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Abstract.
Background: Alzheimer’s disease (AD) is the most common form of dementia, accounting for 80% of all cases. Mild
cognitive impairment (MCI) is a transitional state between normal aging and AD. Early detection is crucial, as irreversible
brain damage occurs before symptoms manifest.
Objective: This study aimed to identify potential biomarkers for early detection of AD by analyzing urinary cytokine con-
centrations. We investigated 37 cytokines in AD, MCI, and cognitively normal individuals (NC), assessing their associations
with AD development.
Methods: Urinary cytokine concentrations were measured in AD (n = 25), MCI (n = 25), and NC (n = 26) patients. IL6ST
and MMP-2 levels were compared between AD and NC, while TNFRSF8, IL6ST, and IL-19 were assessed in AD versus
MCI. Diagnostic models distinguished AD from NC, and in-silico analysis explored molecular mechanisms related to AD.
Results: Significant perturbations in IL6ST and MMP-2 concentrations were observed in AD urine compared to NC, sug-
gesting their potential as biomarkers. TNFRSF8, IL6ST, and IL-19 differed significantly between AD and MCI, implicating
them in disease progression. Diagnostic models exhibited promising performance (AUC: 0.59–0.79, sensitivity: 0.72–0.80,
specificity: 0.56–0.78) in distinguishing AD from NC. In-silico analysis revealed molecular insights, including relevant
non-coding RNAs, microRNAs, and transcription factors.
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Conclusion: This study establishes significant associations between urinary cytokine concentrations and AD and MCI.
IL6ST, MMP-2, TNFRSF8, IL6ST, and IL-19 emerge as potential biomarkers for early detection of AD. In-silico analysis
enhances understanding of molecular mechanisms in AD. Further validation and exploration of these biomarkers in larger
cohorts are warranted to assess their clinical utility.
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INTRODUCTION

Alzheimer’s disease (AD) is a complex neu-
rodegenerative disorder and the leading cause of
dementia, resulting in memory loss, difficulty in
thinking, and behavioral changes. The major neu-
ropathological hallmarks include the accumulation
of amyloid-� (A�) and neurofibrillary tangles in
the brain. It is a growing global health concern
with enormous implications for our society affect-
ing approximately 50 million people worldwide. It is
considered the fifth leading cause of death [1–3] in
the United States. Mild cognitive impairment (MCI),
is considered by many to be a transition state between
cognitively normal and demented and globally affects
42% of those aged over 60 [4], with ∼7.5% develop-
ing dementia after one year following diagnosis. That
number climbs to 15% by year two and 20% by year
three [5].

The pathogenic process of AD is hypothesized
to begin decades before clinical symptoms become
apparent and irreversible brain damage has already
occurred, emphasizing the need for early diagnoses
when treatment options are believed to be most effec-
tive [6]. Current clinical modalities include invasive
methods such as testing cerebrospinal fluid for levels
of A� and tau [7] or using cost-prohibitive imaging
techniques such as positron emission tomography [8].
Although with invasive methods, plasma/serum can
be obtained from anuric patients and are less suscep-
tible to bacterial contamination [9]; however, these
methods can prove problematic as they are not readily
available in every clinical setting, further highlighting
the need for non-invasive and inexpensive strategies
for diagnosing the disease in its infancy.

Increasing evidence suggests that inflammatory
responses play a critical role in the pathogen-
esis of AD [10, 11]. Senile plaques and the
neurofibrillary tangles bind to pattern recognition
receptors on microglia and astrocytes, triggering
an innate immune response, and the subsequent
release of cytokines, chemokines, and other inflam-
matory mediators that are believed to contribute to

disease progression and severity [12–14]. In this
study, cytokine concentrations were measured in the
urine of AD patients, MCI sufferers, and age and
gender-matched cognitively normal controls (NC), to
develop a non-invasive, biomarker tool for the early
diagnosis of AD. Further, we employ an in-silico
approach to provide insight into the inflammatory
processes and how they relate to the onset and pro-
gression of dementia.

MATERIALS AND METHODS

Study design and sample preparation

We measured the concentration of 37 inflam-
matory cytokines in urine samples obtained from
AD patients (n = 25), MCI sufferers (n = 25), and
age and gender-matched cognitively normal con-
trols (n = 26). The participants were recruited from
Beaumont Health Outpatients. The diagnosis and
evaluation of patients with AD and MCI sufferers
was carried out by a fellowship-trained geriatrician
according to the criteria of the National Institute
of Neurological and Communicative Disorders and
the Stroke (NINCDS) and Alzheimer’s Disease and
Related Disorders Association (ADRDA) [15]. Par-
ticipants underwent a focused history and physical
examination (assessing motor strength and tone, the
existence of a tremor, sensation, balance (Romberg),
and gait) to include an exhaustive cognitive test-
ing battery routinely utilized in the Geriatric Clinic
at Beaumont health to include: Mini–Mental State
Examination (MMSE), Saint Louis University Men-
tal Status (SLUMS), clock drawing tasks (CLOX-I,
and CLOX-II), trial making tests (Trails making A,
and Trails making B), and Geriatric Depression Scale.
The study was approved by the Beaumont Health
Institutional Review Board (IRB# 2014-038) and
all collection/testing parameters were carried out in
accordance with the approved guidelines. The col-
lection was completed in the early morning and all
subjects were asked to refrain from eating, drinking,
or smoking for at least 1 h before urine collection.
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Urine was collected in a polypropylene container,
then aliquoted into an Eppendorf tube and stored at
–80◦C for further analysis.

Cytokine assay

Urine samples were defrosted and centrifuged
at 1000× g for 5 min at 4◦C and 50 �l of the
supernatant was analyzed according to the manufac-
turer’s protocol. In brief, using the Bio-Plex Pro™
Human Inflammation Panel 1, 37-Plex #171AL001M
(BIO-RAD-USA), we measured 37 inflammatory
cytokines from the TNF superfamily of proteins, the
IFN family of proteins, Treg cytokines, and Matrix
metalloproteinases (MMPs). While the methodology
for the cytokine assay was done robustly, it should
be noted that the limitation of the study is that only
one technical replicate was acquired. This may have
impacted the reliability and reproducibility of the
results, and further studies with multiple technical
replicates may be necessary to confirm our findings.
The assay plates were read using a Luminex 200®

analyzer system, and the raw concentration values for
each inflammatory biomarker were calculated using
the manufacturer’s software.

Univariate analysis

Before statistical analysis, any variable with >40%
missing values were excluded from our analysis. Sub-
sequently, the concentration for each cytokine was
normalized using serially diluted internal calibrants,
and standard curves were generated. The normality
of the data was assessed by the Kolmogorov-Smirnov
test of normality. Subsequently, using MetaboAnalyst
(v 5.0) [16], an independent t-test and Mann Whitney
U test were performed for all pair-wise comparisons
for both parametric and non-parametric distributions,
respectively. All demographic information was ana-
lyzed using the SPSS Statistics toolbox (ver 24.0).

Machine learning models

A total of 11 machine learning algorithms were
evaluated in this study, including logistic regres-
sion, linear discriminant analysis, linear support
vector machine (SVM), random forest, decision tree,
xgboost, K-nearest Neighbor (knn), gaussian naïve
bayes, and kernel SVM. Before examining the diag-
nostic performance of the models, each urinary
cytokine was generalized log-transformed (glog) [17]
and auto-scaled. Before performing pattern recog-

nition, data from each group were analyzed using
principal component analysis (PCA) to identify any
potential outliers or systematic variation (p < 0.05).
Subsequently, data were divided into training (60%
of data) and testing (40% of data) sets. A Recur-
sive Feature Elimination (RFE) method with Logistic
Regression as the classifier was utilized to select the
best predictor variables and eliminate redundancy in
the variable space. Once the best set of markers was
identified, model hyper-parameters [18] were opti-
mized using 10-fold cross-validation. The trained
models were assessed using the test set and a 10-
fold CV method. Model performance was evaluated
using the classification accuracy rate, the area under
a receiver operating characteristic (AUROC) curve,
and the identification of true discriminating features.

Pathway analysis

The differentially expressed inflammatory
cytokines between NC and AD were categorized
in FunRich software (https://www.funrich.org), an
open access, functional enrichment, and network
analysis tool [19]. The biological function was
divided into four components: biological processes,
transcription factors, cellular components, and
molecular functions. The biological pathways and
target miRNA for these cytokines were performed
using the Enrichr software [20–22]. Differentially
expressed cytokines (p < 0.05) between AD and NC
were used for the pathway analysis. The miRtarget-
Base 2017 and targetScanmicroRNA2017 databases
were employed to identify miRNAs linked to these
cytokines. The LINCRNA database was used to
identify corresponding Long intergenic non-coding
RNA (LINCRNAs).

RESULTS

We measured the concentration of 37 inflammatory
cytokines in the urine of AD patients (n = 25; mean
age 81.44 ± 4.56), MCI sufferers (n = 25; mean age
81.24 ± 4.87), and age-, and gender-matched NCs
(n = 26; mean age 80.65 ± 5.87). Three cytokines
(IL-29, MMP1, and MMP3) were excluded as they
contained >40% missing values. A summary of each
participant’s clinical and socio-demographic factors
is reported in Supplementary Table 1A–C. The results
reveal that education, gender, and age were not statis-
tically different between the groups (p > 0.05) while
SLUMS total scores, MMSE, CLOXs, and Trial Mak-
ing Tests (TMT-Trails Making A, and Trails Making

https://www.funrich.org
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Fig. 1. Differential expression of cytokines in AD, MCI, and normal control urine (pg/ml; ∗p < 0.05). Error bars represent standard deviations
(SD).

B were found to be statistically significantly different
between the group as expected (p < 0.05).

The univariate analysis comparing mean con-
centrations (pg/ml) of all inflammatory biomarkers
between AD and MCI participants showed Tumor
Necrosis Factor Receptor Superfamily Member 8
(TNFRSF8), Interleukin 6 Cytokine Family Sig-
nal Transducer (IL6ST/gp130), and Interleukin-19
(IL-19) to be differentially expressed. Contrastingly,
while comparing the mean concentrations of all
inflammatory biomarkers between NC versus AD,
only IL6ST and Matrix metalloproteinase 2 (MMP-2)
reached statistical significance. It is noteworthy that
41% of all cytokine concentrations observed exhibit
either an upward or downward trend from NC to AD
suggesting MCI a prodromal step before the onset of
AD (Fig. 1, Supplementary Table 2).

Biomarker panels and machine learning models

‘IFN-�2’, ‘IL-19’, ‘IL-12(p70)’, ‘IL-29/FN-λ1’,
and ‘APRIL/TNFSF1’ were identified by RFE to
be the most discriminative features when NC and
AD cases were compared. In particular, K nearest
neighbors algorithm (k = 5) with 200 oversampled
points provided the best diagnostic outcome for all
machine learning (ML) based models. The perfor-
mance of 11 ML models used in this study was
assessed by calculating a classification accuracy rate,
AUROC, sensitivity, and specificity values. Based on
these performance metrics, the best three classifiers
diagnosing AD cases when compared to NC cases

were found to be SVM kernel, logistic regression,
and ridge clf (Fig. 2A) providing AUC values = 79.4,
69.3, and 69.1, respectively (Fig. 2B). When we com-
pare MCI and NC individuals, ‘IFN-�’, ‘IL-12(p40)’,
‘IFN-�2’, ‘IL-34’, and ‘MMP-2’ were found to be the
most discriminative markers. Of the 11 different ML
models we assessed for distinguishing MCI suffer-
ers from NCs, the top three outperforming classifiers
were found to be xgboost, knn, and gbm (Supplemen-
tary Figure 1A) providing AUC values = 78.6, 68.3,
and 67.7, respectively (Supplementary Figure 1B).
Finally, for the AD versus MCI comparison, of the 11
different ML models assessed and using RFE selected
variables (IL-19, IFN-�, IL-34, gp130/sIL-6R�, and
sCD30/TNFRSF8) decision tree, svm kernel and
logistic regression were found to be the most dis-
criminative models (Supplementary Figure 2A) with
AUC values of = 74.9, 65.4, and 65.3, respectively
(Supplementary Figure 2B).

Pathway analysis

We report several biochemical pathways which
may have been affected by the abnormal expression of
the measured cytokines, and they include molecular
functions, biological processes, biological pathways,
and transcription factors when comparing AD cases
with NC. Within the molecular function aspect,
cytokine activity (p < 0.001) was identified as the
most significantly different pathway when comparing
AD and NC (Supplementary Figure 3A). In biological
processes, the immune response pathway (p < 0.001)
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Fig. 2. Performance evaluation metrics for each ML-based model to include sensitivity, specificity, accuracy, and AUC using the RFE
variable selection algorithm for distinguishing NC from AD and corresponding AUC curves top five models.

was the most significantly perturbed biochemical
pathway (Supplementary Figure 3B) and in the bio-
logical pathway, validated transcriptional targets of
the AP1 family (p = 0.017) and syndecan-2 mediated
signaling events (p = 0.043) were identified as being
significantly perturbed (Supplementary Figure 3C).
Nuclear factor I C (NFIC) was the most signifi-
cant transcription factor (TF) identified (p = 0.005)
(Supplementary Figure 3D). We also identified sev-
eral LINCRNAs whose expression could be modified
by these cytokines. LINC01937 (p = 0.00001269)
and LINC02376 (p = 0.00001269) were the top
LINCRNAs we identified as being perturbed (Sup-
plementary Table 3A). Subsequent Clustergram high-
lights MMP-2 as having significant co-expression
with LINC01937 (p = 0.00001269), LINC01920
(p = 0.0004032), and LINC00687 (p = 0.0004032)
(Supplementary Figure 4A).

Using an in-silico approach, we identified sev-
eral miRNAs that may regulate these cytokines.
FunRich provided gene hits on mmu-miRNAs; how-
ever, to maintain uniformity, we have converted
all mmu-miRNAs to hsa-miRNAs based on the
homolog search using Ingenuity Pathways Analy-
sis [23]. Among the top 10 significant miRNAs
(Supplementary Figure 4B), the human homolog of
hsa-miR-503-3p (p = 0.00238) and hsa-miR-27a-3p

(p = 0.0018) were the most significant. Of the top
10 miRNAs, hsa-miR-7152-3p (p = 0.015), hsa-miR-
142a-3p (p = 0.020), hsa-miR-130a-3p (p = 0.025),
and hsa-miR-4661-5p (p = 0.02) are regulated by
IL6ST (Supplementary Table 3B). We also identi-
fied several miRNAs targeted by these cytokines.
hsa-miR-4278 (p = 0.027) was the most significant
target miRNA of IL6ST and MMP-2 (Supplemen-
tary Table 3C, Supplementary Figure 4C). Cytokines
are widely known to modulate TF and affect molec-
ular pathways. The in-silico analysis revealed an
increase in the expression of several transcription
factors, suggesting a possible regulatory role in our
study (Supplementary Table 3D, (Supplementary
Figure 4D). The pathway analysis further identified
proteins MMP-2 and IL6ST in targeting the TF, FLI1.

DISCUSSION

We investigated the diagnostic utility of urinary
cytokines for AD and MCI detection [24]. To the best
of our knowledge, this is the first reported study mea-
suring the level of inflammatory biomarkers in the
urine of AD patients. Our results highlight significant
differences in the concentrations of several urinary
cytokines when we compare AD with NCs. Sim-
ilarly, significant differences were found when we
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compared AD with MCI and NCs with MCI. Further,
using the recorded concentration data we developed
several ML models to differentiate both MCI and AD
cases from controls and evaluated them based on clas-
sification accuracy rate, sensitivity, and specificity.
It is worth noting that of 11 ML models evaluated
herein, the decision tree repeatedly performed well.

We identified IL6ST and MMP-2 as significantly
different between NC and AD. Our data show that
MMP-2 levels are significantly elevated in AD com-
pared to NC. MMP-2 is protective in AD as it plays
a vital role in cell death, injury, and repair [25].
Elevated expression of MMP-2 is associated with
A� induced neuronal cell death, a pathological hall-
mark of AD [26]. MMP-2 regulates many signaling
molecules, including neuro-inflammation, synaptic
dysfunction, and neuronal death [27]. It is known for
remodeling the pericellular environment by regulat-
ing the cleavage of extracellular matrix proteins, cell
surface components, neurotransmitter receptors, and
growth factors [26]. Also, MMP-2 levels are posi-
tively correlated with MMSE scores in AD patients
[28]. The interaction between A� and a receptor for
advanced glycation end products (RAGE) activates
an intracellular signaling cascade disrupting tight
junction that leads to the breakdown of blood-brain
barrier integrity. A�-RAGE-CaN-MMP cascade is
critical for disruption and AD pathogenesis [29].

IL6ST is a signal transducer receptor shared by
many cytokines, including interleukin 6 (IL-6), cil-
iary neurotrophic factor (CNTF), leukemia inhibitory
factor (LIF), and oncostatin M (OSM) [30]. Also,
IL6ST regulates metabolic, regenerative, and neu-
ral processes [30]. Other studies have shown that a
variant (p.D358A, rs2228145) present in IL6R alters
the ratio of IL6R in microglia resulting in elevated
gene expression in late-onset AD [31]. Studies have
shown that the IL-6 protein is involved in regulat-
ing the IL6ST gene [32]. A protein-protein complex
consisting of IL-6 and IL6R increases the activation
of the dimeric IL6ST protein [33]. Soluble IL6RA
is also found to increase the antagonistic activity of
soluble IL6ST protein [34]. Protein-protein binding
interaction occurs between IL-6 and IL6ST [35]. IL-6
protein in the extracellular space is found to increase
the activation of IL6ST protein in the plasma mem-
brane [36]. IL6ST protein increases the neutralization
of an active protein-protein complex consisting of
IL-6 and soluble IL6R [32]. In cell assays, the IL-6
gene in JHOC5 cells is known to decrease the expres-
sion of IL6ST protein [37]. In Hela cells, IL-6 protein
increases rapid translocation of IL6ST protein from

cell surface to endosomal compartment [38], while in
293t cells, IL-6 protein increases polyubiquitination
of IL6ST [38]. In our study, we observe elevated lev-
els of TNFRSF8 and IL6ST in AD compared to MCI
and NC; as such we hypothesize that elevated levels
of IL6ST may contribute to the development of AD.

We identified TNFRSF8 (CD30), IL6ST, and IL-19
expression levels as significantly different between
AD and MCI groups. TNFRSF8 is the proinflam-
matory cytokine mainly expressed by activated T
cells and macrophages [39] and plays a vital role
in cellular growth and survival [39–41]. TNFRSF8
has been associated with neuroinflammation [42] and
could play a critical role in AD progression. The TNF
gene at chromosome 6p21.3 has an AD association
region [43–45]. The TNF haplotype TNF-308 2 and
TNFa 2 polymorphisms are associated with increased
transcriptional activity resulting in the overproduc-
tion of TNF receptors in AD [46]. An auto-amplified
increased level of TNF-� can stimulate A� pro-
duction and neuronal loss [47], and transduction
of TNFRSF8 protein increases expression of TNF
mRNA [48].

Immunosuppressive cytokine IL-19 has been pos-
itively correlated with AD pathogenesis at both
upregulated and downregulated levels [49]; how-
ever, we observed downregulated expression of
IL-19 in the urine of AD patients compared to
MCI patients. This finding could be explained by
microglial cells secreting IL-19 in the CNS [49].
Secreted IL-19 further regulates microglial function
in an autocrine fashion and suppresses the production
of pro-inflammatory cytokines IL-1�, IL-6, and TNF-
� [49, 50]. However, under chronic inflammation,
such as during AD pathogenesis, we have observed
increased release of pro-inflammatory cytokines in
the biofluids, which correlates with other studies [49].
This suggests that microglial cells may not secrete
enough IL-19 resulting in lower levels of IL-19 in the
urine of our AD sample cohort. Further studies are
warranted to fully elucidate the relationship between
the inflammatory stage and cytokine release in neu-
rodegenerative disease while comparing the mean
concentrations of all inflammatory biomarkers.

We also identified TNFSF13, IL6ST, IFN-�2, IFN-
�, IL-2, IL-12, IL-20, IL-35, TNFSF14, MMP-2,
Osteopontin, Pentraxin-3, TSLP, and TNFSF12 as
intermediately expressed in MCI, as compared to
AD and NC. Of all the measured cytokines, approx-
imately 41% were recorded between the levels as
observed in NCs and AD patients. This may suggest
that MCI is a prodromal step before the onset of AD.
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In silico analysis

miRNA and LINCRNA play an important role in
neurite outgrowth, neuronal differentiation, synap-
tic plasticity, dendritic spine morphology [51, 52],
and various cellular functions by interacting at the
mRNA level resulting in the inhibition of protein syn-
thesis [53]. In the immune system, miRNA regulates
immune cell function in response to several stimuli
[54], contributing to neural dysfunction in AD brain
[51]. We identified several miRNAs and LINCRNAs
that these inflammatory biomarkers could target. The
miRNAs fall into two groups: a) miRNA that could
be causal regulatory factors for cytokine expression,
and b) Differentially expressed cytokines that target
miRNAs. However, both groups are likely to play a
critical role in AD pathogenesis [51]. Among regula-
tory miRNAs, hsa-miR-7152-3p, hsa-miR-142a-3p,
hsa-miR-130a-3p, and hsa-miR-4661-5p are regu-
lated by cytokine IL6ST. Hence, these miRNAs could
prove to be promising therapeutic candidates for
AD pathogenesis. Similarly, hsa-miR-4278 targets
proinflammatory cytokine IL6ST and MMP-2. These
miRNAs have not been previously reported for their
role in AD pathogenesis; however, this novel finding
requires further investigation.

Moreover, we identified LINC01937, LINC01920,
and LINC00687 target MMP-2. As previously, these
could prove to be promising therapeutic targets. For
instance, the development of anti-oligonucleotide
strategies to regulate these in those individuals suf-
fering from AD.

Conclusion

This cross-sectional study measured cytokine lev-
els in urine samples from AD, MCI, and cognitively
normal subjects. Our study demonstrates the potential
of inflammatory biomarkers, particularly cytokines
in urine, as noninvasive diagnostic biomarkers of
AD. Further, using an in-silico approach, we link the
changes as observed in the dementia spectrum to the
potential onset and pathogenesis of AD. There are
several limitations to this study. First, the sample size
used herein is modest, but we believe with a much
larger sample set we would have the power to demon-
strate their potential clinical utility. Second, systemic
inflammatory diseases and comorbidities might affect
the bladder and related urine conditions which have
the potential to confound the results. Thus, additional
studies are warranted to determine the importance of
these changes, how inflammation is involved in AD

development, and whether these targets can slow or
stop the progression of the disease.
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