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Abstract

Cellular signaling is classically investigated by measuring optical or electrical properties of single or populations of living
cells. Here we show that ligand binding to cell surface receptors and subsequent activation of signaling cascades can be
monitored in single, (sub-)micrometer sized native vesicles with single-molecule sensitivity. The vesicles are derived from
live mammalian cells using chemicals or optical tweezers. They comprise parts of a cell’s plasma membrane and cytosol and
represent the smallest autonomous containers performing cellular signaling reactions thus functioning like minimized cells.
Using fluorescence microscopies, we measured in individual vesicles the different steps of G-protein-coupled receptor
mediated signaling like ligand binding to receptors, subsequent G-protein activation and finally arrestin translocation
indicating receptor deactivation. Observing cellular signaling reactions in individual vesicles opens the door for downscaling
bioanalysis of cellular functions to the attoliter range, multiplexing single cell analysis, and investigating receptor mediated
signaling in multiarray format.
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Introduction

Miniaturized bioassays of cellular signaling are of fundamental

importance to increase both throughput and number of param-

eters evaluated, and substantially decrease sample consumption.

Microfluidics and microarray technologies are currently used in

this context to monitor cellular signaling in a highly parallelized

and automated fashion typically in nano- to picoliter volumes

[1,2]. Downscaling to smaller volumes using intact mammalian

cells is not feasible with such approaches. As outlined elsewhere

[3–5], a widely overlooked large potential for miniaturization of

bioanalysis and for nano-biotechnology lies in single, closed (sub-

)femtoliter reaction volumes isolated from the ensemble and

investigated as individuals, by micromanipulation, by self-posi-

tioning in microarrays on surfaces or in multiple optical traps free

in solution [6,7]. Although micrometer-sized lipid vesicles or

polymeric containers have been used to observe simple biochem-

ical reactions [8–12], the reliable reconstitution of complex

transmembrane cellular signaling cascades into such artificial

containers has never been shown and seems to be difficult to

realize for the near future. In this context, plasma membrane

vesicles, derived from living mammalian cells by chemical

treatment [3,13,14] or opto-mechanical manipulation [15] are of

utmost interest. As a native vesicle receives from its mother cell a

portion of naturally oriented plasma membrane and part of the

cytoplasm, it should be regarded as a single-cell biopsy, able to act

as a miniaturized, minimal autonomous entity detecting external

signals at and transmitting them across the vesicle plasma

membrane, and finally activating signaling reaction cascades

inside the vesicle similar to its mother cell.

Up until now cell-derived plasma membrane vesicles have been

used mostly as model membranes to study the lateral distribution

of lipids and proteins within the plasma membrane of individual

vesicles using optical microscopy [16–18] as well as the chemical

composition of vesicle populations using mass spectrometry [19].

Only a few studies addressed the function of signaling receptor

proteins in the plasma membrane of individual native vesicles such

as binding of agonists to and activating of ligand-gated ion

channels [3] or ligand binding to G-protein-coupled receptors

(GPCRs) [15]. Transmembrane receptor mediated signaling

reactions in native vesicles have yet not been demonstrated.

Here, we present first results of detecting complex signaling

pathways in individual vesicles focusing on G-protein-coupled

receptors as an example of central importance for transmembrane

cellular signaling cascades [20]. We demonstrate the ability of

single cell-derived plasma membrane vesicles to convert an

external stimulus to an internal response by monitoring the

different steps of GPCR mediated signaling, from initial signal

detection (ligand binding) to subsequent transmission of the

external signal across the vesicle’s plasma membrane leading to

intravesicular signaling reactions (activation of G-proteins) and

finally receptor deactivation (arrestin translocation). We derived

plasma membrane vesicles from live mammalian cells either by

incubating the cells with cytochalasin B, a compound known to

destabilize the interaction between the actin cytoskeleton and the

plasma membrane, or by micromechanical single-cell biopsy using

an optical tweezer. As shown below, both sorts of vesicles reveal
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similar properties concerning composition and functional signaling

cascades.

Results and Discussion

Receptor Density and Diffusion
We first report on experiments using vesicles obtained by

cytochalasin B treatment. The formation of plasma membrane

vesicles is depicted schematically in Figure 1A and in the

micrographs of Figure 1B–E for HEK cells expressing fluorescent

membrane and cytosolic proteins, demonstrating that the (sub)-

micrometer sized vesicles (size distribution: Figure S1) comprise

portions of a cell’s membrane and cytosol. Using fluorescence

correlation spectroscopy (FCS), we determined the concentration

and mobility of a prototypical GPCR, the adenosine A2A receptor

fused to YFP (A2AR-YFP), in the plasma membrane of both

individual native vesicles and their mother cells. From the

measured autocorrelation function (ACF) (Figure 2B and Figures

S2A,B), we calculated receptor densities of 500641 (n= 21) and

580639 (n= 21) receptors/mm2 in the plasma membranes of the

vesicles and the mother cells, respectively. These data show that

during the formation of plasma membrane vesicles the native

receptor density is maintained. The mobility of A2AR-YFP was

also investigated by FCS (Figure 2B). The measured ACF curves

were best described by 2D-diffusion of a single component and

considering triplet state formation, yielding a typical receptor

diffusion coefficient D= 0.5960.04 mm2/s (n= 21) in vesicles, and

D= 0.1760.02 mm2/s (n= 21) in cells (Figure S2A,B). The

difference of the receptor mobility in cells and vesicles might be

due to the interaction of GPCRs with the cell’s cytoskeleton [21]

and local roughness of the cell’s plasma membrane, which both

are absent in cytochalasin-derived vesicles [3,22]. Plasma mem-

brane vesicles are particularly suited to measure processes on/in

membranes by FCS as vesicles do not show morphological

changes, which are typical for living cells [23]. Therefore the

measured fluorescence traces are very stable and reproducible with

considerable lower background fluorescence as compared to cells.

In contrast, FCS measurements on the plasma membranes of

living cells are prone to artifacts due to the intrinsic movements of

a cell.

Ligand Binding
The first step of GPCR-mediated signaling concerns the binding

of a ligand molecule to its cognate receptor. To monitor this

interaction, we used XAC-Atto655 a fluorescent antagonist for

A2AR [24] (Figure 2A). FCS enables to distinguish free from

receptor-bound XAC-Atto655 according to their distinct different

diffusion coefficients of Dfree = 377 mm2/s and Dbound = 0.53 mm2/s

(Figure 2C). The specificity of the interaction of XAC-Atto655

with A2AR was demonstrated by (i) measuring its dissociation

from the receptor adding an excess of unlabeled XAC (Figure S3)

and (ii) determining from ACFs obtained at various ligand

concentrations a dissociation constant of KD = 67611 nM

(Figure 2D), which is close to KD = 97612 nM we measured on

cells (Figure S2C,D).

G-protein Activation
In living cells, the subsequent interactions between GPCRs and

their G-proteins have been observed by fluorescence resonance

energy transfer (FRET) using fluorescent-labeled partners [25].

Here we monitor these interactions for the first time in individual,

(sub-)micrometer-sized plasma membrane vesicles by measuring

FRET between CFP-labeled G-proteins and A2AR-YFP

(Figure 3A). Vesicles were derived from cells transiently expressing

the fluorescent proteins A2AR-YFP and Gc2-CFP, together with

unlabeled Gas and Gb1. Whereas an entire expressing cell exhibits

high fluorescence located at the endomembranes due to contin-

uous expression of the labeled proteins (Figure S4A,B), the lumen

of a plasma membrane vesicle is devoid of such fluorescence

(Figure 3B) as it does not carry any endoplasmic reticulum [3].

Addition of agonist significantly increases FRET (measured as

fluorescence intensities ratio FYFP/FCFP), showing that the ligand-

bound receptor interacts with the heterotrimeric G-protein and

subsequent antagonist addition results in a reversible decrease of

the FRET signal (Figure 3C and Figure S5). These results imply

not only that native vesicles are sensitive to extracellular stimuli,

but also that they are able to transmit the signal of ligand-binding

via the receptor across the membrane towards the G-protein.

Moreover, increasing agonist concentration in the bulk leads to a

concomitant increase of the FRET signal saturating at high

agonist concentrations with an EC50 = 100611 nM (Figure 3D,E).

This value is consistent with EC50 = 76629 nM measured in cells

(Figure S4C,D).

Receptor Desensitization
For many GPCRs agonist-induced activation is followed by

downstream receptor deactivation. Agonist-bound GPCRs rapidly

undergo selective phosphorylation by G-protein-coupled receptor

kinases (GRKs) and second-messenger kinases, e.g. cAMP-

dependent protein kinase (PKA) and protein kinase C (PKC).

This finally leads to the binding of arrestin to the GPCRs

preventing further interaction of receptors with G-proteins, thus

effectively terminating the G-protein-mediated signaling [26]

(Figure 4A). To investigate whether this pathway can be activated

also within the vesicles, we employed the neurokinin-1 receptor

(NK1R), a GPCR known to exhibit rapid arrestin-mediated

desensitization [27]. GFP-tagged b-arrestin2 (arrestin-GFP) was

co-expressed together with NK1R in cells used for the vesicle

production. A micrograph of a typical single vesicle is depicted in

Figure 4B. Upon binding of the agonist substance P to the NK1R,

arrestin-GFP redistributed from the lumen to the membrane of the

vesicle, demonstrating that receptor activation finally leads to the

formation of the arrestin-receptor complex. Moreover, these

observations imply that native vesicles contain the functional

downstream signaling machinery comprising the different kinases

required to induce receptor phosphorylation and desensitization.

To demonstrate the identical functional behavior of arrestin in

vesicles and cells, we tested the activation of arrestin in a newly

formed vesicle still in the vicinity of its mother cell. Cells expressing

NK1R and arrestin-GFP were treated with cytochalasin B in order

to produce native vesicles (Figure 4C). When substance P was

added to the bulk solution, the arrestin was simultaneously

recruited to the plasma membrane of the vesicle and of the cell.

Production and Isolation of Vesicles Using an Optical
Tweezer

Our results demonstrate that cell-derived vesicles act as

autonomous functional containers capable to perform signaling

reactions as their mother cells. Up until here, experiments were

performed on vesicles derived from cytochalasin B treated cells.

This procedure might deliver a vesicle population of heteroge-

neous protein expression, primarily reflecting the heterogeneity of

individual cells within a population. Increasing evidence on the

biochemical and functional variability between individuals in a

population of cells demonstrate the importance of single-cell

analysis for elucidating the cell’s function, especially in the context

of the development and treatment of diseases [15]. In the

following, we show that with the help of an optical tweezer [28]

Attoliter-Scale Bioanalysis
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Figure 1. Formation of plasma membrane vesicles from live cells. (A) Scheme: After adding cytochalasin B, cultured cells formed within a few
minutes blebbing structures on their plasma membranes which can be sheared off (by shaking or by pulling with an optical tweezer) as (sub-
)micrometer-sized closed plasma membrane vesicles. (B,C) Confocal micrographs showing the YFP fluorescence of HEK cells expressing A2AR-YFP
before (B) and after (C) addition of cytochalasin B (typical final concentration 25 mg/ml); scale bars: 10 mm. (D) Confocal micrograph of a blebbing cell
expressing a fluorescent membrane receptor (A2A-YFP, green) and a cytosolic protein (mCherry, red). Both proteins are present in the cell and in the
shed vesicles; scale bar: 3 mm. (E) Array of vesicles produced from HEK cells expressing A2AR-YFP; scale bar: 10 mm.
doi:10.1371/journal.pone.0070929.g001

Figure 2. Diffusion of and ligand binding to GPCR. (A) Confocal micrograph of a plasma membrane vesicle derived from a HEK cell expressing
heterologously the A2AR-YFP showing the fluorescence of the A2AR-YFP (green, left) and the fluorescence of the receptor-bound antagonists XAC-
Atto655 (red, right); scale bar: 1 mm. Intensity fluctuations were recorded for 100s yielding to the autocorrelation curve of A2AR-YFP (B) that was best
fit with two correlation times: the diffusion time of the receptor (tR = 19.963.5 ms) and the chromophore blinking time (tT = 5746289 ms). (C)
Normalized autocorrelation curves of XAC-Atto655 measured in the supernatant (blue), at the apical membrane of the vesicle (red). (D) Receptor
binding of XAC-Atto655 at different concentrations yielded a dissociation constant of KD = 67611 nM. Shown are data points and standard deviations
of the mean of three independent titrations performed on different individual native vesicles.
doi:10.1371/journal.pone.0070929.g002
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several vesicles can be drawn from a single live cell, where each

vesicle is capable to perform signaling reactions thus multiplexing

single-cell analysis. When an optical tweezer is focused on the cell

surface, a part of the plasma membrane is trapped in the focus. By

drawing away this membrane patch, a membrane nanotube is

formed, which eventually ruptures off forming a closed vesicle

containing a part of the cytosol and the plasma membrane of the

mother cell (Figure 5D–G, Video S1). This form of trapping is

Figure 3. Transmembrane signaling in cell-derived plasma membrane vesicles. (A) Scheme of the activation of G-proteins inside a single
native vesicle. Upon binding to an agonist A2AR-YFP receptor forms a complex with the heterotrimeric Gasb1c2-CFP measured by FRET between CFP
of Gc2 and YFP of A2AR. (B) Confocal micrograph of a typical plasma membrane vesicle derived from a HEK cell expressing heterologously Gc2-CFP
(blue, left) and A2AR-YFP (yellow, right); scale bar: 1 mm. (C) FRET is detected as fluorescence intensity ratio FYFP/FCFP within a single native vesicle;
addition of 1 mM agonist APEC significantly increases FRET and subsequent addition of excess of antagonist XAC (10 mM) results in a decrease of the
FRET signal. (D) The FRET signal increases with the concentration of agonist APEC added to the bulk solution (concentrations indicated above the
bars in nM). (E) A dose-dependent increase of the FRET yields EC50 = 100611 nM; shown are averages and standard deviations of the mean of nine
titration experiments each performed on different, individual vesicles.
doi:10.1371/journal.pone.0070929.g003

Attoliter-Scale Bioanalysis

PLOS ONE | www.plosone.org 4 August 2013 | Volume 8 | Issue 8 | e70929



Figure 4. GPCR desensitization in cell-derived plasma membrane vesicles. (A) Scheme: Binding of agonists to GPCRs initiates receptor
phosphorylation, which in turn leads to binding of arrestin to the GPCRs preventing further activation of G proteins. Here, we monitor by confocal
microscopy in an individual native vesicle the translocation of fluorescent arrestin (arrestin-GFP) from the lumen to the membrane containing NK1R.
(B) Confocal micrograph of a particular single plasma membrane vesicle showing the fluorescence of arrestin-GFP. The agonist substance P added to
the bulk binds to the NK1R and induces rapid recruitment of arrestin-GFP at the vesicle membrane (scale bar: 2 mm) as shown in as a time course of
the luminal fluorescence of arrestin-GFP. (C) Confocal micrographs of a plasma membrane vesicle and its mother cell expressing NK1R and arrestin-
GFP, showing the fluorescence signal of arrestin-GFP before (left) and after (right) substance P perfusion (scale bar: 5 mm) and the time course of both
the cytosolic fluorescence of arrestin-GFP in the cell and in the vesicle.
doi:10.1371/journal.pone.0070929.g004

Attoliter-Scale Bioanalysis
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enabled by the refractive index difference between the bulk

medium and the cell. Whether the plasma membrane alone or

together with the cytoplasm is finally responsible for the trapping is

not clear yet. It has been shown elsewhere that a pure lipid vesicle

with identical inner and outer solutions could be trapped and

distorted in a laser focus due to optical forces acting on the lipid

bilayer [29]. The high refractive index of a plasma membrane [29]

therefore might be sufficient for trapping and pulling. High

concentration of intracellular proteins and also the presence of

submicrometer intracellular particles could reinforce the optical

trapping/pulling process.

Preformed plasma membrane blebs induced by cytochalasin B

serve as store of vesicles on the surface of a single cell from where

they can be easily removed individually (Figure 5H,I) and placed

at a defined position on the glass surface using an optical tweezer.

Such vesicles retain the functional integrity of the GPCR signaling

cascade. This is demonstrated for a vesicle containing the NK1R

and arrestin-GFP: when the NK1R was activated by substance P,

arrestin redistributed from the cytosol to the vesicle’s plasma

membrane (Figure 5J,K).

Conclusion
Taken together, we have demonstrated that individual plasma

membrane vesicles function as minimized autonomous containers,

capable of detecting external chemical signals and transducing

them across the membrane to finally activate downstream

signaling reactions inside the sub-femtoliter closed volume. These

vesicles offer a generic platform for bioanalysis of transmembrane

signaling going beyond presently reached miniaturization and

flexibility with many potential future applications: (i) Vesicles

contain a constant number of lipids and proteins allowing with the

help of single-molecule and super-resolution microscopies [30,31]

quantification of the distribution and interaction of cellular

signaling components at a precision that presently cannot be

met in live cells. This would provide a dynamic tomogram of the

complex cellular signaling network and thus provide substantial

new insight to the basics of cellular function. (ii) The integration of

individual vesicles in multi-arrays could reach an unprecedented

high-density of biological functions enabling a massive increase of

throughput and reduction of reagent consumption for functional

screening of compounds or receptors [4,6]. Examples are

applications in fundamental bio-medical research to screen the

function large numbers of receptors (e.g. naturally occurring

subtypes or disease related mutants) when exposed to potential

active compounds; this would be of direct importance for practical

screening applications in pharma- (drug developments) and food-

(functional food development) industry or for environmental

monitoring of harmful substances. (iii) Since a multitude of vesicles

can be derived from a single cell either in a spatially uncontrolled

manner using cytochalasin [3] or in form of a locally controlled

single vesicle biopsy, they would be ideally suited for multiplexing

single-cell analysis to study heterogeneity between individual cells

as well as within one cell at different states of cell development.

This might be of interest for investigating the diversity of rare

Figure 5. Isolation of plasma membrane vesicles derived from cells by optical tweezer. Sequence of cartoons (A–C) and transmission
optical micrographs (D–F) showing the production of a native vesicle (arrow) pulling off from the cell’s plasma membrane by an optical tweezer; here
we used HEK cells expressing the A2AR-YFP (Video S1). (G) Fluorescence micrograph of the vesicle obtained in (F) exhibiting fluorescence of the
membrane expressed receptor. (H,I) Transmission optical micrographs showing the isolation of a native vesicle (arrow) selected by an optical tweezer
from HEK cells expressing arrestin-GFP and NK1R. (J,K) Fluorescence micrographs of the vesicle before (J) and after (K) perfusion with the NK1R
agonist substance P showing enhanced concentration of arrestin-GFP at the plasma membrane; insets are the corresponding fluorescence profile
cross-sections of the vesicles.
doi:10.1371/journal.pone.0070929.g005
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primary cells for example tumor or stem cells with direct impact to

novel personalized cancer therapies [32–34].

Materials and Methods

Materials
Cytochalasin B and poly-D-lysine were purchased from Sigma-

Aldrich (Buchs). Dulbecco’s modified Eagle’s medium (DMEM),

fetal calf serum, Dulbecco’s phosphate-buffered saline (D-PBS)

and AlexaFluor 647 were from Invitrogen. Human adenosine 2A

receptor fused C-terminally to EYFP, human Gc2 fused N-

terminally to ECFP and human b-arrestin2 fused N-terminally to

EGFP were constructed as described previously [24,35,36].

Cell Culture and Transfection
For all experiments we used HEK293T cells cultured in T25

flask, grown in DMEM/F-12+ GlutaMAX medium containing

10% fetal calf serum in a humified atmosphere with 5% CO2 at

37uC. Cells were transiently transfected by Effectene (Qiagen)

according to the manufacturer’s instruction. Ligand binding to

GPCRs was measured on cells expressing adenosine 2A receptor

fused at the C-terminus to YFP (A2AR-YFP). G-protein activation

was measured in cells expressing A2AR-YFP, Gas, Gb1 and

fluorescent Gc2-CFP. Arrestin recruitment was monitored in cells

that were transfected with fluorescent b-arrestin2-GFP and

neurokinin 1 receptor (NK1R).

Cell-Derived Plasma Membrane Vesicles Production
Cells were seeded in T25 flasks and cultivated to 80%

confluence. After 18 hours cultivation cells were collected in

PBS buffer containing 5 mM EDTA, centrifuged and resuspended

in 5 ml D-PBS containing 25 mg/ml cytochalasin B. Native

vesicles were sheared off from cells during 10 minutes of agitation

at 700 rpm (IKA MS1 Minishaker), separated from cells by

filtration (2 mm TPPC filter, Millipore), collected by centrifugation

at 6,300 g for 10 min and finally resuspended in D-PBS buffer.

Synthesis of XAC-Atto655
XAC-Atto655 was synthesized using XAC (Sigma) and

Atto655-NHS (Atto-tec) as described elsewhere [24]. The identity

of the HPLC purified product was confirmed by mass spectrom-

etry (m/z = 938.6 (M+H+)).

FRET Imaging and Analysis
Native vesicles were seeded on 8-well coverglasses (Nunc) coated

with poly-D-lysine. FRET measurements were performed using an

Axiovert 200 M inverted microscpe equipped with an EC Plan-

NEOFLUAR 406/1.3NA oil immersion objective lens (Zeiss). A

XBO 75 W/2 xenon short-arc lamp (Zeiss) was used as a light

source; images were recorded with an ORCA-ER digital camera

(Hamamatsu) controlled by the IQ software (Andor). For dual

wavelength imaging a beam splitter (Cairn Research) was used.

FRET was measured as the ratio of the fluorescence intensities of

YFP over CFP by exciting at 436610 nm and monitoring the

fluorescence at 465615 nm (CFP) and 545620 nm (YFP).

Examined vesicles were carefully chosen to ensure that fluores-

cence levels of Gc2-CFP and A2AR-YFP were comparable. The

molar ratio of Gc2-CFP to A2AR-YFP was estimated to be

0.9660.37 (n = 20) as measured by FCS.

Confocal Fluorescence Microscopy
The binding of fluorescent ligands to the vesicle surface and the

recruitment of fluorescent arrestin were measured by confocal

fluorescence microscopy. Plasma membrane vesicles were seeded

on 8-well coverglasses (Nunc) coated with poly-D-lysine. The

vesicles were imaged with a LSM510 confocal microscope

equipped with a C-Apochromat 636/1.2NA water immersion

objective (Zeiss).

Fluorescence Correlation Spectroscopy
FCS measurements were performed using a LSM 510 Meta

laser scanning microscope based on an Axiovert 200 M micro-

scope stand and equipped with a ConfoCor 3 FCS unit (Zeiss).

The setup allowed acquisition of photon-count time traces and

online correlation of the data. A2AR-YFP and XAC-Atto655 were

excited at 514 nm (Ar-ion laser) and 633 nm (He-Ne laser),

respectively. Fluorescence from A2AR-YFP and XAC-Atto655

was collected through a BP530–500 and a LP650 emission filter,

respectively. An acousto-optical filter (AOTF) was used to adjust

the exciting beam from the microscope objective (406 C-

Apochromat, 1.2NA, water immersion, Zeiss) below 2 kW/cm2

for the Ar-ion laser and 10 kW/cm2 for the He-Ne laser to

minimize photobleaching and photophysical effects. The lateral

beam waist radius v0 of the focused Ar-ion and He-Ne lasers was

determined by measuring the translational diffusion time tD of

purified YFP (D= 92.3 mm2/s) [37] and Alexa Fluor 647 (D= 330

mm2/s) [38] according to v0 = (4DtD)1/2, and the respective

detection volumes with Veff = S(4ptDD)3/2.

Receptor diffusion and ligand binding were measured on native

vesicles immobilized on a poly-D-lysine coated 8-well coverglasses

(Nunc). To address the apical membrane of a particular vesicle,

the confocal observation volume was first positioned in the center

of the vesicle followed by an upward fluorescence intensity z-scan.

The maximum of the fluorescence intensity in the z-scan indicates

the position of the apical membrane. The confocal observation

volume was adjusted above this position reaching half of the

maximal intensity. Fluorescence intensity time traces and corre-

lation curves were recorded for ten times 10 seconds. The traces of

the autocorrelation function (ACF) were fitted using a Marquardt

algorithm with Igor Pro (WaveMetrics, Lake Oswego, OR). ACFs

of receptor diffusion were evaluated applying a single-component

2D model including triplet state formation:

G tð Þ~1z
1
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1z
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1z
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{t=tT

1{T

0
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where N is the total number of receptors in the observation

volume, tDreceptor is the translational diffusion time of the receptor,

T and tT are respectively the fraction and time constant of the

triplet state formed.

For determining ligand binding, the ACF of XAC-Atto655 was

fitted as follows combining the three-dimensional diffusion of free

ligands in solution and the two-dimensional diffusion of bound

ligands:
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where N is the total number of ligands in the observation volume,

tDbound and tDfree are the diffusion times of the bound and free

ligand, respectively, S is the structure parameter defined by the

ratio of the axial and lateral axes of the observation volume and

Fbound is the fraction of bound ligand.
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ACFs of freely diffusing molecules were fitted with a three-

dimensional diffusion model including triplet formation:

G tð Þ~1z
1
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tDfree
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For ligand binding experiments, vesicles were incubated for

30 min with various concentrations of XAC-Atto655 and KD was

determined by plotting the apparent concentration of bound

ligand to the total concentration of applied ligand. Specificity of

the binding was assessed by a subsequent addition of an excess of

unlabeled XAC.

Production of Vesicles by Optical Tweezers
The optical tweezer setup was built around an inverted

microscope (Axiovert 200 M, Zeiss, Germany). For optical

trapping, an Ytterbium fiber laser with linear polarization (PYL-

10-1064- LP, IPG Photonics, USA) emitting up to 10 W cw at

1064 nm in a TEM00 mode was expanded by a telescope such that

the beam slightly overfilled the back aperture of the microscope

objective (Plan-Apochromat 1006/1.4 Oil, Zeiss, Germany). An

additional solid-state laser emitting at 488 nm (FCD488, FDSU,

USA) was available for fluorescence excitation. After passing a

laser shutter the laser beam was expanded, coupled into the optical

path of the IR laser by means of a dichroic mirror (Chroma, USA)

and focused on the back focal plane of the microscope objective.

Infrared trapping and fluorescence excitation laser light beams

were separated from the emitted fluorescence light using a

dielectric mirror (Chroma, USA) and appropriate filters. A CCD

camera (Pixelfly, PCO, Germany) was used for fluorescence and

brightfield imaging. Samples were clamped on a joystick-

controlled motorized scanning stage. Membrane protrusions of

blebbing cells, either drawn by the optical tweezer or formed

under influence of cytochalasin B, were in both cases teared off

from the cells by the optical tweezer during translation of the

scanning stage. To be able to completely remove vesicles from the

cells, a laser power of up to 2 W had to be employed. For analysis,

vesicles were then deposited on the cover slide and the optical trap

shut off.

Statistical Analysis
Data are shown as means6standard deviations of the mean for

n observations.

Supporting Information

Figure S1 Plasma membrane vesicle diameter. Histo-

gram of plasma membrane vesicle diameter distribution (threshold

fixed at 500 nm).

(TIF)

Figure S2 FCS analysis of A2AR-YFP in cells. (A) Cartoon

illustrating the position of the detection volume that was placed at

the apical membrane over the nucleus for measuring receptor-

bound-ligand or elsewhere in solution for measuring the free

ligand. (B) Receptor diffusion. Autocorrelation curves (grey) fit by

a single-component 2D diffusion model and considering triplet

state formation (black): in this example the diffusion time of the

receptor correspond to tDR = 64622 ms (D= 0.21 mm2/s) and the

chromophore blinking time is tT = 5076303 ms. (C) Ligand

binding. Normalized autocorrelation curves of XAC-Atto655

measured in the supernatant (blue) and at the apical membrane

of the cell (black). (D) Receptor binding of XAC-Atto655 at

different concentrations yielded a dissociation constant of

KD = 97612 nM. Shown are data points and standard error of

the mean of three independent titrations performed on different

individual cells.

(TIF)

Figure S3 Ligand binding to A2AR-YFP measured in
plasma membrane vesicles. Normalized autocorrelation

curves of XAC-Atto655 measured in the supernatant (blue), at

the apical membrane of the vesicle (red) and after competition with

non-fluorescent XAC (green).

(TIF)

Figure S4 Analysis of receptor/G protein interaction by
FRET in cells. Confocal micrographs of HEK cells expressing

Gc2-CFP (A) and A2AR-YFP (B); scale bar: 10 mm. (C) FRET

changes in single cell in response to increasing concentrations of

agonist APEC. (D) Concentration–response curves of receptor/G

protein interaction yields EC50 = 76629 nM (n = 5). Shown are

data points and standard error of the mean of five independent

titrations performed on different individual cells.

(TIF)

Figure S5 Analysis of receptor/G protein interaction by
FRET in vesicles. Confocal micrographs of plasma membrane

vesicles derived from HEK cells expressing heterologously (A)

Gc2-CFP and (B) A2AR-YFP; scale bar: 10 mm. (C–F) FRET

changes in single vesicles in response to increasing concentrations

of agonist APEC.

(TIF)

Video S1 Production of a vesicle by an optical tweezer.
Movie showing the production of a single plasma membrane

vesicle pulled off from a cell’s plasma membrane by an optical

tweezer.

(MOV)
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