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Abstract: To alleviate the safety hazards associated with the use of epoxy resin (EP), a multifunctional
filler was designed. This study firstly combines the superior mechanical properties of magnesium
borate rods (MBR) with the excellent smoke suppression and flame-retardant characteristics of lay-
ered double hydroxide (LDH). H2PO4

− intercalated LDH (LDHP) was coated on the MBR surface to
obtain inorganic composite particles MBR@LDHP. Subsequently, MBR@LDHP was modified with
3-aminopropyltriethoxysilane (APES) to obtain organic-inorganic composite particles MBR@LDHP-
APES. Eventually, the hybrid particles were added to EP to prepare the composite materials. There-
after, the morphology, composition, and structure of MBR@LDHP-APES were characterized utilizing
scanning electron microscopy (SEM), Fourier transform infrared (FTIR), and X-ray diffraction (XRD).
The results indicated the successful preparation of MBR@LDHP-APES, after which we investigated
the effects of MBR@LDHP-APES on the smoke suppression, flame retardancy, and mechanical char-
acteristics of EP. As observed, the EP composites containing 7.5 wt% MBR@LDHP-APES exhibited
superior smoke suppression and flame retardancy abilities. The limiting oxygen index reached
33.5%, which is 36.73% greater than pure EP, and the lowest values of total heat and smoke release
were observed for the composite materials. In addition, the mechanical properties test revealed that
MBR@LDHP-APES considerably enhanced the tensile strength as well as the flexural strength of the
composites. Furthermore, mechanistic studies suggested that the barrier effect of MBR, endothermic
decomposition of LDHP, and the synergistic effect of LDHP and APES contributed essentially to the
smoke suppression and flame-retardant properties of the material. The findings of this research point
to a potential method for enhancing the EP’s ability to suppress smoke and flames while enhancing
its mechanical properties.

Keywords: epoxy resin; magnesium borate rod; layered double hydroxide; composites; flame retardant

1. Introduction

Epoxy resin (EP) is a vital thermosetting substance with several applications in coat-
ings [1,2], adhesives [3,4], electronic appliances [5,6], structural applications [7,8], etc.
However, it is flammable, smoke-prone, and exhibits inferior mechanical properties that
can result in certain safety hazards during its application, which are subject to definite
restrictions [9–13]. Studies have shown that dispersing various fillers in epoxy resins can
address the above problems, and the effects of various fillers on the flame retardancy, the
physicochemical, and the mechanical properties of epoxy composites are determined by
many factors: the chemical nature of fillers, the surface properties of fillers, the amount
of fillers added, the shape and size of their particles, the effect of fillers on the structure
formation processes and the structure of the epoxy composites [14–17], etc. Therefore,
the preparation of fillers that can improve the smoke suppression, flame retardancy, and
mechanical properties of EP composites is of imminent significance.
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In general, the composition and structure of layered double hydroxides (LDH) are
flexible and controllable, and they are widely used in adsorption [18–21], catalysis [22–24],
drug delivery [25,26], and flame retardancy [27–31], among other uses. In the current
context, LDH has the proper characteristics to suppress smoke and prevent the spread of
flames, as it absorbs a considerable amount of heat, and generates water vapor and metal
oxides during its decomposition [32,33]. The conversion of anions between the hydrotalcite
layers has garnered appreciable scholarly attention due to their capacity for enhancing
the flame-retardant and smoke-suppressive characteristics of the composites. For instance,
Xu et al. [34,35] used Mo7O24

6− and H2PO4
− intercalated hydrotalcite and observed a

reduction in the heat and smoke release rates of the obtained composite material, with
an increased oxygen index and carbon residue rate. However, LDH contains plenty of
hydroxyl groups that can easily agglomerate because of its polar effect. Consequently,
it is not uniformly dispersed in the polymer matrix, which in turn influences the flame-
retardant efficiency of the composites to a certain extent [36]. In contrast, the addition of a
large amount of LDH reduces the mechanical properties of the composite material [28,37].
Therefore, it is crucial to consider the composites’ mechanical characteristics to enhance
their flame retardancy and smoke-suppressing abilities.

Studies have demonstrated that the addition of magnesium borate rods (MBR) can
significantly enhance the mechanical properties of composite materials [38,39]. Moreover,
it can be added to magnesium-aluminum alloys, ceramics, and polymers to improve the
mechanical characteristics of the composite materials, including their impact strength,
elastic modulus, and tensile strength [40,41]. Luo et al. [42] added ester-modified magne-
sium borate whiskers to a polypropylene matrix for preparing composites. The impact
and tensile strengths of the produced composites were greater than pure PP composites.
Similarly, Chen et al. [43] prepared magnesium borate whiskers/magnesium-based com-
posites following the vacuum pressure infiltration method, which substantially improved
the elastic modulus and tensile strength of the composites compared to the base alloy.
However, MBR facilely agglomerates within the matrix, which impacts the performance of
the material, since it is well known in the literature that aggregation phenomena led to a
worsening of the thermomechanical properties of the composite [44]. More importantly, the
lack of active groups on its surface raises the difficulty of its modification. Therefore, in the
present study, the co-precipitation method is used to coat the MBR surface with H2PO4

−

intercalated LDH (LDHP), wherein the MBR surface layer is enriched with active hydroxyl
groups that can be conveniently modified. Simultaneously, it can attain improved smoke
suppression, flame retardancy, and mechanical characteristics. Nonetheless, the composite
particles (MBR@LDHP) obtained after inorganic modification exhibit strong hydrophilicity
and weak compatibility with the polymer matrix.

A silane coupling agent is an organosilicon compound with a special structure, com-
prising both a hydrolyzable group and an active group, which can interact with the or-
ganic functional group as well as the inorganic powder. This is a widely used coupling
agent that displays adequate compatibility with the polymer matrix. More specifically,
3-aminopropyltriethoxysilane (APES) is an aminosilane coupling agent that is often used
as a surface modifier. In addition, Si and N elements in APES can act as flame-retardant
elements. In particular, Wang et al. [45] utilized APES to modify cellulose microcrystals and
studied its flame retardancy with the reinforcing properties in EPs. For the EP composite
derived by adding a certain amount of silane coupling agent-modified cellulose crystallites
and organic phosphates to the EP, the heat release rate was reduced to 286 kW/m2 and
the mechanical properties were significantly improved. Therefore, in the current study,
the inorganic composite particles (MBR@LDHP) were modified with APES, the –Si–OH
hydrolyzed by APES, and the –OH on the surface of the inorganic composite particles
(MBR@LDHP), which were condensed into bonds to obtain the organic-inorganic compos-
ite particles (MBR@LDHP-APES). This aspect further improved the compatibility of the
composite particles with the matrix and synergistically rendered the silicon, magnesium,
aluminum, phosphorus, and nitrogen elements with flame retardancy.
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In this study, we employed the co-precipitation method and ion exchange method
to coat the surface of MBR with H2PO4

− intercalated magnesium aluminum hydrotalcite,
which was subsequently modified with APES for addition to EP. The specific process is
illustrated in Scheme 1, which aimed to combine the superior mechanical properties of
the MBR with the excellent smoke-suppressive and flame-retardant characteristics of the
LDHP, and the synergistic flame-retardant properties of silicon, phosphorus, magnesium,
and other elements to yield EP composites with suitable mechanical, smoke suppression,
and flame retardancy properties.
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2. Experimental
2.1. Materials

The MBR was synthesized in our lab by combining the co-precipitation and sinter-
ing procedures, as was described in further detail in our earlier research [46]. Anhy-
drous sodium carbonate (Na2CO3, analytical reagent), aluminum nitrate nonahydrate
(Al(NO3)3·9H2O, analytical reagent), sodium hydroxide (NaOH, analytical reagent), mag-
nesium nitrate hexahydrate (Mg(NO3)2·6H2O, analytical reagent), sodium dihydrogen
phosphate (NaH2PO4, analytical reagent), and nitric acid (HNO3, analytical reagent) were
all purchased from Sinopharm Group Chemical Reagent Co., Ltd. (Shanghai, China). 3-
aminopropyltriethoxysilane (APES, analytical reagent) and 4,4-diaminodiphenyl methane
(DDM, analytical reagent) were acquired from Aladdin Biochemical Technology Co., Ltd.
(Shanghai, China). Diglycidyl ether of bisphenol A (DGEBA, E44) was sourced from
Nantong Xingchen Co., Ltd. (Jiangsu, China).

Table 1 shows the typical properties and specifications of DGEBA and DDM.

Table 1. The typical properties and specifications of DGEBA and DDM.

The Qualitative Characteristics Value

Properties of DGEBA

Density at 25 ◦C, g/cm3 1.18
Viscosity at 25 ◦C, Pa s 20–40

softening point, ◦C 14–23
Epoxy equivalent, (g mol−1) 210–230

epoxy value, mol 100 g−1 0.41–0.48

Properties of DDM

Molecular mass, g mol−1 198.28
Density at 25 ◦C, g/cm3 1.15
Viscosity at 25 ◦C, Pa s 2.5–4

melting point/freezing point, ◦C 91.5–92
Amine value (mg KOH g−1) 480
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2.2. MBR@LDHP-APES Preparation

In a beaker, we put 10.0 g of MBR and 100.0 mL of deionized water, and then son-
icated the mixture using a model KQ3200DB ultrasonication device (frequency: 40 kHz,
power: 50 W, Kunshan Ultrasonic Instruments Co., Ltd., Kunshan, China) for 30 min-
utes. Thereafter, 1.2400 g of NaOH (Sinopharm Group Chemical Reagent Co., Ltd.,
Shanghai, China), 0.7949 g of Na2CO3 (Sinopharm Group Chemical Reagent Co., Ltd.,
Shanghai, China), and 150 mL of deionized water were used to produce solution A;
1.2821 g of Mg(NO3)2·6H2O (Sinopharm Group Chemical Reagent Co., Ltd., Shanghai,
China), 1.8757 g of Al(NO3)3·9H2O (Sinopharm Group Chemical Reagent Co., Ltd., Shang-
hai, China), and 150 mL of deionized water were used to produce solution B. The three
solutions were preheated to 70 ◦C, and the MBR slurry was stirred while adding the so-
lutions A and B dropwise, controlling the pH to ~10, reacting at 70 ◦C for 30 min, and
placing it in an oil bath at 70 ◦C overnight. Subsequently, the above-mentioned solution
was sonicated under the same ultrasonic conditions for 15 minutes, NaH2PO4 solution was
added dropwise, reacted at 60 ◦C for 2 h, filtered, rinsed with absolute ethanol (Sinopharm
Group Chemical Reagent Co., Ltd., Shanghai, China), and water was added to produce
a solution. An adequate amount of absolute ethanol, deionized water, and APES was
pre-hydrolyzed for 1.5 h, gradually added dropwise to the above solution, stirred at 60 ◦C
for 1 h, filtered with suction, and ultimately freeze-dried to obtain MBR@LDHP-APES.
Furthermore, MBR@LDHP was prepared following the same method.

2.3. Preparation of EP Composites

The EP composite material was prepared following the physical mixing method.
Specifically, in a 90 ◦C oil bath, the MBR@LDHP-APES was introduced into the DGEBA
and vigorously stirred for 2 h. Thereafter, a predetermined amount of a curing agent
(Aladdin Biochemical Technology Co., Ltd., Shanghai, China) was introduced. In addition,
the bubbles were removed after 10 min, introduced into the mold, cured for 2 h at 100 ◦C,
and aged for 2 h at 150 ◦C to produce the EP composites. In addition, the same method was
used for preparing the EP composite materials added with MBR and MBR@LDHP (Table 2
presents the specific formulation).

Table 2. Pure EP preparations and their composites.

Sample DGEBA
(wt%)

DDM
(wt%)

MBR
(wt%)

MBR@LDHP
(wt%)

MBR@LDHP-APES
(wt%)

EP 82.0 18.0 0 0 0
EP/2.5 MBR@LDHP-APES 80.0 17.5 0 0 2.5
EP/5.0 MBR@LDHP-APES 78.0 17.0 0 0 5.0
EP/7.5 MBR@LDHP-APES 75.8 16.7 0 0 7.5

EP/7.5 MBR@LDHP 75.8 16.7 0 7.5 0
EP/7.5 MBR 75.8 16.7 7.5 0 0

2.4. Characterization

On a JSM 7900F field emission scanning electron microscope (FESEM; JEOL, Japan),
images of the particles MBR, LDHP, MBR@LDHP, and MBR@LDHP-APES were captured
using scanning electron microscopy (SEM). All samples were sprayed with gold for 15 s.
The accelerating voltage was 10.0 kV at a working distance of 9.5 mm. Additionally, pat-
terns of X-ray diffraction (XRD) were captured with diffraction peaks in the range of 5◦ to
90◦ on a D-max2500PC X-ray diffractometer (Rigaku Corp., Tokyo, Japan) equipped with
Cu–Kα radiation (λ = 0.154 nm). On a Nicolet 6700 spectrometer (Thermo Nicolet Corp.,
Madison, WI, USA), a Fourier-transform infrared (FTIR) spectroscopy was carried out to
capture the distinctive peaks of MBR, LDHP, and APES. To measure the flame retardancy of
pure EP and the composites based on ASTM D2863, a limiting oxygen index (LOI) measure-
ment was performed utilizing a JF-6 oxygen index meter (Nanjing Xingguang Instrument
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Equipment Co., Ltd., Nanjing, China). In compliance with ISO 5660 and employing a heat
flux of 35 kW/m2, the cone calorimeter test (CCT) was utilized to examine the flame- and
smoke-suppressing capabilities of the EP composites and pure EP. The tensile properties of
pure EP and composite materials were tested according to ASTM D638 (sample dimensions:
165 × 13 × 3 mm3) on an HD 021NS-5 tensile tester platform (Nantong Hongda Exper-
imental Instrument Co., Ltd., Nantong, China) at a tensile speed of 1 mm min−1. The
flexural properties were also tested on an HD 021NS-5 tensile tester platform according
to GB/T 9341 (sample dimensions: 80×10×4 mm3). The mechanical properties of all the
samples were measured five times, and the average values were reported and used in
further studies. At a heating rate of 10 ◦C min−1, a DSC (Differential Scanning Calorimetry)
4000 differential scanning calorimeter (PerkinElmer Ltd., Shelton, CT, USA) was employed
to evaluate the glass transition temperature (Tg) of pure EP and the composites. Thereafter,
a Netzsch STA449F3 analyzer (Netzsch Instrument Crop., Selbu, Germany) was utilized to
carry out a thermogravimetric analysis (TG) at a heating rate of 10 ◦C/min from 25 to 850 ◦C
under N2 atmosphere. Specifically, TG-FTIR uses a Perkin-Elmer STA6000 thermal analyzer
(Perkin-Elmer Crop., Shelton, CT, USA) under a nitrogen atmosphere of 50 mL min−1, with
the temperature rising from 40 to 800 ◦C at a heating rate of 10 ◦C min−1; the produced
volatiles were flown into the Perkin–Elmer Frontier infrared spectrometer; a temperature
of 260 ◦C was measured within the infrared cell; the resolution was 4 cm−1, the number
of scans was 4, and the range of scanning was from 450 to 4000 cm−1. Furthermore, the
primary source of illumination (λ = 532 nm) was an argon-ion laser, and on an RM2000
Raman spectrometer (Renishaw, UK), the Raman spectrum readings of the residual carbon
were obtained.

3. Results and Discussion
3.1. Characterization

XRD measurements were used to describe the structures of the materials in their
as-prepared states, and the XRD patterns of (a) MBR, (b) LDHP, (c) MBR@LDHP, and
(d) MBR@LDHP-APES are illustrated in Figure 1. The primary characteristic diffraction
peaks of MBR@LDHP at 19.91◦, 29.95◦, 31.71◦, 35.06◦, 45.11◦, and 47.35◦ correspond to
the (200), (004), (204), (112), (206), and (312) crystal plane of MBR, respectively [46]. The
diffraction intensity of MBR@LDHP was inferior to that of MBR, which implies that the
MBR surface was covered with substances. Moreover, the crystal planes of LDHP were
observable in the XRD spectrum of MBR@LDHP [35], indicating that the LDHP was
successfully coated on the MBR surface. The characteristic peaks of MBR@LDHP-APES
were similar to MBR@LDHP, because the modification of MBR@LDHP by APES occurred
only on the surface without appropriate crystallization of the APES, such that it did not
modify the original crystal structure.

The structures of the as-prepared samples were characterized under infrared spec-
troscopy. The infrared spectra of (a) MBR, (b) LDHP, (c) MBR@LDHP, (d) MBR@LDHP-
APES, and (e) APES are displayed in Figure 2. As portrayed in Figure 2a, the B–O and
Mg–O stretching vibration bands [47], including the MBR surface, display almost no O–H
stretching vibration peaks, thereby increasing the difficulty of direct organic modification.
As depicted in Figure 2b, P=O and P–O stretching vibration peaks were detected at 1291,
1183, and 1012 cm−1, respectively, with no observable CO3

2− characteristic peak, indicating
that the H2PO4

− successfully replaced CO3
2− intercalation LDH. As portrayed in Figure 2c,

the characteristic peaks of MBR and LDHP were included as well, and the O–H peak of the
stretching vibration was detected at 3479 cm−1. Thus, the LDHP was successfully coated
on the MBR surface. According to the FTIR curve of APES in Figure 2e, the characteristic
peak of N–H appeared at 1588 cm−1, the characteristic peak of Si–O–CH2 appeared at 1069
and 955 cm−1, and the C–H symmetrical stretching vibrations appeared in the vicinity of
2900 cm−1. As indicated in Figure 2d, the original characteristic peaks of MBR@LDHP
and the C–H stretching vibration appeared near 2900 cm−1, and the characteristic peaks of
Si–O–CH2 were detected at 1069 and 955 cm−1. However, the N–H functional groups could



Polymers 2022, 14, 3661 6 of 19

not be prominently identified because of the presence of the high-strength B-containing
functional groups.
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Figure 2. FTIR spectra of MBR (a), LDHP (b), MBR@LDHP (c), MBR@LDHP-APES (d), and DDP (e).
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The SEM images displaying the morphologies and structures of (a) MBR, (b) LDHP,
(c) MBR@LDHP, and (d) MBR@LDHP-APES are depicted in Figure 3. As observed, MBR
is a rod-like structure with a clean and smooth surface, whereas LDHP portrays a flower-
like appearance, potentially because of the hydrogen bonds or other strong polar forces
that accumulate. Compared to the MBR in Figure 3a, the MBR surface (Figure 3c) was
wrapped with a continuous layer of material, implying the successful encapsulation of
LDHP. The surface of the MBR@LDHP-APES (Figure 3d) appeared identical to the surface
of the MBR@LDHP (Figure 3c), i.e., a rough surface. Nonetheless, the presence of Si and N
elements in the EDS diagram, along with the findings presented in Figure 2 confirmed the
successful preparation of MBR@LDHP-APES.
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3.2. Thermal Stability of EP Composites

As illustrated in Figure 4, the TG tests on EP and its composites were carried out
in an environment containing nitrogen, and the specific data are highlighted in Table 3.
The TG curves of EP and its composites exhibited a similar trend, both involving single-
step thermal degradation [48]. As evaluated, the T−5% and Tmax of EP were 363.7 ◦C
and 386.5 ◦C, respectively. With the addition of various fillers, the T−5% and Tmax of
EP composites reduced substantially in comparison with EP. Interestingly, the T−5% and
Tmax of EP/7.5MBR@LDHP-APES were higher than those of EP/7.5MBR@LDHP and
EP/7.5MBR, because the organically modified composite particles were more uniformly
dispersed in the matrix, which has the potential to prevent the matrix from decomposing
to a higher degree. However, the carbon residue of EP/7.5MBR was the largest, owing
to the reasonable stability of the MBR hindering its ready decomposition. Compared to
the carbon residue rates of EP, that of all composites were greater than EP, and that of
EP/7.5MBR@LDHP-APES increased by 38.2%, which suggested the positive influence of
APES and LDHP on promoting carbon formation.
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Figure 4. TG (a) and DTG (derivative thermogravimetry) (b) curves for EP and EP/7.5MBR@LDHP-
APES, EP/7.5MBR@LDHP, EP/7.5MBR.

Table 3. TG data for EP and its composites.

Sample T−5% (◦C) Tmax (◦C) Char Yield (%)

EP 363.7 387.4 15.49
EP/7.5MBR@LDHP-APES 363.6 386.7 21.41

EP/7.5MBR@LDHP 359.1 383.9 22.10
EP/7.5MBR 356.1 380.8 22.15

Thereafter, we used DSC to examine the influence of various fillers on the Tg of EP
under a nitrogen atmosphere of 30 mL min−1, in a temperature range from 20 to 200 ◦C at a
heating rate of 10 ◦C min−1. Figure 5 displays a plot of the DSC curves for EP as well as the
EP composites, wherein the Tg of EP was 143.3 ◦C. The Tg of the EP composites was shown
to progressively rise following the introduction of several fillers. This may be because the
hard fillers that were added to the composites acted to restrict the mobility of the EP chains.
The Tg of EP/7.5MBR@LDHP-APES achieved a maximum temperature of 152.8 ◦C, which
is 9.5 ◦C higher than that of EP.
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3.3. EP Composite’s Mechanical Characteristics

Because it is impossible to ignore the composite materials’ mechanical characteristics
in real-world applications, this research examines the tensile and flexural strengths of
the composite materials, as illustrated in Figure 6. Figure 6a shows the tensile stress-
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strain curves of pure EP and its composites; we found that the tensile strength and
elastic modulus of the composites that had the modified MBR show greater improve-
ment compared to that of pure EP. The tensile strength of pure EP was only 61.3 MPa
and the flexural strength was 88.7 MPa. Accordingly, the tensile and flexural strengths
of EP/2.5MBR@LDHP-APES, EP/5.0MBR@LDHP-APES, and EP/7.5MBR@LDHP-APES
increased with the MBR@LDHP-APES content in the composite material. As the organic–
inorganic composite particles were suitably compatible with the matrix, the composite
particles were distributed evenly throughout the matrix, which also fulfilled the connection.
Notably, upon adding 7.5wt%MBR@LDHP-APES to the matrix, the tensile and flexural
strengths of EP/7.5MBR@LDHP-APES increased by 18.76% and 21.53% respectively, in
contrast with the strength of pure EP, which accounts for the highest mechanical strength
among the composites. However, the flexural and tensile strengths of EP/7.5MBR de-
creased by 0.9% and 0.65% compared to pure EP, respectively, because MBR exhibited
inferior compatibility with the polymer matrix, and did not play a reinforcing role. In
contrast with pure EP, the flexural and tensile strengths of EP/7.5MBR@LDHP displayed a
substantial improvement, increasing by 18.38% and 13.05% respectively. However, they
were not optimal, because the single inorganic modified composite particles exhibited weak
compatibility with the matrix.
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3.4. Flammability of EP Composites

The combustion performance of the composites was evaluated by examining their
total heat release (THR) and heat release rate (HRR), as depicted in Figure 7, and the values
are listed in Table 4. The THR and HRR of EP were 107.6 MJ·m−2 and 1020.2 kW·m−2,
respectively, and the residual carbon rate was 10.3%; thus, the flame retardancy of EP
is not particularly ideal. As the added amount of MBR@LDHP-APES increased, both
the THR and HRR of the composites gradually decreased. The THR and HRR values
of EP/7.5MBR@LDHP-APES were the lowest among the composites, i.e., 71.8 MJ·m−2

and 674.1 kW·m−2, respectively, which were 33.27% and 33.92% less than EP, respectively.
Moreover, the carbon residue rate attained a maximum of value of 18.9%, which is 83.50%
higher than that of EP, because the MBR forms a barrier on the surface of the composite
material during combustion. Subsequently, the LDHP decomposes to produce oxides and
water in an endothermic manner, and the intercalated H2PO4

− can generate PO· radicals,
capturing hydrogen and hydroxyl radicals, thereby improving the flame retardancy of the
composite material [49]. Compared with EP/7.5MBR@LDHP-APES, the HRR and THR
values of EP/7.5MBR@LDHP and EP/7.5MBR increased to a certain extent owing to the
lack of the synergistic flame retardant of APES, and the barrier impact of the generated
SiO2 [50,51]. However, the heat release situation was better than pure EP; the HRR and



Polymers 2022, 14, 3661 10 of 19

THR of EP/7.5MBR@LDHP and EP/7.5MBR decreased by 26.27%, 24.28%, and 29.55%,
16.17% in comparison to those of EP, respectively.
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Figure 7. HRR (a) and THR(b) curves of pure EP and its composites.

Table 4. CCT test results for EP and its composites.

Sample PHRR THR Mass SPR TSP
(KW·m−2) (MJ·m−2) (%) (m2·s−1) (m2)

EP 1020.2 107.6 10.3 0.57 60.1
EP/2.5 MBR@LDHP-APES 962.6 73.4 15.9 0.38 42.6
EP/5.0 MBR@LDHP-APES 861.6 73.4 16.2 0.37 42.8
EP/7.5 MBR@LDHP-APES 674.1 71.8 18.9 0.27 40.3

EP/7.5MBR@LDHP 752.2 75.8 18.2 0.34 46.3
EP/7.5MBR 772.5 90.2 17.8 0.42 55.5

In addition, Figure 8 displays the smoke release rate (SPR) and total smoke release
(TSP) of the composites. The SPR value and TSP value of EP were 0.57 m2·s−1 and 60.1 m2,
respectively. As the added amount of MBR@LDHP-APES increased, the SPR and TSP
values of the composite material progressively decreased. Overall, in comparison to
the values of EP, the SPR and TSP values of EP/7.5MBR@LDHP-APES were the lowest,
having decreased by 52.63 and 32.95%, respectively, due to the synergistic smoke sup-
pression and flame retardancy of MBR, LDHP, and APES. However, the SPR and TSP
values of EP/7.5MBR@LDHP and EP/7.5MBR exhibited an increase in comparison with
EP/7.5MBR@LDHP-APES, respectively.
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Figure 9 depicts the LOI values used to assess the composites’ flame retardancy. The LOI
value of EP is 24.5%, and the flame-retardant effect was average. As the MBR@LDHP-APES
content increased, the LOI of composites EP/2.5MBR@LDHP-APES, EP/5.0MBR@LDHP-APES,
and EP/7.5MBR@LDHP-APES gradually increased. The LOI value of EP/7.5MBR@LDHP-
APES was the highest (33.5%) because of the synergistic and efficient flame retardancy of
magnesium, aluminum, silicon, and other flame-retardant elements, including the HO·
and H· radicals freshly generated by combusting EP, which were trapped by the generated
PO· radical [35,49,52]. The LOI values of EP/7.5MBR@LDHP and EP/7.5MBR were 32.5%
and 30.0%, respectively, which were less than the LOI of EP/7.5MBR@LDHP-APES. These
results indicate that the EP/7.5MBR@LDHP-APES composites exhibited superior fire safety
and mechanical properties as compared to most of the composites reported previously
(Table 5).
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Table 5. Combustion and mechanical properties of previously reported EP composites.

Composite
(Content wt%)

Flame Retardancy Mechanical Properties
Ref.

PHRR PSPR LOI Tensile Strength Flexural Strength

EP/APP (11.0) −42.8% No given 17.9% −43.5% No given [45]
EP/MH (7.5) −16.3% −30.6% 14.6% −23.3% No given [53]
EP/LDH (2.0) −21.3% −12.9% 14.2% −3.7% −9.7% [9]
EP/LDH (7.5) −16.1% −30.6% 16.7% −20.2% No given [54]

EP/MBR@LDHP-APES (7.5) −33.9% −52.6% 36.7% 18.8% 21.5% This work

3.5. Mechanisms Linked to Flame Retardancy

To further study the mechanisms behind the EP composites’ flame retardancy, the
effect of MBR@LDHP-APES on the pyrolysis of EP was investigated through the TG-FTIR
test. The 3D TG-FTIR spectra of EP and EP/7.5MBR@LDHP-APES cleavage products are
illustrated in Figure 10a,b, respectively. The FTIR spectra of EP and EP/7.5MBR@LDHP-
APES pyrolysis products at the maximum rate of evolution are illustrated in Figure 11a.
As the infrared spectra of EP and EP/7.5MBR@LDHP-APES composites were almost iden-
tical, the pyrolysis components can be comparatively analyzed. The characteristic peaks
of the aromatic compounds, carbonyl compounds, CO2, hydrocarbon groups, and H2O
appeared at 1510, 1758, 2327, 2974, and 3648 cm−1 for EP and EP/7.5MBR@LDHP-APES,
respectively [55]. Furthermore, the relationship between the FTIR absorption peak intensity
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and the time of the specific gas cracking products of EP and EP/7.5MBR@LDHP-APES
composites is plotted in Figure 11b–d, respectively. As observed, the infrared absorption
intensity of the pyrolysis products of EP/7.5MBR@LDHP-APES was reduced in contrast
with that of EP. Therefore, adding fillers contributed substantially towards flame retar-
dancy, and simultaneously, the dense carbon layer served as a stronger barrier, thereby
reducing the release of the combustible organic compounds and delaying the evasion of
the pyrolysis products.
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The CCT carbon residue maps of pure EP and the composite materials are shown in
Figure 12, which indicates the loose and porous carbon residue of the pure EP. Moreover,
a marginal amount of carbon residue remained with only a thin layer. As the amount of
MBR@LDHP-APES added increased, the residual carbon of EP/2.5MBR@LDHP-APES,
EP/5.0MBR@LDHP-APES, and EP/7.5MBR@LDHP-APES gradually became more com-
pact, and the number of voids diminished. This carbon layer can effectively prevent the
entry of heat, and can concurrently isolate various flammable gases due to the enhanced
synergistic effect of MBR, LDHP, and APES that ultimately promotes the formation of
the carbon layer [31,35,56]. The carbon residues of EP/7.5MBR@LDHP and EP/7.5MBR
were slightly improved in comparison to the residues of pure EP, owing to the addition
of MBR@LDHP and MBR, respectively; however, they displayed inadequate compactness
and stability. Among all the samples, the most prominent carbon residue was observed in
the case of EP/7.5MBR, which was almost discontinuous, with a considerable amount of
white matter floating on the surface. This confirmed the significance of inorganic coating
and organic modification for MBR.

Polymers 2022, 14, x FOR PEER REVIEW 15 of 21 
 

 

 377 

Figure 12. Digital images of EP char residue (a), EP/2.5MBR@LDHP-APES (b), EP/5.0 MBR@LDHP- 378 
APES (c), EP/7.5MBR@LDHP-APES (d), EP/7.5MBR@LDHP (e) and EP/7.5MBR (f). 379 

The char residue microstructures for EP, EP/7.5MBR@LDHP-APES, 380 

EP/7.5MBR@LDHP, and EP/7.5MBR samples after the burning test were also observed by 381 

SEM (Figure 13). It was found that the char residue for the EP sample was very loose and 382 

had many holes. Conversely, the char residue for the EP/7.5MBR@LDHP-APES sample 383 

was denser and solider. The fillers were randomly distributed and bonded to the char 384 

residue to form a physical protective barrier. This continuous and intact char layer effec- 385 

tively blocks oxygen and external heat during combustion. For the EP/7.5MBR@LDHP 386 

sample, only a small amount of dense carbon was produced. From Figure 13d of the 387 

EP/7.5MBR sample, MBRs can be seen just physically piled together without adhesion. 388 

These loose and discontinuous char layers do not effectively prevent combustion from 389 

spreading into the interior of these samples. 390 

 391 

Figure 13. SEM images of char residues for EP (a), EP/7.5MBR@LDHP-APES (b), EP/7.5MBR@LDHP 392 
(c) and EP/7.5MBR (d). 393 

The Raman spectra of coke residues with EP, EP/7.5MBR@LDHP-APES, and 394 

EP/7.5MBR@LDHP are illustrated in Figure 14 for analyzing the structure and 395 

Figure 12. Digital images of EP char residue (a), EP/2.5MBR@LDHP-APES (b), EP/5.0 MBR@LDHP-
APES (c), EP/7.5MBR@LDHP-APES (d), EP/7.5MBR@LDHP (e) and EP/7.5MBR (f).

The char residue microstructures for EP, EP/7.5MBR@LDHP-APES, EP/7.5MBR@LDHP,
and EP/7.5MBR samples after the burning test were also observed by SEM (Figure 13). It
was found that the char residue for the EP sample was very loose and had many holes.
Conversely, the char residue for the EP/7.5MBR@LDHP-APES sample was denser and
solider. The fillers were randomly distributed and bonded to the char residue to form a
physical protective barrier. This continuous and intact char layer effectively blocks oxygen
and external heat during combustion. For the EP/7.5MBR@LDHP sample, only a small
amount of dense carbon was produced. From Figure 13d of the EP/7.5MBR sample, MBRs
can be seen just physically piled together without adhesion. These loose and discontinuous
char layers do not effectively prevent combustion from spreading into the interior of
these samples.
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Figure 13. SEM images of char residues for EP (a), EP/7.5MBR@LDHP-APES (b), EP/7.5MBR@LDHP
(c) and EP/7.5MBR (d).

The Raman spectra of coke residues with EP, EP/7.5MBR@LDHP-APES, and EP/
7.5MBR@LDHP are illustrated in Figure 14 for analyzing the structure and composition of
cokes, including the mechanism of the action of flame retardants. In EP and its compos-
ites EP/7.5MBR@LDHP-APES and EP/7.5MBR@LDHP, graphitic D- and G-bands were
detected at around 1350 and 1590 cm−1, respectively, corresponding to an amorphous
carbon structure and an ordered graphite structure. The area ratio of the D-band to the
G-band (ID/IG) may be used as a representation of the degree of graphitization that oc-
curred in the residual carbon. Generally, a lower ID/IG value represents a greater degree
of graphitization, as well as a carbon layer that is highly agglomerated [57]. As observed,
EP/7.5MBR@LDHP-APES reduced the ID/IG from 3.64 to 2.87, whereas the ID/IG value of
EP/7.5MBR@LDHP was 3.14, which is only slightly decreased in comparison to EP. This
was caused by the catalytic effect of Al2O3 and MgO generated during the decomposition of
LDHP, which promoted carbon formation. After the introduction of APES, the formation of
graphitic carbon as well as the compactness of the carbon layer further improved, thereby
preventing the influx of heat as well as reducing the diffusion of combustible gases.
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Figure 14. The char residue from EP examined using Raman spectroscopy. (a), EP/7.5MBR@LDHP-
APES (b), and EP/7.5MBR@LDHP (c).

The char residue of EP/7.5MBR@LDHP-APES obtained after the CCT test was fur-
ther investigated using the XPS technique. The full-scan XPS spectral profiles and high-
resolution XPS maps of Mg2p, Al2p, P2p, and Si2p are presented in Figure 15. The signals
of Mg2p, B1s, Al2p, P2p, N1s, and Si2p—absent in pure EP species—were detected in the
char residue of EP/7.5MBR@LDHP-APES. As displayed in Figure 15b, the two peaks in
the Mg2p spectrum at 51.1 and 51.8 eV corresponded to the interplay between Mg2+ and
B2O5

4−, and the Mg–O binding energy [53]. As depicted in the Al2p spectrum, the peak at



Polymers 2022, 14, 3661 15 of 19

75.7 eV may be a result of the Al2p of Al–O (Al2O3) [54]. Thus, the Mg and Al elements in
LDH generated MgO and Al2O3 during combustion, respectively. More importantly, the
metal oxides form a physical barrier. In the P2p spectrum, a peak was detected at 134.9 eV,
which may be a consequence of –P(=O)–O–C–. Thus, during combustion, H2PO4

− can
generate a cross-linked structure of –P(=O)–O–C–, which consequently promotes carboniza-
tion and increases the density of the carbon layer. This results in an improvement in the
composite’s smoke suppression and frame retardant abilities [35]. The Si2p spectrum
exhibited a peak at 103.5 eV, which corresponded to SiO2 and indicated that the Si element
in APES formed SiO2 during combustion. Thus, SiO2 formed a barrier to isolate the heat
and combustible gases, which further delayed the decomposition of the matrix.
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Following the research presented above, Scheme 2 provides a detailed summary of
the flame retardant and smoke suppression mechanisms exhibited by MBR@LDHP-APES
in EP. MBR@LDHP-APES enhanced the EP’s characteristics as a smoke suppressant as well
as a flame retardant, primarily for the following reasons: the barrier effect of Mg2B2O5,
MgO, Al2O3, and SiO2, the impact of water vapor and NH3 on dilution, the impact of
the endothermic decomposition of LDH including catalytic carbon formation, and the
PO· radicals generated by H2PO4

− which can capture H· or HO· during combustion.
Furthermore, the N and Si elements in APES can synergize with Mg and Al elements for
efficient flame retardation.
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Scheme 2. Depiction of the flame retardant and smoke suppression mechanisms exhibited by
MBR@LDHP-APES in EP.

4. Conclusions

In conclusion, this research formulated organic–inorganic composite particles
(MBR@LDHP-APES), and the characterization confirmed the uniform coating of the LDHP
on the MBR surface and the successful grafting of the APES. Subsequently, MBR@LDHP-
APES was added to EP to prepare the composites and study the properties of the materials.
Compared to pure EP, EP/7.5MBR@LDHP-APES exhibited improved flame retardancy
and smoke suppression characteristics, and the THR, PHRR, TSP, and PSPR of EP/7.5
MBR@LDHP were reduced by 33.27%, 33.92%, 32.95%, and 52.63%, respectively. The LOI
and coke yields of EP/7.5MBR@LDHP-APES were 33.5% and 18.90%, which were 36.73%
and 83.50% higher than that of EP, respectively. This may be caused by the barrier effect of
MBR, the barrier and adsorption effects of MgO, SiO2, and Al2O3, the influence that water
vapor has on diluting the mixture, as well as the endothermic influence of MH breakdown.
Thus, the APES and inorganic flame retardants synergistically induced flame retardancy.
Compared to EP, the mechanical properties of EP/7.5MBR@LDHP-APES were improved,
as the tensile and flexural strengths were increased by 18.76% and 21.53%, respectively.
Therefore, this research established a potential avenue for enhancing the flame retardancy,
smoke repression, and mechanical properties of composite materials.
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