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Abstract

Models that predict the form of hierarchical branching networks typically invoke optimization based on biomechanical
similitude, the minimization of impedance to fluid flow, or construction costs. Unfortunately, due to the small size and
high number of vein segments found in real biological networks, complete descriptions of networks needed to
evaluate such models are rare. To help address this we report results from the analysis of the branching geometry of
349 leaf vein networks comprising over 1.5 million individual vein segments. In addition to measuring the diameters
of individual veins before and after vein bifurcations, we also assign vein orders using the Horton-Strahler ordering
algorithm adopted from the study of river networks. Our results demonstrate that across all leaves, both radius
tapering and the ratio of daughter to parent branch areas for leaf veins are in strong agreement with the expectation
from Murray’s law. However, as veins become larger, area ratios shift systematically toward values expected under
area-preserving branching. Our work supports the idea that leaf vein networks differentiate roles of leaf support and
hydraulic supply between hierarchical orders.
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Introduction

The transport of fluid in biological organisms from a single
point source to distributed sinks via a hierarchical branching
network is a recurrent pattern across multi-cellular clades [1]. In
light of the ubiquity of this phenomenon, and its importance in
influencing organism form and function, numerous authors
have offered theoretical models to predict the form of network
branching [2-7]. These approaches typically invoke
optimization as the principle force shaping network evolution,
an intuitively satisfying approach due to its obvious conceptual
links with natural selection. In plants, branching networks serve
both resource delivery and structural roles and consequently
most models consider either the internal branching network
(e.g. mammal veins) [8], or the external network (e.g. tree
branches) [9], or both internal and external networks
simultaneously [3,10].

Among the more successful models of internal branching is
that of animal physiologist C.D. Murray. In 1926, Murray
considered the geometry of branching junctions in mammalian
cardiovascular networks reasoning that millions of years of

natural selection should have resulted in efficient vein networks
[8,11]. Murray proposed two primary costs: i) the cost of
building and maintaining the network, which for a unit length is
proportional to the square of the radius, and ii) the cost of
transporting fluid through the network, which for laminar flow in
a cylindrical tube is given by Poiseuille’s law and is inversely
proportional to radius to the fourth power. Within this
framework Murray solved for the branching junction geometry
that simultaneously minimizes both construction and resistance
costs, with minimization of resistance equivalent to maximizing
conductance (resistance=1/conductance). The resulting
prediction is known as Murray’s law, and in its most commonly
encountered form states that the sum of the radii cubed
remains constant across branching generations; rk3=Σ rk+1 3,
where r is radius, and k and k+1 refer to the parent and
daughter branches respectively. For a symmetrical bifurcating
network, Murray’s law predicts the ratio of daughter to parent
cross sectional areas will be 2ak+1/ ak ≈ 21/3 ≈ 1.25. Murray’s
law assumes that vessels do not provide structural support in
the form of resistance to tensile or compressive forces [12].
However, as noted by Sherman [11], for an idealized network
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in which transmural pressure is the only force acting on the
vessel wall, the Young-Laplace law predicts that vessel wall
radii should be linearly proportional to the radius of the vessels
themselves, a prediction that holds equally for a single vessel
or bundle of closely packed vessels.

Murray’s law has received considerable attention in mammal
arterial systems, where it is generally supported in all but the
largest vessels such as the aorta and subsequent vessels
leaving the heart, which are closer to an area-preserving
relationship, rk2=Σ rk+12 [11,13]. Area-preserving branching can
be explained by the need to match impedances resulting from
wave reflections at junctions [2], or to maintain a constant flow
velocity, which need not be mutually exclusive selection
principles. Analyses of the external stem branching patterns
suggest that tree branches largely follow area-preserving
branching (a.k.a. DaVinci’s rule) [14], and it has recently been
shown that the ratio of conducting to non-conducting area
remains constant across branching orders in several tree
species, thus internal and external branching exhibit a
proportional scaling [10].

In plants, Murray’s law has received limited attention, having
been evaluated in samples of plant internal conduit networks in
trees [12], in the conduits in petiolules and petioles of
compound leaves [15], and in 863 veins from within a small (1
cm2) subsection of a single sunflower leaf [16,17]. McCulloh
and collaborators examined the dimensions of xylem in cross
section. In contrast, Wang and Canny examined the
dimensions of veins (vessel bundles). Nonetheless, both
studies have found support for Murray’s law in leaves. Due to
the time consuming nature of measuring xylem dimensions in
cross section or with measuring large numbers of vein
junctions, we have little sense of the robustness of these
results across species, the variability in vein measures within
and across leaves, and the extent to which internal (xylem
conduit) or external (whole vein) branching dimensions depend
on vein size and/or order.

In mammals, structural demands are met by the skeletal
system and vessel networks offer little if any structural support.
In plants however, the vascular tissue is reinforced by high
density compounds such as cellulose, hemi-cellulose and lignin
to resist very large internal compression forces generated by
xylem water tension [18]. These same compounds, in
association with the plant resource delivery network, also
provide the biomechanical support to resist both tensile and
compressive forces produced by gravity [19]. McMahon and
Kronauer [9] considered how the demands of self loading and
lateral displacement might influence the scaling of limb
dimensions in trees. Their resulting elastic similarity model has
been thoroughly examined in trees, and while tree branches
are subject to systematic variation in their biomechanical
properties both within and across plants and species [19-22],
elastic similarity remains a valuable point of departure for
attempts to predict the scaling of plant form based on physical
first principles [23]. For example, a well known fractal
branching model invokes elastic similarity as one of its principle
assumptions [2,3], and when combined with the assumption
that networks are “volume filling”, such networks should also
exhibit an area-preserving branching architecture [3], 2ak+1/ ak

≈ 1. Note that volume filling as defined by West et al [3], means
that Nklk3 = Nk+1lk+13, where Nk and Nk+1 are the number of
branches or conduits in each level and lk and lk+1 are the
lengths of branches or conduits in that level. Thus, when vein
networks serve little to no biomechanical support role, Murray’s
law might be expected to hold, whereas if there is a need to
maintain a constant flow velocity, or veins are elastically similar
and “volume-filling”, area-preserving branching might be
observed.

With individual xylem cells reaching astronomical numbers in
trees, complete descriptions of geometry and topology of
complex plant conduit networks are exceedingly difficult to
obtain. Most current approaches rely on sub-sampling portions
of networks [10,15]. Here we take advantage of the high
visibility of leaf veins in cleared leaves to consider the
contrasting predictions of both Murray’s law and area-
preserving branching for the dimensions of vein networks in
leaves. Leaf veins serve the multiple demands of delivering
water and nutrients through xylem to mesophyll, carrying
photosynthetic products through phloem to the rest of the plant,
and providing structural support, therefore it is unclear if
models based on single optimization criteria can capture the
full complexity of leaf vein architecture. Ideally, measuring the
dimensions of both conducting and non-conducting portions of
leaf veins across branching orders within a leaf, and across
numerous species, would provide the strongest test of the
aforementioned models. Unfortunately current imaging
technology does not allow visualization of entire vein networks
in cross-section, and compiling such a library of images
manually would be prohibitively time consuming. Recent
developments do however allow the vein network to be
digitized in paradermal view (parallel to the epidermis, Figure
1), and this perspective allows detailed examination of
branching topology and geometry of whole leaf veins, a subject
that has garnered increased attention [24-28].

To evaluate the aforementioned model predictions, we
quantified the dimensions of veins in 349 leaves, representing
349 species, constituting over 1.5 million individual vein
segments in total. Focusing on veins in images of cleared
leaves, allows us to generate a large volume of data quickly
and the results using this approach can both inform and
constrain models that attempt to capture the full complexity of
leaf vein architecture.

We examined the relationships among and between the
following five properties of leaf vein networks: i) Radius taper
exponent (α) – which describes the tapering of vein radii via the
solution to the equation: r0

α=r1
α + r2

α , where r0 refers to the radii
of the parent branch, and r1and r2 refer to the radii of the
daughter branches; ii) Area ratio - the sum of daughter branch
areas over the parent branch area; iii) Asymmetry – the ratio of
the smaller daughter branch to the larger daughter branch; iv)
The size of parent branches; v) Branch order following a
Horton-Strahler ordering scheme (where the smallest branch is
defined as order 1). These five metrics allow us to evaluate
model predictions, and to explore how vein size, order, and
branching symmetry influence branching geometry.

Leaf Vein Branching Geometry
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Results

Tapering of vein radii is consistent with Murray's law
The distribution of α values across all vein junctions and all

leaves has a strong right skew, and while failing a test for
normality (the Kolmogorov-Smirnov test is notoriously
sensitive), visual inspection of Figure 2 suggests the
distribution is reasonably well approximated by a normal curve
in logarithmic space (base 10). The median non-transformed
value for α is 2.96 (Murray’s law predicts 3), and the mean in
log-space is 0.52 (Murray’s law predicts log10 (3) ≈ 0.48), thus
the distribution of values of α, and thus the ratio of vein radii
are generally consistent with Murray’s law. This distribution is
heavily weighted by the numerical dominance of smaller vein
orders.

Tapering of vein cross sectional areas is consistent
with Murray's law

The mean area ratio across all branching junctions and
across all leaves was 1.25 (Figure 3). The distribution of area
ratios ranges from 0 to 2, its defined bounds. Individual leaf
level mean area ratios ranged from 0.99 to 1.58, with a mean
of 1.26 and a median of 1.23.

Parent-daughter area ratios change with order
As branch order increases (equivalent to decreasing “vein

order”, according to the traditional nomenclature of leaf
venation), the ratio of the total daughter branch area to the
parent branch area decreases. The distributions for the smaller
veins overlap more strongly with the expectation for Murray’s
law, while the larger, higher order branches overlap the

Figure 1.  Image series illustrating some of the steps involved in going from an image of a cleared leaf (left panel), to a
binary representation (middle panel), to one in which vein orders have been assigned (right panel).  The central inset shows
a vein bifurcation point; The radius of the parent branch (r0) and daughter branches (r1 and r2) at all branching points are
determined, and used to determine cross sectional area (e.g. A = πr02), and to solve for α in the equation r0

α=r1
α + r2

α (see Materials
and Methods).
doi: 10.1371/journal.pone.0085420.g001

Leaf Vein Branching Geometry
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expectation for area-preserving branching (Figure 4, Figures
S1-S349 in File S1).

The area ratio distribution changes shape with order
As branch order increases, the distribution of area ratios

within that order decreases in variance: 0.203, 0.162, 0.129,
0.115, 0.092, 0.060, 0.030, 0.028 (1st through 8th order
respectively). Similarly the kurtosis of each distribution
increases: 2.41, 2.51, 2.69, 2.90, 3.36, 4.61, 8.07, 9.94 (1st

through 8th order respectively). Thus, along with a shift in the
mean of the distribution, the overall shape of the distribution
changes, becoming tighter (Figure 5).

Branching is largely symmetric but asymmetry
increases with size

The frequency of measured symmetries is strongly left
skewed being bounded by 1, with 18% of the measured values
equaling one, and 90% greater than 0.8. Thus, most daughter
branches in leaves are symmetric, or nearly so (Figure 6a).
The degree of asymmetry between daughter branches
increases with the size of the parent branch (Figure 6b).

Discussion

Across all leaves and all species, both the value of the radius
tapering exponent (α) and the area ratio are in strong

Figure 2.  Frequency distribution for the value of α approximated by solving r0
α=r1

α + r2
α, for α (see Methods) for 1,514,771

individual vein junctions across all 349 leaves.  Note that while the distribution fails a normality test, it is well approximated by a
normal curve (hashed line) and strongly overlaps the expectation from Murray’s law, log10 (3) = 0.49 (red vertical line), with a mean
value of 0.52. Thus, the distribution of estimated α values is strongly consistent with the expectation for Murray’s law.
doi: 10.1371/journal.pone.0085420.g002

Leaf Vein Branching Geometry
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agreement with the predictions of Murray’s law for a symmetric
network (Figures 2 and 3). To some extent, this is surprising
because some of the assumptions underlying Murray’s law
may not be supported in leaves. For example, Murray’s law
assumes veins do not provide structural support and that fluid
volume is not lost to transmural flow [11,29]. However, it is
likely that most of the mechanical load in leaves is borne by the
major veins (higher order under the Horton-Strahler scheme),
with the numerically dominant minor veins providing little, if any
structural support. Further, it has been shown that leaf vein
networks are “leaky” with transmural loss particularly in the
smaller veins [30]. Sensitivity analyses have shown that
branching junctions that depart from the theoretical optimum in
Murray’s law suffer small costs (~5%) in increased energy
requirements. It may be that violating the model assumption of
mass conservation across levels (through transmural loss) may
have minor energetic costs relative to the theoretical optimum
[31]. These caveats aside, our data indicate that leaves may be
able to simultaneously satisfy competing optimization problems
of support and water supply by producing a vein network that is
hierarchically differentiated into regimes that satisfy primarily
support and supply (larger veins), and supply functions (smaller
veins) [32-34].

Leaf veins are comprised of vessel bundles which are a
collection of different cell types including, xylem, phloem, and
associated bundle sheath cells. The extent to which the
dimensions of leaf veins can be used to evaluate optimization
models for conduit geometry, such as Murray’s law, depends
on the extent to which there is consistent proportionality
between mean xylem dimensions and vessel bundle
dimensions across branching orders. Unfortunately, due to the
challenges associated with sectioning and imaging very small
leaf veins, it is not currently known if such proportionality exists.
In theory, the thickness of conduit wall required to resist
collapse under capillary tension in the xylem is a linear function
of its internal radius because the Laplace-Young law states that
for a given transmural pressure, the force needed to counteract
that pressure is proportional to the conduit radius [11,18]. Thus,
under the Laplace constraint, the radius of the conduit wall will
be in direct proportion to the radius of the conduit itself [18].
Further, recent work on tree branches has shown that the
tapering of xylem that occurs from basal to distal branches is
coincident with an increase in the number of individual xylem
conduits such that the ratio of conducting to non-conducting
area remains constant across branches of varying size [10].
This relationship emerges from a “packing rule” for xylem [35]
where the number of xylem conduits (N) trades off with the

Figure 3.  Frequency distribution of the area ratio for 1,514,771 individual vein junctions across all leaves.  The mean and
median are equal to the expectation for Murray’s law when daughter branches are symmetric. The distribution spans the range of
expected values from 0 to 2, which includes area-preserving branching as well.
doi: 10.1371/journal.pone.0085420.g003
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mean diameter of conduits (d) such that N ≈ d-2, or with total
vessel area (A), N ≈ A-1 [36]. Coomes et al. [37] report a
consistent tapering of xylem across vein orders in several Oak
species, but do not report xylem number or mean area as a
function of vein order, so it is not clear if this tradeoff holds in
leaf veins as well. Of course the larger veins in leaves clearly
serve biomechanical support roles and are subject to both
twisting and bending forces, thus the fraction of non-conducting
tissue in vessel bundles devoted to support, and how that
fraction varies with vein order and/or leaf size, is an area in
need of further inquiry.

Despite these caveats, a Murray’s law type scaling is
strongly supported by our data, particularly in smaller vein

orders in leaves. Noting that branching “order” used here starts
with the smallest units called “first order”, (which is opposite to
the botanical convention of defining the largest vein as the first
order vein) we show that as vein order increases (veins get
larger), the area ratio appears to depart systematically from
Murray’s law and approaches that expected for area-preserving
branching (Figure 4 and Figures S1-349 in File S1). This is
consistent with the idea that larger veins play a greater role in
supporting the leaf. In fact the proportional investment in larger
veins (i.e. midrib) increases with leaf size in both simple and
compound leaves [33]. In support of this idea, McCulloh et al.
found greater agreement with Murray’s law in plants in which
branches do not contribute much to structural support, such as

Figure 4.  Box and whisker plot of the distribution of area ratios as a function of node order.  Within each box, the central red
mark is the median value, the box edges represent the 25th and 75th percentiles, the whiskers extend to the most extreme data
points not considered outliers, and outliers (red plus symbols) are plotted individually. Outliers are considered those values which
are larger than P75 + 1.5(P75-P25) or smaller than P25 - 1.5(P75-P25), where P75 and P25 are the 75th and 25th percentiles, respectively
[53]. We classify data points as outliers only for the purposes of visualization; no data points were removed from our analyses. The
red and black dashed lines are the expectations from Murray’s law and elastic similarity, respectively. Note that for vein orders 1-4
agreement with the expectation for Murray’s law is strong, but begins to depart as branch order increases, moving closer to the
expectation for area-preserving branching. Note that in contrast to the convention used by leaf anatomists, here first order veins are
the smallest, “terminal” veins in the network (see Methods).
doi: 10.1371/journal.pone.0085420.g004
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Figure 5.  Frequency distributions for area ratios for each branch order 1-8.  Note that as in Figure 4, the mode of distribution
shifts from overlapping Murray’s law in the lowest order branches, to overlapping area preserving branching in the highest order
branches. In addition, the shape of the distribution changes with increasing branch order, decreasing in variance and becoming
increasingly leptokurtic (see Results).
doi: 10.1371/journal.pone.0085420.g005
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Figure 6.  The influence of parent diameter and order on vein symmetry.  Panel A: Heat map showing daughter branch
symmetry, the ratio of the smaller daughter branch to the larger daughter branch, as a function of parent branch size. As parent
branch diameter increases, the ratio of parent to daughter branch diameters becomes more asymmetric. Note that the abundance
values for the 2D histogram are log transformed for image clarity, but the values on the key are not transformed. Panel B: Box and
whisker plot of the decrease in symmetry with increasing vein orders. Within each box, the central red mark is the median value, the
box edges represent the 25th and 75th percentiles, the whiskers extend to the most extreme data points not considered outliers,
and outliers (red plus symbols) are plotted individually (see Fig. 4 caption for the definition of outliers). First order veins are largely
symmetric, but symmetry decreases as vein order increases.
doi: 10.1371/journal.pone.0085420.g006
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vines, hydrostatically supported compound leaves [12], or small
stem photosynthesizers [29]. The functional differentiation of
major and minor veins suggested here from network scaling,
are consistent with the developmental differentiation of vein
orders, in particular the delayed intrusion of minor veins into
the leaf mesophyll [34]. Despite the systematic departure from
Murray’s law with increasing vein order, the global mean area
ratio found in leaves here (Figure 3) is in strong agreement with
Murray’s law due to the numerical dominance of the lowest
order (minor) veins.

In addition to a shift in the mean area ratio with changing
vein order, we also observe a systematic shift in the shape of
the distribution within each order. Figure 5 shows that the
lowest order veins (minor veins), have wide distributions with a
high variance, and that as vein order increases, the variance
decreases with the distributions becoming more leptokurtic
(see Results). This helps to explain why the higher order veins
in Figure 4 have more outliers. The reasons for this systematic
change are unknown. However, given the fourth power
dependence of conductance on xylem radius, we speculate
that there may be stronger pressure to keep area ratios close
to an optimal value in larger veins. Future anatomical work
exploring the ratio of conducting to non-conducting area,
across vein orders in leaves can help to answer this and other
questions.

As seen in Figure 6, as both the size and order of the parent
vein increases, the asymmetry in daughter branches increases.
Visual inspection of leaves and the decrease in symmetry with
vein order both indicate that this pattern is largely driven by
side branching found along the larger vein courses (higher
order veins following the Strahler ordering algorithm). Despite
the existence of asymmetry throughout, the overwhelming
majority of vein bifurcations have daughter branch ratios that
are close to symmetrical with over 70% of ratios being greater
than 0.9 and over 90% greater than 0.8. Thus it is a small
fraction of vein bifurcations that are strongly asymmetric, and
thus comparing the area ratios we report to the expectation for
Murray’s law under symmetric branching seems reasonable.
Several authors have argued that the reticulate pattern found in
leaf veins evolved to allow redundancy in flow paths [27,38,39],
yet the side branching aspect of this pattern is rarely
considered in theoretical approaches (but see ref. 40) [40].

The transition from area-preserving to Murray’s law
branching in leaf veins is superficially similar to that found in
mammalian cardiovascular systems [13,41]. As the last
common ancestor of plants and animals was unicellular,
branching systems for each group arose independently, and
may have arrived at comparable solutions for the problem of
efficient resource distribution. Simultaneous measures of both
internal and external network geometry across multiple vein
orders may serve to confirm this result. However, the area-
preserving nature of major artery branching in mammals is
unlikely to represent an adaptive response to biomechanical
demands as it is in the larger veins in the leaf vein network.
Area preserving branching in arterial branching more likely
reflects selection to preserve flow velocity or match
impedances due to wave reflections resulting from pulsatile
flow [2]. Recent work has demonstrated that entire leaf vein

networks are not the type of volume filling fractals assumed in
previous work [6], but rather exhibit an exponential distribution
of vein lengths which is consistent with a characteristic length
scale, such as that found in river networks, due to the
numerical dominance of the lowest order veins [5]. It remains to
be seen however, if certain higher order vein courses (major
veins), such as the lateral veins emerging from the midrib,
exhibit the type of self-similar “volume filling” [3,6], that would
lead to the area-preserving branching we observe.

Our data demonstrate that networks of leaf veins and blood
vessels exhibit similarity in scaling characteristics but
presumably for different reasons. The leaf venation of woody
plants achieves an optimal solution to the problems of tissue
support and transport by scaling the large mass-bearing ranks
of the venation network consistent with a biomechanical
optimum, while the smaller veins, involved in distributing water
as close as possible to the evaporation sinks [42], follow a
Murray’s law pattern. This pattern was revealed by looking
beyond the initial agreement with Murray’s law scaling in
leaves, and emphasizes the importance of testing for
systematic deviation from general scaling exponents within
hierarchies of multipurpose biological networks.

Materials and Methods

We analyzed 349 leaves in total. 339 of the leaves we used
for our analysis come from the cleared leaf image collection at
the Smithsonian Institution. The collection, including the
images used in this study, are currently available via an online
database of cleared leaf images (http://
www.clearedleavesdb.org/). We went through the entire image
collection, selecting only the best images for our analyses
based on three criteria: 1) leaf networks were relatively free
from tears or other damage; 2) image resolution was sufficient
to resolve many or most of the minor veins, and; 3) the contrast
between leaf veins, areoles and background were significant
enough for the LEAF GUI network extraction algorithms to
resolve their structure. To confirm that our results were not
specific to this group of leaf images we have also analyzed a
10 additional cleared leaves collected locally in Western
Australia (Methods and Figures S340-351 in File S1).

To quantify the dimension of leaf networks we utilized the
recently released software package, LEAF GUI [43]. LEAF GUI
is designed specifically for the analysis of leaf vein images.
Extensive descriptions of the underlying algorithms can be
found in [43] and on (www.leafgui.org) with several worked
examples in Price [44]. The LEAF GUI software returns a
characterization of the leaf as a weighted graph comprised of
nodes and edges, where an edge is defined as a vein segment,
and nodes are defined as the intersection of two or more
edges. In addition, LEAF GUI extracts metric and positional
information for each edge, such that each edge has an
associated vector of weights including length, width, surface
area, or volume.

To determine daughter to parent branch ratios as defined
above, for each node in the network, we identified the branch
with the largest radius and assumed it was the parent branch.
The remaining two branches are then assumed to be daughter

Leaf Vein Branching Geometry
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branches. Determination of branch cross sectional areas is
based on assuming a cylindrical shape and thus area is simply
a function of branch radius. To compare to the predictions from
Murray’s law and area-preserving branching, we summed the
areas of the two daughter branches, and divided that number
by the parent branch area. Because we have assumed the
largest branch is the parent branch, the maximum possible
value for the sum of the daughter branch areas is twice that of
the parent, i.e. if all branches were of equal radius and cross
sectional area. The minimum value for the area ratio
approaches zero, thus by definition the area ratio is bounded
by zero and two.

We define branching symmetry as the ratio of the smallest
daughter branch radius to the largest daughter branch radius,
thus in a perfectly symmetric branching network, symmetry
would equal one. Asymmetry occurs when one daughter
branch is significantly larger than the other, as might occur with
side branches along leaf midribs.

Murray’s Law and Area Increasing Branching
In Murray’s formulation, the total power (Pt) to construct and

maintain a conduit of unit length is given by, Pt=(8η/πr4)+ πmr2,
where r is conduit radius, η is the dynamic viscosity of the fluid
and m is the metabolic cost coefficient [11]. The first term
reflects the resistance costs and the second term reflects
construction costs and thus changes in radius affect total
power in opposite ways.

As mentioned, Murray’s derivation leads to the well known
prediction that the sum of the conduit radii cubed remains
constant, or r0

3 = r1
3 + r2

3. Estimating the radius tapering
exponent requires finding the value of α in the following
equation, r0

α = r1
α + r2

α, that minimizes the difference between
the right and left hand sides of the equation, or equivalently r0

α-
r1

α - r2
α = 0. To determine this value we used the function fsolve

in Matlab which searches algorithmically for the zero (or root)
of a function near a constant value, which we chose as three.
However, when the size of daughter branches approach that of
the parent branch, the estimation of α diverges, leading to a
strongly right skewed distribution of α values, which includes
much higher values than expected [45]. Rather than invoke an
arbitrary cutoff for values of α [15,45], we simply report the
distribution of α values, and note that the median value of α,
and the mean in logarithmic space, are consistent with
theoretical expectations. For a bifurcating network in which
daughter branches are symmetrical, this rule can also be
expressed as the ratio of daughter (k+1) and parent (k) areas
(A), 2Ak+1/Ak ≈ 1.25.

Elastic Similarity and Area-Preserving Branching
Following West et al. [3], for a hierarchically branching

network with branches indexed as (k), one can derive
relationships between the radius (r), length (l) and number (n)
of branches. The ratio of daughter (rk+1) to parent (rk) branch
radii can be expressed as a function of the number of daughter
(nk+1) branches per parent (nk), the furcation number (n = nk+1/
nk), or rk+1/rk = n-a/2. If branching networks are optimally
designed to resist buckling there exists some relationship
between the length and radius, l ≈ rσ. Combining these we have

a = 2/3σ. For a network that is volume filling, specifically Nklk3 =
Nk+1lk+13, and elastically similar, σ = 2/3, leading to a = 1 which
is the condition for area-preserving branching, or r02 = r12 + r22.
Thus for a bifurcating network as is typically found in leaves (n
= 2), 2Ak+1/Ak ≈ 1.

Maximum Spanning Tree and Horton-Strahler Ordering
All of the aforementioned theories have been developed for

open networks such as trees, however, most broad leaf
angiosperm leaf networks are reticulate, meaning they contain
loops. Despite this, a hierarchical structure is clearly evident in
most leaves, and leaf classification schemes utilize this
hierarchy, relying on the concept of vein order [46]. To
unambiguously assign orders, we first utilize a pruning
technique based on a topological concept, the Maximal
Spanning Tree (MST)[47]. The MST is then subjected to an
ordering algorithm developed for the study of river networks
[48,49]. The MST is the network structure that most closely
resembles the original leaf network and connects all nodes
(bifurcation points), but that is strictly hierarchical. The
determination of the MST is equivalent to pruning veins
computationally in such a way that the resulting network is both
strictly hierarchical and has functional properties (such as
hydraulic conductance) or material properties (such as total
volume or vein length) that preserve network hierarchy, and are
as close to the original hierarchical network as possible. To find
the MST we employed Prim’s algorithm [47] on the largest
connected component of the graph returned from the LEAF
GUI software, and selected the node closest to the point of
petiole attachment as the root node. As we use only the largest
connected component in our analysis, i.e. the vein network
connected to the major veins, the omission of some small
disconnected regions of minor veins is unlikely to have a strong
influence the summary statistics we measure here.

The MST is a strictly hierarchical network (i.e., with no loops)
which connects all vertices while maximizing some objective
function. We maximized our trees for theoretical conductivity,
which is proportional to r4, as this was found to return network
hierarchy with the greatest fidelity. This approach is robust to
different exponent values such as r3, or r5, so long as there is a
greater weighting on veins with larger radii. Thus, the MST is
that which connects all of these nodes without forming loops,
thereby preserving vein hierarchy and ensuring supply to
mesophyll without being redundant.

Once the MST is determined, we assigned orders to all
branching levels using the Horton-Strahler ordering scheme
originally developed for the study of river networks [48,49].
Both centripetal and centrifugal ordering schemes have been
developed for the study of dendritic networks [50,51].
Centripetal schemes, such as Horton-Strahler ordering, start at
the tips and number progressively down the tree. In contrast,
centrifugal approaches start at the “trunk” (midrib/petiole) and
increase in order towards the periphery. A goal of ordering
algorithms generally is to classify branches into orders based
on their functional similarities [50,51], and with respect to
leaves both approaches have advantages and disadvantages.
One might be interested in petioles as the functionally similar
unit across leaves and employ a centrifugal scheme. This has
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the disadvantage however of assigning different orders to the
terminal (minor) veins in a leaf. In a large leaf, this could mean
that functionally equivalent minor veins could differ by many
orders. We chose to view the terminal veins as the functionally
equivalent units, i.e. the minor most veins are all 1st order,
based on the idea that the physical properties of the minor
veins are more or less functionally equivalent within a species,
and similar across species [5,42]. While the petioles of leaves
are functionally equivalent in terms of being the point of
attachment to the leaf, the biomechanical and hydrodynamic
properties of petioles will change as a function of their size
(and order) across leaves within a single species, or across
different species.

Under the Horton-Strahler scheme, if a branch is terminal
(has no daughters), its Strahler number is one. If a branch has
one daughter with Strahler number i, and all other daughters
have Strahler numbers less than i, then the Strahler number of
the branch is i again. If a branch has two or more daughters
with Strahler number i, and no daughters with greater number,
then the Strahler number of the node is i +1. In this way, we
assigned order to all branches within the MST. Note that this
scheme is in contrast to the methodology currently used by leaf
morphologists who typically refer to the leaf midrib as the
primary vein, large vein courses emerging from the primary as
secondary, etc. [46,52].

Supporting Information

File S1.  Supporting methods. Figures S1-S339, Area ratio
as a function of vein order for each of the 339 leaves from the

Smithsonian leaf collection analysed in this study. Figure S340,
Frequency distribution of the area ratio for 191,769 individual
vein junctions across the additional 10 leaves that analysed as
described in the “10 Leaves Results” above. The mean and
median are nearly equal to the expectation for Murray’s law
when daughter branches are symmetric. Figures S341-S351,
Area ratio as a function of vein order for each of the 10
additional leaves as described in the Supplemental Material.
The box and whisker plots for these 10 leaves are entirely
consistent with those from the Smithsonian leaf collection
(Figures S1-S339). Lower order veins overlap more strongly
with the expectation from Murray’s law and higher order veins
overlap more strongly with the expectation for area preserving
branching or elastic similarity.
(PDF)
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