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Abstract: Acrylonitrile butadiene styrene (ABS) offers good mechanical properties and is effective
in use to make polymeric structures for industrial applications. It is one of the most common raw
material used for printing structures with fused deposition modeling (FDM). However, most of its
properties and behavior are known under quasi-static loading conditions. These are suitable to design
ABS structures for applications that are operated under static or dead loads. Still, comprehensive
research is required to determine the properties and behavior of ABS structures under dynamic
loads, especially in the presence of temperature more than the ambient. The presented research was
an effort mainly to provide any evidence about the structural behavior and damage resistance of
ABS material if operated under dynamic load conditions coupled with relatively high-temperature
values. A non-prismatic fixed-free cantilever ABS beam was used in this study. The beam specimens
were manufactured with a 3D printer based on FDM. A total of 190 specimens were tested with a
combination of different temperatures, initial seeded damage or crack, and crack location values. The
structural dynamic response, crack propagation, crack depth quantification, and their changes due to
applied temperature were investigated by using analytical, numerical, and experimental approaches.
In experiments, a combination of the modal exciter and heat mats was used to apply the dynamic
loads on the beam structure with different temperature values. The response measurement and
crack propagation behavior were monitored with the instrumentation, including a 200×microscope,
accelerometer, and a laser vibrometer. The obtained findings could be used as an in-situ damage
assessment tool to predict crack depth in an ABS beam as a function of dynamic response and
applied temperature.

Keywords: acrylonitrile butadiene styrene; dynamic response; fatigue; crack propagation; fused
deposition modeling; FDM; fused filament fabrication; modal analysis; cantilever beam

1. Introduction

Additive manufacturing (AM) has become increasingly important to produce high-quality
functional components. In the past, AM was mainly used for prototyping, but nowadays, it is
being utilized to manufacture automotive and aerospace parts due to its high precision and surface
quality [1,2]. Fused deposited modeling (FDM) is a very common AM technique that is mainly limited
to polymer materials. FDM involves heating near the melting point to have a liquid-like material layer
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for 3D printing of a geometry. The heated material is extruded from a computer-controlled nozzle
with high accuracy to produce complex geometries. The process is carried on the layer by layer, and
each layer is bonded with the former by means of thermal diffusion that occurs due to a relatively
high-temperature environment [3].

3D printed polymeric structures have now gained a lot of attention from industrial and academic
researchers [4]. Recent investigations show that these structures can be reinforced with carbon fibers
and carbon nanomaterials and can replace the existing costly structural components in automobile and
aircraft applications [5,6]. Nikolova and Chavali, and Stratton et al. recently reviewed the application of
3D bio-printed structures for restoration and reconstruction of different anatomical defects of complex
organs and functional tissues [7,8]. Agu et al. investigated the strength of 3D printed polylactic acid
(PLA) to manufacture components exposed to high strain-rate/impact events during their design
life [9]. They claimed that shear strength with increasing impact stress had been measured for the very
first time for any PLA-based 3D printed structure. 3D printed macroscopic structures have also been
employed to mimic the complex gestures of human hands in the application of soft robotics [10]. Due
to this wide spectrum of usage, academic research studies have investigated the performance of the
3D printed polymeric structures under different operational conditions. Most of their properties and
behavior are known under quasi-static loading conditions. These are suitable to design polymeric
structures for applications that are operated under quasi-static or dead loads. Qin-Zhi, et al. [11]
studied crack propagation under static load to observe the crack mechanics in polymers. Marcos Lugo,
et al. mentioned that multi-stage fatigue (MSF) modeling could be used to predict crack initiation,
crack growth, and different fatigue regime [12]. However, still, comprehensive research is required
to determine the properties and behavior of these structures under dynamic loads, especially in the
presence of temperature more than the ambient.

The material of the polymeric structure selected in the presented study was acrylonitrile butadiene
styrene (ABS), which is one of the most common raw material used for printing structures with
fused deposition modeling (FDM). ABS properties are compatible with the FDM process, such as heat
resistance and low-temperature impact resistance [13]. ABS also offers good chemical and corrosion
resistance, high toughness, and impact strength. But equally, it has limitations in use due to its
complex morphology and composition [14]. Printing factors, such as the orientation of layers and
filling density, can also influence the mechanical properties of printed ABS structure. Whereas the
machine parameters, such as nozzle diameter, can affect the accuracy of fabricated samples [3,13,15].

A few researchers have investigated crack mechanics of 3D printed ABS structures using
customized experimental setups. At ambient conditions, natural frequency-based methods have
been used to quantify cracks in a beam. Behzad et al. tested metallic and polymeric structures
under dynamic loads and established a correlation for crack depth prediction [16]. Hanyin studied
3D printed ABS and performed mechanical characterization, including tensile, creep, and fatigue
strength [17]. Changes in mechanical properties of ABS have been observed due to different operating
temperatures [18]. Disorder and stretch at the atomic scale have been concluded as the main causes
for these changes. Different crack growth behavior in ABS at elevated and ambient temperatures has
been observed mainly due to an increase in plasticity at the tip of the crack [19]. Mai [20], Martin [21],
and Kim [22] also concluded that decreasing temperature could decrease crack growth in polymers.
Kim reported that elevated temperatures could induce chain disentanglement and chain slippage
and hence decrease the crack resistance in polymers under thermo-mechanical loads [23]. Still, a
mathematical relationship that can describe crack growth in ABS in the presence of dynamic loads
with high operating temperatures (as compared to ambient) is not available.

In this paper, an effort was made mainly to develop the required mathematical relation between
the structural behavior and crack resistance of the ABS beam structure if operated under dynamic
load conditions coupled with relatively high-temperature values. Detecting damages by using the
dynamic response of the structure is a very effective non-destructive testing technique [24,25]. Due to
this reason, the structural dynamic response was used to investigate crack growth, quantification, and
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location of the mentioned ABS beam. The structural dynamic response, crack propagation, crack depth
quantification, and their changes due to applied temperature were investigated by using analytical,
numerical, and experimental approaches. In experiments, a combination of the modal exciter and heat
mats was used to apply the dynamic loads on the beam structure with different temperature values.
The response measurement and crack propagation behavior were monitored with the instrumentation,
including a 200×microscope, accelerometer, and a laser vibrometer. The obtained findings could be
used as an in-situ damage assessment tool to predict crack depth in an ABS beam as a function of
dynamic response and applied temperature.

2. Materials and Methods

This section presents all the three approaches (experimental, analytical, and numerical) to evaluate
the relationship between the dynamic response and crack depth/location for 3D printing ABS specimen
under thermomechanical dynamic loads.

2.1. Experimental Method

A series of tests were conducted, and the dynamic response parameters were measured, including
natural frequency and displacement amplitude. Five different temperature values were used during
the tests: 25 ◦C, 40 ◦C, 50 ◦C, 60 ◦C, and 70 ◦C. In order to maintain stable mechanical properties, the
maximum temperature of 343 K (i.e., 70 ◦C) was chosen, which is approximately 90% of the glass
transition temperature (378 K) of ABS. The complete experimental scheme is shown in Figure 1.
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Figure 1. The comprehensive schematic diagram for experiments.

The tests were divided into three sets. The first set used 10 specimens without any seeded crack
to measure Young’s modulus, amplitude, and natural frequency responses. Five pairs of 2 specimens
were tested on different values of temperature ranging from room temperature to 70 ◦C, as shown in
Figure 1. The second set used a total of 150 specimens with an initial seeded crack ranging from 0.5 mm
to 2.5 mm. In this set, all the possible combinations of different initial seeded crack depth values, crack
location, and operating temperature were tested, as shown in Figure 1. Each of the combinations was
tested on a pair of 2 specimens; hence, we had in total of 75 pairs to test for their instant or one-off

natural frequency and amplitude responses. We assumed seeded cracks were not propagated during
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any of these tests, and hence the stiffness of the beam considered not to be changed and influenced on
the measured responses. The third set used a total of 30 specimens with an initial seeded crack value
of 0.5 mm only. In this set, all the possible combinations of crack location and operating temperature
were tested, as shown in Figure 1. Each of the combinations was tested on a pair of 2 specimens; hence,
we had in total of 15 pairs to test their natural frequency, amplitude, and crack depth responses while
crack was propagating. The propagation allowed a changed in beam stiffness and, hence, influenced
the measured responses.

At the beginning of each test, an impact test was performed to identify the natural frequency
of the specimens, which is explained in detail in Section 2.1.4. The natural frequency response was
measured by a laser vibrometer (i.e., Polytec PDV 100, Coventry, UK). Later, the beam was subjected
to a cyclic load at the natural frequency, and its amplitude response was captured by a microscopic
camera (i.e., Dino-lite AM4113T, AnMo Electronics Corporation, Taiwan).

2.1.1. Specimen Fabrication

ABS material of red color was used to make test specimens. The red color was helpful in observing
the details of the crack propagation. The specimen was designed as a cantilever beam, and its
geometrical dimension is shown in Figure 2. The effective length and the thickness of the beam were
fixed 150 mm and 3 mm, respectively, in all the tests. In order to study how the crack location affects
the dynamic response of the cracked structure, specimens were fabricated with cracks at three different
distances (i.e., 5 mm, 15 mm, and 25 mm) from the fixed end of the beam. Further, long-distance values
were not selected because it could shift the high-stress concentration zone from crack location to the
fixed end of the beam. This stress concentration shift could produce fracture at the fixed end rather
than at the crack location and, hence, could make the observation of crack growth difficult. Five initial
seeded crack depths, from 0.5 mm to 2.5 mm with an increment of 0.5 mm, were used. The crack width
was fixed as 0.2 mm to get good accuracy during 3D printing.
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Figure 2. (Left) Different crack locations introduced into the specimen; (Right) Specimen geometry as
designed in SolidWorks.

2.1.2. Printing Set-Up

All specimens were fabricated on the Ultimaker 2 + 3D printer (Ultimaker B.V., Utrecht,
The Netherlands). The geometry of the beam was designed in SolidWorks© (Dassault Systemes
SolidWorks Corporation, Waltham, MA, USA) and imported into the CURA software for
printing preparation.

The main 3D printing parameters are listed in Table 1. These parameters play an important role
in the mechanical properties of any printed structure. Brian et al. proposed [2] that the strength
of polymer bonding between the neighboring beads in any part limits its mechanical properties.
They further suggested that the temperature history of a road at the interface with another road is
a crucial variable in determining the quality of the bond. Therefore, an optimum printing path is
always critical for increasing the specimen’s strength. Thrimurthulu et al. proposed that the part
deposition or building orientation not only affects the structural strength but also effects the build time,
dimensional accuracy, and cost of the prototype. An optimum printing path has to trade-off among
various contradicting objectives [26]. Furthermore, Zhou et al. investigated the bonding effect for FDM
polycarbonate and acrylonitrile-butadiene-styrene composites based on two simplified deposition
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modes. In their research, the deposition path orientation, which was parallel to the direction of the
tensile test, showed better strength than the vertical direction [27]. With this evidence from previous
research, ±45◦ building orientation was used in the fabrication of test specimens. The platform was
heated to 80 ◦C for minimizing the dimensional error due to the contraction. High accuracy of 3D
printing made it possible to craft a 0.2 mm wide initially seeded crack. The completed specimen and its
details are shown in Figure 2. It was intuitive and convenient to calculate the crack depth by counting
the number of layers through which the crack was passed.

Table 1. 3D printing parameters that are used for producing the specimens.

Parameter Value

Nozzle size 0.4 mm
Layer height 0.1 mm
Infill density 100%

Print orientation ±45◦

Print speed 45 mm/s
Extruder temperature 235 ◦C

Bed temperature 75 ◦C
Wall thickness 1.05 mm

2.1.3. Experimental Set-Up

The complete experimental set-up is shown in Figure 3. The set-up can be divided into four parts,
including the vibration system, the heating system, the dynamic response data acquisition platform,
and crack propagation capture equipment.
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The beam was inserted into an ABS holder that ensures the same boundary conditions for all tests
and then clamped with two steel plates with four bolts on the top of the exciter’s shaft. Each bolt was
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fastened with the same number of turns, and the height of the mounting was measured by a digital
calliper. No more than 0.5% height’s difference was allowed to obtain constant boundary conditions.

Dynamic load set-up included a signal generator (TG 550), a power amplifier, and a modal exciter
or shaker (V55), all made of Data Physics (Data Physics, CA, USA). The shaker was bolted on the floor
in order to keep the stable vibration output. The signal generator was set at 5 volts sinusoid signal that
provides a 1 mm displacement at the shaker shaft with the help of a power amplifier.

Silicone heating mats and K-type thermocouple (RS Components, Northants, UK) were used
to apply and record the temperature. Two silicone heater mats were installed near the fixed end of
the specimen, as shown in Figure 3. The lab temperature was set at 25 ◦C to ensure the same initial
conditions. The bench power supply was used to provide adjustable voltages to both the heating
mats. For each specimen, apart from continuous heating during the test, the crack area of the specimen
was pre-heated and insulated with the desired temperature for 10 min before the test to confirm the
constant thermal condition. Two K type thermocouples were mounted between the heating mats
and the specimen for continuous temperature monitoring. The voltage applied to the thermocouple
was fine-tuned during the test, and the difference between the actual and required temperatures was
maintained under 0.2 ◦C.

Several measurement tools were used for different parameters. The laser vibrometer with
Vibosoft© software (Polytec PDV 100, Coventry, UK) was used to measure the approximate natural
frequency of the specimen during impact tests. An accelerometer was mounted at the fixed end of the
specimen to record the excitation frequency during the test. The displacement amplitude at the beam
tip was continuously monitored with the Dino-Lite microscopic camera. Accelerometer measurements
were acquired with NI-9174 DAQ card and Signal Express software. Crack depths were measured
with the mentioned camera at a magnification of 200×. Besides this, as mentioned before, the cracked
printing layers were also counted for a reference.

2.1.4. E-Modulus Measurement

The Young’s modulus of the ABS material under different temperatures was measured using a
dynamic mechanical analyzer (DMA Q800, TA instruments, Delware, USA). Two rectangle specimens
with the same 3D printing parameters were tested within a temperature range from 30 ◦C to 70 ◦C
at a frequency of 1 Hz. An empirical relation between Young’s modulus and the temperature was
developed for further analysis.

The DMA Q800 measured the acting force and the elastic deflection on the center of the beam.
The calculated Young’s modulus is based on analytical Equation (1):

E =
FL3

48δI
(1)

where E is Young’s modulus at the specific temperature, F is the force acting on the center of the
beam, L is the length of the beam, δ is the deflection at the midpoint, I is the area moment of inertia of
cross-section which equals (bh3)/12 for specimen geometry.

Young’s modulus was also measured from natural frequency. Ten impact tests were conducted
on uncracked beams at different temperature values ranging from 25 ◦C to 70 ◦C as per Figure 1.
The natural frequency was recorded by a laser vibrometer. Young’s modulus was calculated from
Equation (2):

E =

(
2π
β1

2

)2ρAL4 f12

I
= 3.1934

ρAL4 f12

I
(2)

where E is Young’s modulus, β1 is the coefficient for the first first-order model with the boundary
condition of the cantilever beam, ρ is the density of the material, L is the length of the beam, f 1 is the
natural frequency for the first mode, and I is the second moment of inertia.
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As shown in Figure 1, 150 specimens, with an initially seeded crack ranging from 0 to 2.5 mm in
depth, were tested on different temperatures and crack location values. For these specimens, at first,
the impact test was conducted to measure a rough natural frequency range via laser vibrometer. Later,
the shaker was set to run with a frequency sweep from 0 Hz to achieve the first-order natural frequency
of the beam. Meanwhile, the accelerometer and the camera recorded the frequency and the amplitude
responses, respectively. As the camera and accelerometer started recording at the same time, the actual
natural frequency was found when the specimen showed the highest amplitude in the recorded video.

In contrast to the above tests, 30 specimens with an initial seeded 0.5 mm crack depth were tested
on different temperatures and crack locations, as shown in Figure 1. At the start of each experiment, a
fresh specimen with predefined crack depth was mounted on the shaker. An impact test was carried
out to experimentally determine the first mode of the natural frequency of a fresh specimen by using
the laser vibrometer. Later, the specimen was set to run at an operating frequency using the signal
generator. Initially, this operating frequency was equal to the fundamental frequency obtained from
the impact test.

The root mean square (RMS) value of the acceleration, with the help of the accelerometer, NI DAQ
card, and Signal Express, was monitored once the specimen was excited on its first mode of natural
frequency. A drop in the RMS value was used as a sign of change in the natural frequency due to the
crack growth in the specimen. At this instant, the shaker was stopped, and crack depth measurements
were taken with the camera. Later, the impact test was carried out again with a light wooden mallet to
find the new natural frequency. This new frequency was then again used to excite the specimen to
observe crack growth or propagation. This procedure was repeated until the catastrophic failure of
the specimen. The failure of the specimen was defined as a point at which the specimen showed no
amplitude at the free end.

2.2. Analytical Method

In this section, re-arrangement of existing analytical formulations are shown to express the effect of
crack depth on the global dynamic response of a beam structure, while crack is assumed as a torsional
spring. The natural frequency of a beam structure with a fixed-free configuration during testing can be
expressed in the form of a Timoshenko beam. The analytical expression is given below (S. Rao [28]):

fn = 0.5596

√
EI
ρAl4

(3)

where fn is the natural frequency in Hz, ρ is the density of the specimen, E is the elastic modulus, I is
the moment of inertia, and A is the cross-sectional area. The factor of boundary condition (β l) for the
first mode of the fixed-free position cantilever beam is provided by Rao, which is equal to 1.875104.

Equation (3) can be used to find the natural frequency of a fixed-free cantilever beam without
crack or damage. Therefore, the analytical formulation is required to indicate the influence of the crack.
Majid et al. [29] developed a formula that represents the natural frequency of a cracked beam:

fnc = fn − ∆ fnc (4)

where:

fnc = natural frequency of the cracked beam,
∆ fnc = difference between the natural frequencies of a cracked and un-cracked beam.
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As shown in Figure 2, the crack of the selected non-prismatic cantilever beam could be modeled
as a massless torsional spring. The spring stiffness established by Ostachowicz et al. [30] is shown in
the following Equation (5).

kt =
Ebh3

72π f
(

tc
h

) (5)

where b is the width of the beam, h is the thickness, tc is the crack depth, f
(

tc
h

)
is a crack function that

can be found from Equation (6), also provided by Ostachowicz et al.:

f
( tc

H

)
= 0638

( tc

H

)2
− 1.035

( tc

H

)3
+ 3.720

( tc

H

)4
− 5.177

( tc

H

)5
+ 7.553

( tc

H

)6
− 7.332

( tc

H

)7
+ 2.491

( tc

H

)8
(6)

Behzad et al. [31] re-arranged Equations (3)–(5), to have a comprehensive formula that can
represent the crack depth and location with the material properties, as shown in Equation (7).

fnc =

1−

72π I F
(

tc
H

)
BH2L

(
Cos

πx
2L

)2

 fn (7)

The above formula can express the natural frequency of a cantilever beam in which the first part
is indicating the crack effect as a fraction of the natural frequency fn.

Input Equation (3) in Equation (7):

fnc =

1−

 72π I F
(

tc
H

)
BH2L

(
Cos

πx
2L

)2



 0.5596

√
E.I
ρ.A.l4

 (8)

where x is the crack location, L is the length of the beam from the fixed point, ρ is the density of the
ABS, and I is the moment of inertia.

2.3. Numerical Simulation

Modal analysis was conducted to observe the behavior of the structure with respect to different
crack depth and locations using ANSYS©WorkBench v19.1, as shown in Figure 4. The geometry of
the model was imported from SolidWorks©.
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= 1 −  72   2     0.5596 .. .   (8) 

where x is the crack location, L is the length of the beam from the fixed point,  is the density of the 
ABS, and I is the moment of inertia. 
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accurate natural frequency values. 
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The boundary condition was a displacement that is set to be zero in all directions at the fixed end.
The thermal load could not be applied in modal analysis; therefore, E of ABS at each temperature was
set manually in the material properties field. Young’s modulus at elevated temperatures was found
from the DMA, as explained in the next section. The mesh size was set to be 0.001 mm to have accurate
natural frequency values.

3. Results

3.1. Young’s Modulus of 3D Printed ABS

Two specimens were tested by DMA. The results are shown in Figure 5. The poly2 curve fitting
method (y = ax2 + bx + c) was selected to build the correlation between the temperature and Young’s
modulus (storage modulus for elastic material). This curve fitting function is based on the least-squares
method. The fitted results are shown in Equation (9) and Figure 5. The poly2 fit type showed a 95.29%
R-square value. Calculated Young’s modulus, based on DMA tests, at different temperatures, are
shown in Table 2.

E = −0.09801T2 + 4.286T + 1701 (9)

where E is Young’s modulus (MPa), T is the temperature (◦C).
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Table 2. E-modulus of 3D printed ABS at an elevated range of temperature.

Temperature (◦C) RT (25) 40 50 60 70

Fitted E (MPa) based on DMA model 1753.88 1721.76 1676.41 1611.45 1526.89
Experimental average natural frequency (Hz) 28.24 27.70 27.40 27.03 26.76

Experimental E (MPa) based on natural frequency 1890.34 1819.78 1780.23 1731.80 1698.51
Fitted E (MPa) based nn fatural Frequency 1890.91 1819.04 1777.57 1736.71 1696.45

Similar to the bending test results, based on natural frequency, the empirical correlation between
temperature and Young’s modulus was developed via curve fitting with the poly2 fit type. The fitting
result is shown in Equation (10) and Figure 6. The poly2 fit type showed a 99.84% R-square value.
Calculated Young’s modulus, based on natural frequency, at different temperatures, are shown in
Table 2.

E = 0.003001T2
− 4.417T + 1991 (10)
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3.2. Analytical and Numerical Results

Apart from the experimental tests, the analytical and numerical values of the natural frequency of
the ABS beam with different configurations were calculated, as shown in Figure 7. This plot presents
the tendency and difference between the experimental, analytical, and numerical results.
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Figure 7. Natural frequency for different crack depths and temperatures at the crack location of 5 mm.

The natural frequency of ABS specimens, with different crack depth values and location tested
at five elevated temperatures, was calculated analytically (as per Equation (8)), numerically, and
experimentally. The same trend, as shown in Figure 7 for all approaches, proved that ABS polymers
behaved normally with respect to crack depth and temperature. As expected, specimens with
greater crack depths showed a less natural frequency, and the same behavior was observed for
applied temperatures.

Figure 8 shows the effect of the crack location on the natural frequency. The numerical results
showed that the crack close to the fixed end had more obvious natural frequency change when altering
the crack depth. While the natural frequency difference between various crack locations increased as
the crack was distant from the fixed end. The behavior of ABS polymer at 15 mm and 25 mm crack
locations was the same as when the crack location was at 5 mm, i.e., the natural frequency decreased
with increasing crack depth and temperature.
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3.3. Dynamic Response Results of Initially Seeded Crack without Propagation

Figure 9 shows the natural frequencies of the same crack depth beam with different temperatures
and crack locations. Theoretically, the 25 mm crack location supposed to have a high natural frequency
than the other 5 mm and 15 mm. Because the same crack depth can cause the same decrease in
local stiffness, the crack location near the fixed end leads to a high bending moment and results
in high-frequency drop. However, the experimental results observed extremely close values. The
natural frequency of 25 mm location crack was observed lower than other locations when crack
depth was about 2.5 mm. This was considered as a possible error due to difficulties in capturing the
dynamic response experimentally when crack depth to specimen thickness was high. As per the test
observations, when the crack depth was more than 80% of the specimen thickness, the response of the
structure was disturbed because of the obvious bend along the beam. The overall behavior of the 3D
printed ABS beam was as expected. An increase in crack depth and temperature showed a decrease in
the global natural frequency of the structure due to a decrease in beam stiffness. The crack location
had a relatively minor influence. Beams with cracks near to the fixed end had less natural frequency
value compared to when the cracks were located at a distance.
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The amplitudes for different crack locations with various temperatures are plotted in Figure 10.
All curves were found to have declined trend. Although there were some fluctuations during the crack
propagation when crack depth was more than 1.5 mm, amplitude decreased on high values of crack
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depth. Moreover, the relationship was inversely proportional between amplitude and temperature, as
heated specimens had a lower amplitude than the unheated ones.
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Figure 10. The amplitude of different crack depth beam for the crack at different locations.

Figure 11 shows the effect of temperature variation on crack depth values located at 5 mm from
the fixed end. The natural frequency of the structure was reduced with increased temperature for
the same amount of damage. However, the amplitude change was observed as random. The same
behavior for the other two locations was noticed in terms of natural frequency and amplitude. On
high values of temperature and crack depth, the natural frequency showed a decrease. The amplitude
showed an overall reduction against crack depth and temperature values. However, there was an
inconsistency in the behavior that is discussed in the next section.
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3.4. Dynamic Response Results of Propagating Crack

The trends of natural frequency and amplitude responses during crack propagation were somehow
similar to non-propagating tests, as mentioned above. Figure 12 plots the frequency drops during
crack propagation at a 5 mm location. Due to a decrease in stiffness with propagating crack, the natural
frequency was also decreased. However, the difference due to temperature was not obvious. Both
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crack depth and the temperature had an independent influence on the dynamic response as the first
one was amplified with the increment of the latter one.
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The amplitude change during crack propagation is plotted in Figure 13. However, the experimental
data was extremely stochastic. Furthermore, an overall decreasing trend was observed for amplitude
with an increase in crack propagation. It was contrary to analytical results, as mentioned before.
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3.5. Empirical Correlation

Based on the above-observed data, for specimens with a crack location at a distance of 5 mm from
the fixed end, a surface was plotted between temperature values, frequency drop, and crack depth, as
shown in Figure 14.
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Figure 14. Experimental empirical correlation based on natural frequency for a crack location of 5 mm
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Poly32 function was applied for surface fitting. The R-square value of this fit was calculated as
98.51%. The model function is shown in Equation (11):

tc = f (∆ωnc, T) (11)

tc = 0.4355 + 0.4689∆ωnc − 0.01418T − 0.0359∆ωnc
2

+ 0.0008476∆ωncT − 9.305× 10−5T2

+ 0.001083∆ωnc
3
− 0.000111∆ωnc

2T
+ 2.158× 10−5∆ωncT2

where ∆ωnc is the frequency drop, and T is the temperature. Similarly, the correlation for 15 mm and
25 mm crack locations was also established. The integrated model for all the correlations is shown in
Equation (12). The coefficients of Equation (12) are shown in Table 3.
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1
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+
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∆ωnc
3

∆ωnc
2T

∆ωncT2

 (12)

Table 3. Calculated empirical correlation coefficients.

Coefficients
Crack Location

5 mm 15 mm 25 mm

A 0.4355 1.199 0.5384
B 0.4689 0.4678 0.3923
C −0.01418 −0.05725 −0.0234
D −0.0359 −0.03507 −0.02931
E 0.0008476 0.001446 0.00266
F −9.305 × 10−5 0.0004688 2.049 × 10−5

G 0.001083 0.0009888 0.000847
H −0.000111 −4.528 × 10−5 −0.0001377
I 2.158 × 10−5

−4.272 × 10−5 6.593 × 10−5
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4. Discussion

4.1. Young’s Modulus Determination

Young’s modulus of 3D printing ABS material at different temperatures was measured by two
methods. The theoretical Young’s modulus for 3D printed ABS specimen with 90% infill parameters
was calculated as 1618.5 MPa. As we used 100% infill density for printing to get the best strength, we
assumed Young’s modulus was proportional to the infill density, so

E =
1618.5
90%

= 1798.33 MPa (13)

The theoretical Young’s modulus for 3D printing ABS used in the tests was 1798.33 MPa. It was
the same as the E value at 25 ◦C (1753.88 MPa), which was measured by DMA, as shown in Figure 15.Polymers 2020, 12, x FOR PEER REVIEW 15 of 22 
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The Young’s modulus results calculated by the Timoshenko beam equation (Equation (8)) were
higher than DMA results. It looks unreasonable because Young’s modulus is a mechanical property
that is supposed to be constant at a specific temperature. This difference could be due to several
reasons. Young’s modulus measured by both tests, as a global parameter, was related to the torsional
stiffness of the structure, as shown in Equation (14).

E =
2(1 + v)kL

J
(14)

where v is Poisson Ratio, k is the torsional stiffness, L is the length of the element, and J is the torsion
constant for the section.

The environment temperature could affect the torsional stiffness. As the air in the chamber was
heated during the DMA test, it might have reduced the whole structural stiffness. However, the heating
mats only heated the area near the fixed end, and hence reduced the local stiffness only, as shown in
Equations (15) and (16):

EDMA =
2(1 + v)kTL

J
(15)

E f =
2(1 + v)kTl

J
+

2(1 + v)kRT(L− l)
J

(16)

Therefore, Young’s modulus from the Timoshenko beam equation E f was higher than the DMA
results EDMA. On the other hand, because the heat mats were placed near to the fixed end of the beam,
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not only the adhesion force between them and the beam increased the little local stiffness but also the
mass of the heat mats influenced the structural E-modulus seriously, as shown in Equation (17):

E =
( 2π

1.8751042

)2 AL3 f12[ρABSL + (ρmean − ρABS)l]
I

(17)

The Young’s modulus of the beam with heating mats was high than the one without heat mats due
to an increase in the overall structural density. The above reasons led to the difference between Young’s
modulus. As the heating mats were always on the beam, Young’s modulus from the Timoshenko beam
equation was applied as the whole system’s Young’s modulus in the rest of the experiments.

4.2. Dynamic Response

A comparison of the natural frequency results from all the methods is shown in Figure 7. The
specimen with high crack depth showed a lower natural frequency value than the specimen with less
crack depth. This change in natural frequency value could be related to the reduction in the stiffness
of the structure caused by the crack. The crack created a localized effect at the crack tip in which the
stress concentration was accumulated, suggesting that the stress concentration at the crack tip was
increased with an increase in the crack depth to thickness ratio. All the specimens showed the same
behavior for different crack depths and locations at different values of temperature.

In the numerical simulation, the modal analysis fairly estimated the natural frequency of anisotropic
structure resembling the fabricated 3D printed ABS polymers. The specimen was an extrusion-based
fabrication with layers, and the properties were not only dependent on the intrinsic properties but also
on the printing parameters. However, the validity of the numerical simulation, especially at lower
crack depth, was related to the fill density of print since it was set to be 100% while printing. The high
filling density of the ABS filaments facilitated close-to-isotropic behavior that estimated close natural
frequency values in experimental methods.

The analytical model (Equation (8)) was found to be valid and useful for anisotropic materials,
such as ABS polymer. From Figure 7, a good agreement was observed between experimental and
analytical results as the difference was less than 10%. The analytical natural frequencies were always
observed higher than the numerical results for different crack depth. However, the difference between
both was increased from around 2 Hz to 7 Hz gradually as the crack depth increased. The limitation
of the crack function f

(
tc
h

)
used in the analytical model caused this gradually increasing difference.

It overestimated the value when the crack depth was large. Therefore, the natural frequency of the
analytical model had an increasing error on high crack depth values.

In experiments, the natural frequency was measured higher than other methods when the crack
was smaller. Because heating mats were mounted on the beam, they made the overall structure stiffer
and, hence, increased the natural frequency. However, it was decreased very quickly when crack depth
was increased but observed close to other methods at 80% crack depth to thickness ratio.

In this study, dynamic response (i.e., natural frequency and amplitude) was used to determine the
parameters of the crack (i.e., mainly crack depth) but in the presence of different values of temperature.
Figures 16 and 17 illustrate the behavior of the natural frequency of 3D printed ABS beam at different
crack depths and locations exposed to elevated temperatures. The trends showed a regular pattern. In
terms of temperature, a specimen at 25 ◦C showed a natural frequency higher than the one that was at
40 ◦C. E-modulus values showed a decrease as the testing temperature was increased, which means
that the natural frequency of the structure was influenced by an increase in the thermal load at the
same amount of damage. Increasing the temperature of any structure was considered as unhealthy
since it would decrease the E-modulus that subsequently decreases the natural frequency, which can
allow the structure to resonate more likely at low cyclic load, resulting in serious damages. This
behavior was observed in this study for both types of tests, i.e., with and without crack propagation
tests. Propagating-crack tests were found more accurate due to their instant measurements throughout
the crack growth. The width of the propagated crack was relatively small and bit genuine as compared
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to the seeded cracks. This width initiated at the base of the given seeded crack and showed a more
representative decrease in natural frequency due to real propagation.Polymers 2020, 12, x FOR PEER REVIEW 17 of 22 
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Theoretically, the amplitude should increase as the crack depth and temperature increase due to
the reduction in the structural stiffness, as observed by the authors as shown in Figure 18 [31]. On the
other hand, the amplitude discrepancy, illustrated in Figures 19 and 20, was observed for crack depth
and temperature. Both types of tests showed random amplitude values; however, the overall behavior
showed a decrease in amplitude with an increase in crack depth and temperature.

The amplitude behavior was consistent to some extent when the crack was at a distance from the
fixed end because the bending moment was minimum. Figure 20 shows amplitude versus crack depth
at different temperatures located at 25 mm from the fixed end. An increasing trend was observed at
low values of crack depth to thickness ratio.
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Some more observations were captured to justify the random amplitude behavior while monitoring
the crack propagation. Figure 21 shows the magnified images of crack propagation in steps from the
initial seeded crack depth of 0.5 mm to catastrophic fracture.
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Figure 21. Crack propagation throughout the specimen from the microscope.

The width of the propagated crack compared to the initially seeded one (0.5 mm) was very small,
as seen in Figure 22. After this crack initiation, the crack tip was no longer a rectangular shape and
propagated across the thickness of the specimen either with a continuous or discontinuous contour, as
shown in Figure 22 (left) and (right), respectively.
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There were two prominent reasons, which might be the root causes of the observed stochastic
amplitude of the dynamic response. The first was the anisotropic nature of 3D printed ABS. The
printed specimen had various layers that were intact due to adhesion. But each of these layers might
have slightly different material properties due to fusion and cooling at the time of printing. This slight
difference could allow the seeded crack to propagate in a non-linear and/or irregular pattern and,
hence, led to establishing a non-linear stiffness in the beam around the zone of crack propagation. This
non-linearity in the beam stiffness ultimately caused a stochastic influence on the observed dynamic
response. However, we observed a consistency natural frequency response during the test, which
showed that the amplitude of the beam was highly sensitive even to a small non-linearity in the beam
stiffness, while the latter didn’t affect much the natural frequency of the beam.

The second reason that could justify the inconsistency in the amplitude response was the
phenomenon of stress crazing. It is a very popular phenomenon in polymers that induces the
rearrangement of molecules of the ABS, creating micro-voids, and facilitate energy dissipation and,
therefore, the crack propagation. Similar crazes in the ABS have also been reported in a previous
study while monitoring the crack with a microscope [32]. The observed crazing was slightly nonlinear,
as shown in Figure 22, and, hence, led to a non-linearity in beam stiffness at a small scale, further
supporting our argument, as mentioned in the above para.
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While monitoring the crack propagation through the specimen, the crack was propagating layer
by layer. Each layer was observed as a barrier in front of the crack. Hence, a decrease in the layer
thickness would increase the number of layers (barriers) and, subsequently, the crack resistance. This
conclusion was also discussed by Rabbi et al., 2019 [33] that the crack requires high energy to propagate
through the filaments. Moreover, the temperature of the nozzle could be increased in order to maintain
high adhesion between the layers and to arrest the cracks between the layers.

The empirical correlation based on surface fits, as detailed in Equations (11) and (12), was based
on crack-propagation tests. The natural frequency trends were consistent, and we established the
correlation with very high accuracy of fit, as shown in Table 4.

Table 4. The accuracy of the surface fits in the form of R-square value.

Surface Fit R-Square

Crack at 5 mm location 0.9851
Crack at 15 mm location 0.9614
Crack at 25 mm location 0.9230

Surface fits based on amplitude could not be established as the dynamic response was disturbed
and irregular, as detailed in the previous section. For the reasons mentioned, amplitude behavior in
3D printed ABS was treated ineligible to be correlated and utilized as a damage assessment tool, at
least, in the current experiment and specimen conditions. The “stress-crazing” led to a discrepancy in
the amplitude behavior. The empirical correlation based on the amplitude has been found difficult to
be established for polymers, unlike metals [34].

In this study, the existence of a crack changed the material properties of the specimen that
ultimately caused the drop in its natural frequency to catastrophic failure. Mathematically, the
empirical correlation obtained from this trend could be applied to estimate the crack depth if the
frequency drop and temperature are known. The obtained correlation could be very useful for in-situ
damage assessment of 3D printing ABS structures. At any instant of time, one just needs a frequency
drop and temperature value to determine the crack depth and assessing the structural integrity
and performance.

5. Conclusions

The dynamic response of non-prismatic 3D printed ABS cantilever beam was tested in a fixed-free
position under thermal-mechanical load. The specimen was mounted on a shaker and excited at
its natural frequency with different values of crack depth and temperature. Analytical, numerical,
and experimental methods were used to observe the natural frequency and amplitude responses. A
good match between the results and observations were observed for natural frequency response. The
DMA results showed a decrease in E-modulus with an increase in temperature. The reduction in
E-modulus was about 12% from 25 ◦C (i.e., room temperature) to 70 ◦C and led a drop in natural
frequency in a close agreement with the obtained analytical and numerical results. It was also found
that existing analytical formulation for crack beams could be applied for an anisotropic material, such
as 3D printed ABS.

Tests concluded a decreasing natural frequency response with an increase of crack depth values.
This behavior was observed more rigorously in the presence of high temperatures. The natural
frequency response showed more influence of temperature than the crack depth at lower values of
crack depth to thickness ratio. But a significant dependency was observed on crack depth at higher
values of this ratio. Moreover, the influence of crack location was observed, as expected. The natural
frequency at the same amount of damage showed a decreasing trend when the crack was located near
to the fixed end. This trend was associated with the bending moment exerted by the length of the
beam on the crack where stress was concentrated and, hence, led to a drop in natural frequency.
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Crack propagation was monitored during continuous excitation. The filament layer was found
as a barrier ahead of the crack. This was due to the high energy required by the crack to propagate
through the filament. A decrease in the layer thickness would lead to an increase in the number of
layers at the same thickness and, hence, could enhance the crack resistance.

Unlike the regular trend of natural frequency, the amplitude showed inconsistent behavior. The
amplitude of the dynamic response of the specimen showed less dependency on the intrinsic properties
of ABS. A random amplitude behavior in the crack propagation tests was observed, i.e., increase
in the start and then decrease from half of the way. Stress crazing in polymers was concluded as
a reasonable justification for this random trend. The crazes at the crack tip were induced due to a
random rearrangement of molecular orientation and caused a permanent deformation, which led to a
change in the material properties and, therefore, the amplitude response.

The empirical correlation was established for three crack locations, and their coefficients were
found by applying a polynomial equation. This correlation could be utilized as an in-situ damage
assessment tool for ABS 3D printed structures. The prediction of the crack depth could be implemented
using natural frequency drop, crack location, and temperature as inputs. The fitting accuracy based
on the results was found more than 92% for all crack locations. The empirical correlation based on
stochastic amplitude response was found difficult to develop.
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