
the melanoma focus can be localized spatially, thereby lessening the risk of false-positive
signals. The NIR probe NBR-AP successfully realized the early diagnosis of melanoma
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and metastasis in a mouse model by imaging TYR activity [88]. The levels of TYR in the
tumor and metastatic organs analyzed by Western blot were consistent with the fluores-
cence results (Figure 9e), in which TYR in the tumor, lung, and spleen was found to be
over-expressed. These results demonstrate that small-molecule fluorescent probes have
great promise in the early diagnosis of melanoma and the analysis of biological samples.

4.2. Screening and Characterization of TYR Inhibitors

TYR is the initiating and rate-limiting factor in melanin biosynthesis, serving as a
prominent target for pigmentation disorders [9,10,112,113]. Accordingly, TYR inhibitors
can block the formation of pigment and exhibit broad application prospects in agricultural,
medicinal, and cosmetic industries [114]. Most compounds are reported as TYR inhibitors
due to their function in copper chelation or competition with substrates, while the for-
mer could give rise to the irreversible inactivation of TYR [26,36,115].Popular whitening
agents, such as hydroquinone, β-arbutin (a hydroquinone derivative), or kojic acid, have
always been regarded as positive controls, but they also have certain drawbacks (Table 4).
Efficiently discovering potent TYR inhibitors with superior safety profiles remains a main-
stream concern in hyperpigmentation therapy [116].

Table 4. The commonly used positive inhibitors and their adverse effects.

Inhibitors Chemical Structures Sources Adverse Effects Dosage Group Ref.

Hydroquinone
(HQ)
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Plant

(1) Irritant contact
dermatitis.

(2) Exogenous ochronosis.
(3) Transient erythema.

<4% Forbidden [117,118]

β-Arbutin
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Fungus

(1) Contact dermatitis
(especially in sensitive
skins).

(2) Long-term use may
make the skin more
prone to sunburn.

(3) Using KA on damaged
or broken skins can lead
to cancer.

<1% Approved [121,122]

Over the past few decades, increasing attempts have been devoted to identifying
effective TYR inhibitors from natural products and synthetic compounds through in vitro
and in silico procedures. Generally speaking, spectrophotometry is the most commonly
used in the determination of TYR activity [30,112,123]. Most inhibitors are assessed by
dopachrome formation using L-tyrosine or L-DOPA as substrates. Tajima et al. synthesized
a series of bibenzyl derivatives and found bibenzyl xyloside 2 to be a potent inhibitor
(IC50 = 0.43 µM) that was 17 times more effective than kojic acid [124]. Ishioka et al.
developed some novel TYR inhibitors based on the structure of rhododendron, with IC50
values ranging from 0.39 µM to 35.9 µM [125]. Using L-tyrosine and L-DOPA as substrates,
Jung et al. designed thirteen (E)-benzylidene-1-indanone derivatives, in which BID3 was the
most potent inhibitor of mushroom tyrosinase (IC50 = 0.034 µM, monophenolase activity;
IC50 = 1.39 µM, diphenolase activity) [126]. Durai et al. applied evolutionary chemical
binding similarity (ECBS) to screen a virtual chemical database for human TYR, which
effectively identified seven potential TYR inhibitors [127]. In summary, candidate drugs
with high affinity and great druggability can be rapidly identified through virtual screening
in combination with the HTS methods presented in this review. All these compounds could
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be used as lead compounds to design novel potent TYR inhibitors for the treatment of
diseases associated with TYR-overexpression [128].

5. Conclusions and Perspectives

Mammalian TYR catalyzes the initial and rate-limiting reactions of the melanin
biosynthetic pathway, which is a relatively specific biomarker for malignant cutaneous
melanoma [2,129]. Monitoring TYR activity remains significant and challenging for the
discovery of novel therapeutics. In recent decades, the specific substrate-based optical
method has been used for detecting TYR activity in real samples and high-throughput
screening of TYR inhibitors. Herein, we reviewed the research advances of various assays,
with an emphasis on their respective pros and cons. More substrate preferences and kinetic
parameters were also outlined. Among them, the spectrophotometric technique is the
most widely used method. Traditional assays for TYR activity mainly depend on the
characteristic absorbance of colored products from the substrate L-tyrosine or L-DOPA.
Recently, other means have also become more widely used, such as the introduction of
nucleophiles to capture DQ to generate stable-colored adducts.

To achieve better performance in cell imaging applications, several TYR fluorescent
substrates with high specificity and excellent optical properties have gradually emerged,
including organic small molecules and nanocomposites. Owing to multiple advantages,
such as superior selectivity, high sensitivity, and the potential for dynamic tracking, flu-
orescent probes could serve as versatile tools for analytical sensing and optical imaging
analysis [130]. This not only facilitates the realization of high-throughput screening (HTS)
of inhibitors but also evaluates the inhibitory potential of enzyme inhibitors in living cells,
living tissues, and even in vivo; these findings significantly improve the efficiency and
accuracy of drug discovery [131,132]. Notably, fluorescent probes-based molecular imaging
can spatially localize the elevation of the TYR level (or activity) at the melanoma focus,
thereby greatly reducing the risk of false-positive signals [133]. The safety of biosensors is a
significant prerequisite for the biological studies of TYR in vivo. NIR probes or two-photo
probes are capable of deepening photon penetration, reducing photo damage, and produc-
ing low background fluorescence, which hold great promise in biomedical imaging [134].
Furthermore, the conjugation of NIR dyes with anticancer agents assists in the synergistic
management of cancer, thus integrating the merits of imaging and therapeutic effects to
realize the ultimate objective of simultaneous diagnosis and treatment [135,136].
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