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Abstract: There is mounting evidence that diets supplemented with polyunsaturated fatty acids
(PUFA) can impact brain biology and functions. This study investigated whether moderately high-fat
diets differing in n-6/n-3 fatty acid ratio could impact fatty acid composition in regions of the
brain linked to various psychopathologies. Adult male Sprague Dawley rats consumed isocaloric
diets (35% kcal from fat) containing different ratios of linoleic acid (n-6) and alpha-linolenic acid
(n-3) for 2 months. It was found that the profiles of PUFA in the prefrontal cortex, hippocampus,
and hypothalamus reflected the fatty acid composition of the diet. In addition, region-specific
changes in saturated fatty acids and monounsaturated fatty acids were detected in the hypothalamus,
but not in the hippocampus or prefrontal cortex. This study in adult rats demonstrates that fatty acid
remodeling in the brain by diet can occur within months and provides additional evidence for the
suggestion that diet could impact mental health.
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1. Introduction

There are important links between diet and psychopathology [1]. For instance, diets characterized by
high n-6/n-3 poly-unsaturated fatty acid (PUFA) ratios have been linked to a variety of affective, cognitive
and behavioral deficits [2,3]. Moreover, patients suffering from conditions ranging from Alzheimer’s to
major depression display lower n-3 PUFA and higher n-6 PUFA levels in brain and plasma [4,5]. PUFA are
linked to mental health because of the many functions they regulate, including neurotransmission, synaptic
function, neuronal survival, and neuroinflammation [3,6]. For example, diets with a high n-6/n-3 ratio
can reduce monoamine neurotransmission, impair neurogenesis, alter hypothalamic-pituitary-adrenal
(HPA) stress axis activity, and increase depression-like behavior [7–11]. Conversely, diets with low n-6/n-3
ratios are associated with cognitive benefits and reduced depression risk [12–14].

Linoleic acid (LA; 18:2n-6) and α-linolenic acid (ALA; 18:3n-3) are essential fatty acids that cannot
be synthesized de novo and must therefore be consumed in the diet. Following their ingestion, LA and
ALA can be converted into other important fatty acids, including arachidonic acid (AA; 20:4n-6) and
docosahexaenoic acid (DHA; 22:6n-3), which are the predominant long-chain PUFAs (LC-PUFA) in the
brain. While it is recognized that the typical Western diet is unbalanced with a high n-6/n-3 ratio, there
is still some debate regarding the optimal composition of PUFA in the diet [15]. However, most studies
examining the role of dietary PUFA on brain biology have supplemented with eicosapentaenoic acid
(EPA; 20:5n-3) and DHA to improve the n-6/n-3 ratio in the diet [14]. Comparatively less is known
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about the effects of LA and ALA, which have their own distinct bioactivity compared to LC-PUFA.
Importantly, LA and ALA compete for the same desaturase and elongase enzymes, which means that
their rate of conversion into AA and DHA depends on relative amounts consumed [16]. In addition,
the brain contains the second highest concentration of total lipid in the body, after adipose tissue, and it
is sensitive to changes in dietary fat intake, but in a region-specific manner [17]. For example, mice fed
a diet containing a balanced 7:1 ratio of LA:ALA displayed higher PUFA levels in the prefrontal cortex
(PFC), hippocampus (HPC) and hypothalamus (HYP), compared to the rest of the cortex, the cerebellum
and brainstem, suggesting that these regions may be more sensitive to changes in dietary fats [17].

Therefore, the objective of this study was to establish whether high and low n-6/n-3 (LA:ALA)
ratio diets could alter fatty acid content in different regions of the rat brain. Adult male Sprague Dawley
rats were selected because of their widespread use in animal models of human psychopathology [18].
The diets employed in this study were selected to explore the impact of different LA:ALA ratios using
isocaloric diets, rather than supplementation studies that are more commonly used, in order to capture
the biological interactions of these essential fats [19–21]. The focus was on fatty acid content in the PFC,
HPC, and HYP because of the high abundance of PUFA in these regions [17] and because altered fatty
acid composition in these regions is linked to prevalent and debilitating psychopathologies such as
substance dependence, obsessive compulsive disorder, major depression, Alzheimer’s, and metabolic
disfunctions [3,14].

2. Materials and Methods

2.1. Animals and Diets

Adult male Sprague Dawley rats (6–7 weeks old) were received from Charles River (St-Constant,
QC, Canada). All rats were housed in environmentally controlled rooms (22–24 ◦C) with standard
environmental enrichment and ad libitum access to water and diets for 2 months. Diets were isocaloric,
with macronutrient composition consisting of 35% kcal from fat, 20% kcal from protein and 45% kcal
from carbohydrates (Table 1; diets from Research Diets, Inc., New Brunswick, NJ, USA). Diets differed
only in regard to the source of dietary oil. Rats were randomly assigned to one of the following
diet groups: (1) high n-6/n-3 ratio (~600:1) diet containing safflower oil (SD; D15010801) and (2) low
n-6/n-3 ratio (~0.25:1) diet containing flaxseed oil (FD; D15010802). Body weight and diet intake were
assessed daily at the onset of the dark period. All procedures were approved by the Animal Care
Committee of the University of Guelph and were carried out in accordance with the recommendations
of the Canadian Council on Animal Care (Animal Utilization Protocol # 3609; Approved Timeline:
Oct 2016–Oct 2020).

Table 1. Composition of experimental diets. Composition of AIN-93G modified diets as provided by
manufacturer, Research Diets. Diet product numbers are D15010802 (FD) and D15010801 (SD).

Flaxseed Diet (FD) Safflower (SD)
kcal (%) kcal (%)

Protein 20 20
Carbohydrate 45 45

Fat 35 35
kcal/gm 4.47 4.47

Ingredient (g/kg diet)
Soybean oil 0 0
Flaxseed oil 154 0
Safflower oil 0 154

t-Butylhydroquinone 0.0228 0.0028
Casein 200 200

L-Cystine 3 3
Corn Starch 208 208

Maltodextrin 10 132 132
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Table 1. Cont.

Flaxseed Diet (FD) Safflower (SD)
kcal (%) kcal (%)

Sucrose 100 100
Cellulose, BW200 50 50

Mineral Mix S10022G 35 35
Vitamin Mix V10037 10 10

Choline Bitartrate 2.5 2.5
Fatty Acid (g fat/kg diet)

14:0 - -
16:0 8.2 9.9

16:1n-7 - -
18:0 6.3 3.5

18:1n-9 31.1 18.5
18:2n-6 19.6 120.7
18:3n-3 82 0.2

20:0 - -
20:1n-9 - -

22:0 - -
24:0 - -

n-6:n-3 ratio ~0.25 ~600
Relative Composition

% SFA 9.80% 8.80%
% MUFA 21.10% 12.10%

% n-3 PUFA 55.70% 1%
% n-6 PUFA 13.30% 79%

2.2. Prefrontal Cortex, Hippocampus, and Hypothalamus Dissections

Rats were sacrificed with carbon dioxide and the brains were rapidly collected and flash frozen
(isopentane bath maintained between −30 ◦C and −20 ◦C) and stored at −80 ◦C until micro-dissection.
Frozen brains were sliced into coronal sections using a rat brain matrix and mounted onto slides
maintained on dry ice. Nuclei were micro-dissected using brain tissue punches (Stoelting, Inc., Kiel,
WI, USA), as described elsewhere [22].

2.3. Fatty Acid Analysis by Gas Chromatography

All solvents and reagents were obtained from Fisher Scientific (Toronto, ON, Canada). Prefrontal
cortex (PFC), hippocampal (HPC) and hypothalamic (HYP) samples (0.1 g) were maintained on ice and
homogenized in a 0.1 M KCl solution. Total fatty acid methyl esters were extracted from samples with
a chloroform:methanol (2:1, v/v) solution, according to Folch et al. [23]. Complete details of the fatty
acid analysis have been previously published [24]. Fatty acid methyl esters were detected using an
Agilent 6890A gas chromatograph with flame ionization detector (Agilent Technologies, Palo Alto, CA,
USA) and separated on DBFFAP fused silica capillary column (15 m, 0.1 µm film thickness, 0.1 mm
i.d.; Agilent Technologies, USA). Fatty acid peaks were identified by comparison to retention times of
known fatty acid standard peaks (Nu-Chek-Prep, Elysian, MN, USA) using EZChrom Elite software
(Version 3.3.2) to determine the relative abundance of individual fatty acids. Fatty acids are reported as
a percentage of total fatty acids detected. The n-3 PUFA:LC-PUFA ratio was calculated as the sum of
EPA+DPAn-3+DHA/sum of all PUFA ≥ 20 carbons.

2.4. Statistical Analyses

Data were analyzed by t-test, or Mann–Whitney Rank Sum test for data not normally distributed,
within individual brain regions (Sigma Plot, Version 12). Data are reported as mean± SEM, and statistical
significance was considered at p < 0.05, corrected using the Bonferroni method for multiple comparisons.
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3. Results

After consuming a high n-6/n-3 ratio (~600:1) diet containing safflower oil (SD) or a low n-6/n-3
ratio (~0.25:1) diet containing flaxseed oil (FD) for two months, no differences in body weight (g;
FD = 558.87 ± 17.77; SD = 570.67 ± 13.74) or caloric intake (kcal/100 g; FD = 5.88 ± 0.13; SD = 5.93 ± 0.06)
were detected between the two diet groups prior to tissue collection.

The relative fatty acid composition of the PFC, HPC, and HYP of rats fed the high and low n-6/n-3
ratio diets are presented in Table 2. In each diet group, total saturated fatty acids (SFA) represented the
highest percentage of fatty acids (PFC ~49%; HPC ~46%; HYP ~44%), followed by monounsaturated
fatty acids (MUFA, PFC ~21%; HPC ~26%; HYP ~30%), n-6 PUFA (PFC ~15%; HPC ~15%; HYP ~15%),
and n-3 PUFA (PFC ~13%; HPC ~12%; HYP ~12%). The SD group had significantly higher levels of
total SFA (+7.8%, p < 0.0001; Figure 1a), as well as significantly lower levels of total MUFA (−15.8%,
p < 0.001; Figure 1b) in the HYP only. In each brain region, total n-3 and n-6 PUFA composition reflected
that of the diets. That is, total n-3 PUFA was higher in FD compared to SD animals (PFC +21.4%,
p < 0.001; HPC +26.2%, p < 0.01; HYP +22.1%, p < 0.001; Figure 1c), while total n-6 PUFA was higher in
SD compared to FD animals (PFC +17.6%, p < 0.001; HPC +23.1%, p < 0.0001; HYP +26.4, p < 0.0001;
Figure 1d). These differences were also reflected in the n-3 PUFA:LC-PUFA ratio; (Figure 1e) and the
DHA:AA ratio (Figure 1f).

Differences in the relative proportions of individual fatty acids were also observed between the
diet groups (Table 2). Regarding SFA and MUFA in the HYP, the SD group exhibited significantly
higher levels of 16:0 and 18:0 compared to the FD group, and significantly lower levels of 20:0, 18:1n-9,
and 20:1n-9. In the PFC, the SD group exhibited significantly higher levels of 18:1n-7. PUFA expression
was consistent across all three brain regions. Specifically, linoleic acid (LA), arachidonic acid (AA),
and 22:4n-6 exhibited higher levels in the SD group compared to the FD group in all three brain regions.
The SD group also showed significantly higher levels of 22:2n-6 compared to the FD group in only the
HPC; however; similar trends were seen in the PFC and HYP. In the PFC, docosahexaenoic acid (DHA)
exhibited significantly lower levels in the SD group compared to the FD group; however, similar trends
were detected in the HPC and HYP. ALA and EPA were only detected in all 3 brain regions at low
levels in only rats fed the FD.
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Table 2. Prefrontal Cortex (PFC), hippocampus (HPC), and hypothalamus (HYP) fatty acid composition of rats fed experimental diets. Values correspond to % fatty
acid ± standard error of the mean (n = 6–8 rats per diet group). The * denotes statistical difference between diet groups within brain regions (α ≤ 0.05, with Bonferroni
correction for multiple comparisons 0.05/21 = 0.00238). FD, flaxseed diet; SD, safflower diet.

PFC Hippocampus Hypothalamus

Fatty Acid FD SD FD SD FD SD

14:0, Myristic 0.47 ± 0.03 0.51 ± 0.03 0.28 ± 0.02 0.33 ± 0.05 0.18 ± 0.01 0.21 ± 0.01
16:0, Palmitic 25.39 ± 0.50 25.92 ± 0.36 24.13 ± 1.78 22.85 ± 0.30 18.14 ± 0.13 20.67 ± 0.55 *
18:0, Stearic 21.84 ± 0.15 22.35 ± 0.21 20.45 ± 0.46 21.25 ± 0.24 20.61 ± 0.09 21.82 ± 0.07 *

20:0, Arachidic 0.22 ± 0.07 0.17 ± 0.06 0.48 ± 0.46 0.52 ± 0.02 0.73 ± 0.01 0.56 ± 0.04 *
22:0, Behenic 0.52 ± 0.16 0.39 ± 0.15 0.82 ± 0.08 0.97 ± 0.03 1.07 ± 0.02 1.14 ± 0.07

24:0, Lignoceric 0.38 ± 0.09 0.38 ± 0.01 0.79 ± 0.05 0.87 ± 0.04 1.18 ± 0.07 1.03 ± 0.16
Total SFA 48.83 ± 0.37 49.72 ± 0.33 46.95 ± 1.28 46.79 ± 0.50 41.90 ± 0.13 45.44 ± 0.32 *

16:1n-7, Palmitoleic 0.35 ± 0.08 0.39 ± 0.07 0.51 ± 0.07 0.43 ± 0.01 0.55 ± 0.05 0.72 ± 0.07
18:1n-9, Oleic 16.02 ± 0.25 15.04 ± 0.18 19.66 ± 0.35 18.79 ± 0.44 22.39 ± 0.29 18.64 ± 0.64 *

18:1n-7, Vaccenic 3.14 ± 0.06 3.35 ± 0.02 * 3.57 ± 0.12 3.8 ± 0.05 4.20 ± 0.08 3.95 ± 0.10
20:1n-9, Eicosenoic 0.92 ± 0.11 0.89 ± 0.07 1.52 ± 0.06 1.77 ± 0.09 2.84 ± 0.09 1.99 ± 0.12 *

22:1n-9, Erucic 0.17 ± 0.06 0.15 ± 0.06 0.25 ± 0.06 0.44 ± 0.04 0.43 ± 0.01 0.40 ± 0.04
24:1n-9, Nervonic 0.51 ± 0.10 0.59 ± 0.06 1.10 ± 0.05 1.27 ± 0.06 2.13 ± 0.06 1.71 ± 0.21

Total MUFA 21.10 ± 0.48 20.41 ± 0.33 26.61 ± 0.53 26.54 ± 0.61 32.55 ± 0.43 27.41 ± 0.99 *
18:3n-3, ALA 0.04 ± 0.04 ND 0.22 ± 0.07 ND 0.19 ± 0.02 ND
20:5n-3, EPA 0.11 ± 0.04 ND 0.10 ± 0.04 ND 0.18 ± 0.01 ND

22:5n-3, DPAn-3 0.66 ± 0.01 0.13 ± 0.13 0.87 ± 0.20 0.31 ± 0.26 0.91 ± 0.13 0.22 ± 0.15
22:6n-3, DHA 14.66 ± 0.39 12.01 ± 0.16 * 12.53 ± 0.50 9.81 ± 1.04 11.77 ± 0.25 9.95 ± 0.45

Total n-3 PUFA 15.46 ± 0.35 12.15 ± 0.15 * 13.72 ± 0.58 10.12 ± 1.10 * 13.06 ± 0.29 10.17 ± 0.37 *
18:2n-6, LA 0.94 ± 0.03 1.22 ± 0.03 * 0.89 ± 0.03 1.26 ± 0.02 * 0.75 ± 0.03 1.00 ± 0.03 *

20:2n-6, Eicosadienoic 0.17 ± 0.07 0.23 ± 0.09 0.22 ± 0.07 0.52 ± 0.02 * 0.40 ± 0.02 0.41 ± 0.03
20:3n-6, DGLA 0.47 ± 0.08 0.35 ± 0.08 0.53 ± 0.04 0.55 ± 0.03 0.59 ± 0.05 0.54 ± 0.05

20:4n-6, Arachidonic 10.32 ± 0.14 11.91 ± 0.1 * 8.76 ± 0.26 10.59 ± 0.13 * 7.94 ± 0.26 10.97 ± 0.42 *
22:4n-6, Adrenic 2.70 ± 0.06 4.01 ± 0.04 * 2.32 ± 0.08 3.64 ± 0.09 * 2.82 ± 0.14 4.06 ± 0.05 *
Total n-6 PUFA 14.61 ± 0.23 17.72 ± 0.11 * 12.72 ± 0.43 16.55 ± 0.24 * 12.50 ± 0.32 16.98 ± 0.42 *

n-3 PUFA: LC-PUFA 0.53 ± 0.01 0.43 ± 0.003 * 0.53 ± 0.01 0.39 ± 0.04 * 0.52 ± 0.01 0.39 ± 0.01 *
DHA:AA 1.42 ± 0.03 1.02 ± 0.004 * 1.43 ± 0.04 0.93 ± 0.10 * 1.49 ± 0.06 0.91 ± 0.02 *
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polyunsaturated fatty acids (PUFA); (d) total n-6 PUFA; (e) n-3 PUFA:LC-PUFA ratio, which was 
calculated as the sum of EPA+DPAn-3+DHA/sum of all PUFA ≥ 20 carbons; and (f) DHA:AA ratio in 
rats fed experimental diets. Values correspond to % fatty acid ± standard error of the mean (n = 6–8 
rats per diet group). The * denotes statistical difference between diet groups within brain regions (α 
≤ 0.05). FD, flaxseed diet (low n-6/n-3 ratio); SD, safflower diet (high n-6/n-3 ratio). 
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docosahexaenoic acid (DHA) exhibited significantly lower levels in the SD group compared to the 
FD group; however, similar trends were detected in the HPC and HYP. ALA and EPA were only 
detected in all 3 brain regions at low levels in only rats fed the FD. 

Figure 1. Prefrontal Cortex (PFC), hippocampus (HPC), and hypothalamus (HYP) composition of
(a) total saturated fatty acids (SFA); (b) total monounsaturated fatty acids (MUFA); (c) total n-3
polyunsaturated fatty acids (PUFA); (d) total n-6 PUFA; (e) n-3 PUFA:LC-PUFA ratio, which was
calculated as the sum of EPA+DPAn-3+DHA/sum of all PUFA ≥ 20 carbons; and (f) DHA:AA ratio in
rats fed experimental diets. Values correspond to % fatty acid ± standard error of the mean (n = 6–8 rats
per diet group). The * denotes statistical difference between diet groups within brain regions (α ≤ 0.05).
FD, flaxseed diet (low n-6/n-3 ratio); SD, safflower diet (high n-6/n-3 ratio).

4. Discussion

Diets that differ in their relative fatty acid composition are purported to influence brain structure
and function. The present study found that feeding adult rats a diet with a high n-6/n-3 ratio (~600:1)
or a low n-6/n-3 ratio (~0.25:1) for two months altered the PUFA profile in the PFC, HPC, and HYP
in a manner that reflected the fatty acid composition of their diet. These diets also altered SFA and
MUFA levels in the HYP, but not in the PFC and HPC. Overall, these results indicate that: (1) fatty acid
remodeling in the adult rat brain can occur within months, (2) dietary ALA is capable of inducing this
remodeling, and (3) that the HYP may be particularly sensitive in comparison to the PFC and HPC.



Nutrients 2020, 12, 1847 7 of 10

Our analyses revealed that PUFA levels in all brain regions analyzed reflected dietary fat
composition: higher total and individual n-6 PUFA in SD-fed rats and higher total and individual n-3
PUFA in FD-fed rats. The observation in SD-fed rats is consistent with previous work investigating
the influence of n-3 PUFA deficient diets on brain PUFA composition in mice [17,25]. Joffre et al.
investigated the effect of long term (4 months) consumption of an n-3 PUFA deficient (n-6/n-3 ratio
of >500:1) or a more balanced (n-6/n-3 ratio of 6.7:1) diet in the cortex, HPC, HYP, PFC, brainstem,
and cerebellum of C57 mice [17]. While some regional variability was observed, mice fed n-3 PUFA
deficient diets exhibited lower levels of total n-3 PUFA and DHA in all regions investigated. In contrast,
relative n-6 PUFA levels (including AA) were increased in these same mice, ultimately leading to a
general increase in AA/DHA ratio in the various brain regions. There are some differences between the
present study and the important work by Joffre et al. that are noteworthy to highlight. Briefly, Joffre
et al. examined the effect of different n-3 PUFA diets in various mouse models, reporting that PUFA
levels varied based on dietary manipulation, as well as strain and age of mice [17]. The current study
complements the Joffre et al. findings by reporting the effect of essential dietary fat ratios on brain
FA levels in rats. Further, our goal was to examine the effects of moderate fat diets (35% kcal/d) on
various regions of the brain, while Joffre et al. used low-fat diets (~11% kcal/d, as calculated from their
published diet table). The level of fat used in the current study was chosen to reflect levels that are
typical of the North American diet. Finally, the feeding protocol used in the present study was half as
long as that used by Joffre et al. (2 months vs. 4 months), which allowed us to show that fatty acid
remodeling in the brain of rats can happen relatively quickly.

Despite FD-fed rats consuming high levels of ALA, this essential fatty acid was only detected at
very low levels in the brain. However, FD-fed rats also had DHA levels that were >360 times higher
than ALA levels in the PFC and ~60 times higher than ALA levels in the HPC and HYP. Differences
between DHA and EPA content were similarly observed, which is consistent with previous work [17].
There are at least two possible explanations for the observation that the FD diet resulted in higher
levels of DHA but little-to-no ALA. First, it could be that most of the ALA that enters the brain is
rapidly converted to DHA. However, this seems unlikely given that EPA (which is produced from
ALA to a greater extent than DHA) was generally present at levels equivalent to ALA. Rather, work by
DeMar and colleagues showed that although ALA enters the brain rapidly, it is primarily oxidized
and ≤0.2% is converted into DHA [26]. Interestingly, DHA levels in the PFC, HPC, and HYP were all
greater in FD-fed rats compared to SD-fed rats, although statistical significance was only achieved in
the PFC. Thus, the difference in DHA levels between the two groups of rats after 8 weeks was not as
large as expected. However, this is perhaps not surprising given DHA’s importance for normal brain
structure, function and metabolism. Using labelled fatty acid tracers, DeMar et al. showed that brain
DHA levels were reduced by 37% after feeding rats an n-3 PUFA deficient diet (i.e., a safflower diet
similar to that used in the current study) for 15 weeks from weaning [27]. Moreover, this reduction in
DHA was unchanged over a subsequent 60-day period, indicating little additional loss in brain DHA
content. Notable differences between this past study and our study included the age at which rats
began to have access to the n-3 PUFA deficient diet and the duration of the feeding trial. In our study,
rats were well past weaning when they began the experimental diet, and our study was shorter in
duration. Thus, it is plausible that we would need to extend the feeding trial for longer before detecting
reductions in DHA in rats fed the SD compared to FD. Second, DHA levels in the brain are sustained
primarily by peripheral, rather than central, synthesis from ALA. This explanation is consistent with
recent work by Lacombe and colleagues, who demonstrated that rats fed preformed DHA showed
higher levels of brain DHA compared to animals fed an ALA-based diet [28]. Thus, the current study
supports the idea that DHA taken up in the brain may be formed from the conversion of ALA that
occurs elsewhere in the body (e.g., liver) and that mechanisms exist to preserve brain DHA levels and
buffer against short-term dietary deficiencies in n-3 PUFA.

Interestingly, SD-fed rats exhibited higher levels of total SFA, palmitic, and stearic acid, as well as
lower levels of total MUFA, oleic, and eicosenoic acid levels compared to the FD-fed rats in the HYP,
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but not in the HPC or PFC. Recently, Rey et al. reported no change in SFA or MUFA in the HPC of
mice after 2 months of n-3 PUFA deficient or LC-PUFA supplemented diets [29]. In contrast, Joffre et al.
reported that n-3 PUFA deficiency elevated total SFA and palmitic acid levels, as well as lowered total
MUFA, oleic, and eicosenoic acid levels in the cortex of C57 mice after 4 months [17]. Thus, elevated
SFA (specifically palmitic acid) levels found only in the rat HYP after only 2 months suggests that the
HYP may be more sensitive to dietary modulation than the HPC or PFC. Unfortunately, literature
investigating region-specific effects of diet on brain PUFA composition is limited and more research
is required to elucidate the time-course of these changes. Having said that, given that palmitate is
generally positioned as a pro-inflammatory fatty acid [30], the current results may have implications
for neuroinflammation in the HYP.

Overall, these results have potential implications for understanding links between diet, brain
biology, and psychopathology. Here we show that high and low n-6/n-3 (LA:ALA) ratio diets
differentially alter fatty acid composition in three regions of the adult rat brain after only 2 months of
feeding. Although not directly tested, it is interesting to consider possible functional ramifications
of these diets. For example, the HPC and PFC play central roles in psychopathologies that involve
impaired learning, memory, stress reactivity, and emotional control [31,32]. N-3 PUFA deficiency in
these regions was reported to impair neurogenesis and alter monoamine activity required for normal
function [7–10]. The HYP plays a central role in mediating metabolic function and the HPA stress
axis [33,34], and n-3 deprivation promoted HPA-axis hyperactivity, an exaggerated stress response,
and altered insulin signaling [11,24]. Importantly, dietary n-3 PUFA supplementation (typically
consisting of EPA and/or DHA treatment) has been shown to attenuate positive and negative symptoms
in patients suffering from schizophrenia [35], improve treatment efficacy in patients suffering from
depression [36], and reduce cognitive decline in patients suffering from Alzheimer’s [37]. Therefore,
these current data in rats bolster the evidence demonstrating that essential dietary fats can alter fatty
acid composition in the brain [13,14,38] and show that consumption of a moderately high-fat diet
rich in ALA (but deficient in EPA and DHA) can help maintain levels of brain DHA better than a
moderately high-fat diet containing only trace amounts of ALA.
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