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Abstract

Background: Embedding techniques for converting high-dimensional sparse data into low-dimensional distributed
representations have been gaining popularity in various fields of research. In deep learning models, embedding is
commonly used and proven to be more effective than naive binary representation. However, yet no attempt has been
made to embed highly sparse mutation profiles into densely distributed representations. Since binary representation
does not capture biological context, its use is limited in many applications such as discovering novel driver mutations.
Additionally, training distributed representations of mutations is challenging due to a relatively small amount of
available biological data compared with the large amount of text corpus data in text mining fields.

Methods: We introduce Mut2Vec, a novel computational pipeline that can be used to create a distributed
representation of cancerous mutations. Mut2Vec is trained on cancer profiles using Skip-Gram since cancer can be
characterized by a series of co-occurring mutations. We also augmented our pipeline with existing information in the
biomedical literature and protein-protein interaction networks to compensate for the data insufficiency.

Results: To evaluate our models, we conducted two experiments that involved the following tasks: a) visualizing
driver and passenger mutations, b) identifying novel driver mutations using a clustering method. Our visualization
showed a clear distinction between passenger mutations and driver mutations. We also found driver mutation
candidates and proved that these were true driver mutations based on our literature survey. The pre-trained mutation
vectors and the candidate driver mutations are publicly available at http://infos.korea.ac.kr/mut2vec.

Conclusions: We introduce Mut2Vec that can be utilized to generate distributed representations of mutations and
experimentally validate the efficacy of the generated mutation representations. Mut2Vec can be used in various deep
learning applications such as cancer classification and drug sensitivity prediction.
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Background
Mutation representation by simple binary values (e.g.,
each existing mutation is given a value of 1; if a mutation
does not exist, it is given a value of zero) has been com-
monly used in various machine learning models designed
for cancer analysis. However, since binary representa-
tion does not capture mutational context (e.g., mutations

*Correspondence: kangj@korea.ac.kr
†Equal contributors
1Department of Computer Science and Engineering, Korea University, Seoul,
Korea
2Interdisciplinary Graduate Program in Bioinformatics, Korea University, Seoul,
Korea

that frequently co-occur, distinction between driver muta-
tions and passenger mutations), it provides insufficient
information for cancer analysis such as cancer subtype
classification, patient clustering, or drug sensitivity pre-
diction. Although significant amounts of mutations have
been discovered due to advances in sequencing tech-
niques, it is generally known that passenger mutations
have no role in cancer progression. In contrast, driver
mutations directly affect cancer progression, and they
tend to be observed frequently in the cancer profiles of
patients. Applying these important mutational properties
to mutation representation is critical for improving can-
cer analysis. Furthermore, if a mutation representation
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captures the characteristics of driver mutations, it is pos-
sible to discover novel driver mutations by calculating the
similarity between a candidate mutation and each of the
driver mutations. Based on this motivation, we aim to
address the problem by developing continuous and dis-
tributed representations of mutations using deep learning
techniques.

Recently, Deep Learning, one of the artificial neural
network-based machine learning techniques has been
making remarkable improvements in various applications
such as text mining [1], speech recognition [2], image clas-
sification [3] and even the prediction tasks in biomedical
domain such as protein secondary structure prediction [4]
and DNA-protein binding prediction [5]. Various contin-
uous distributed representations were introduced to be
jointly used with deep learning models. Word2Vec [6] is
one of the well-known models trained to represent words
in continuous space. This model is a multi-layered neural
network consisting of an input layer, embedding lookup
layer, and prediction layer. For the representation of doc-
uments in a continuous space, Doc2Vec [7] which is an
extension of Word2Vec, adds document vectors to the
embedding lookup layer. Since the distributed represen-
tation of words includes semantic relationships among
vocabularies such as the semantic similarity between two
words, the representations can contain additional infor-
mation compared with binary representation which con-
tains information on the existence of words.

Similar attempts to represent data in a continuous vec-
tor space have been made in the biomedical domain.
ProtVec [8] applies Word2Vec to a protein sequence to
obtain distributed representations of a 3-gram amino
acid sequence. The protein sequence is initially split into
3-grams each having a biological significance and
regarded as a “word”. The next step is to run the Word2Vec
algorithm using Skip-Gram. Seq2Vec [9], which extends
the approach of ProtVec, applies Doc2Vec to represent
a sequence not just by combining all the sequential ele-
ments of ProtVec 3-grams, but by directly embedding
the sequence itself. Finally, Dna2Vec [10] generalizes the
3-gram structure of ProtVec and Seq2Vec to a k-gram
structure. Another approach involves SNP2Vec [11],
which embeds individual SNPs into a continuous space by
using a denoising autoencoder [12] and Diet Networks.

Nevertheless, since Skip-Gram relies on co-occurrence
information between data units (words or k-grams), it
is difficult to guarantee the quality of the vectors if the
input data lacks co-occurrence information. To address
this issue, some studies that apply existing structured
or graph knowledge to embedding processes have been
introduced. RC-NET [13] adds two regularization func-
tions to the Skip-Gram objective function, which capture
the relational distance between the words based on their
categorical information. Faruqui et al. [14] proposed a

method that applies synonym-based graph knowledge to
existing word vectors. Using a simple mathematical pro-
cess, graph information is added to the word vector while
information on its previous state is preserved.

In this work, we propose a novel pipeline, Mut2Vec,
to generate distributed representations of mutations for
the characterization of cancer cells. Because our vec-
tor space captures the characteristics of driver mutations
and distinguishes driver mutations from passenger muta-
tions, it has the potential to improve performance in
other applications. Our mutation vectors can help iden-
tify driver mutations by investigating the vector space. We
hypothesized that when an unidentified mutation is near
many driver mutations in the vector space, the mutation
could be a candidate driver mutation. Our mutation vec-
tors can also help machine learning applications capture
important biological information and yield better results
than conventional binary representation. We assume that
mutations are critical to the development of cancer when
they co-occur in many cancer samples. Our assump-
tion is similar to the text mining assumption that words
are semantically meaningful when the words co-occur
in many sentences. Word embedding algorithms such as
Skip-Gram utilize co-occurrence information to embed
words in a semantically meaningful distributed continu-
ous space that places words with similar meanings close to
each other. In this work, we attempt to leverage such word
embedding techniques to embed gene-level mutations in
a continuous distributed space that captures the semantic
relations among the cancerous gene-level mutations.

To produce precise mutation vectors, a sufficient
amount of information on co-occurring mutations is
needed. However, the number of cancer samples with co-
occurring mutations is limited. In the case of the Google
News corpus, which is a standard text corpus for train-
ing word vectors, there are more than 100 billion tokens
for three million words. In comparison, the database of
the International Cancer Genome Consortium (ICGC)
[15] has only about 13,000 cancer samples for more than
20,000 mutated genes. Because of this limitation, it is
difficult to make reliable observations of co-occurring
mutations, which is essential to producing high qual-
ity embedding. As a result, rare mutations do not have
enough information on co-occurring mutations, so they
do not learn proper mutation vectors. Therefore, these
mutation vectors are placed in the wrong location on the
vector space and act as noise in the analysis using dis-
tance between vectors such as clustering. To resolve this
problem, we utilized biomedical literature and a protein-
protein interaction (PPI) network to enhance the quality
of mutation vectors.

To evaluate our embedding process, we visualized driver
mutations and passenger mutations using our vectors. We
confirmed that the two mutation groups were mutually
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exclusive to each other. The experimental results demon-
strate that our mutation vector can determine whether
each mutation is a driver or passenger mutation. We
also identified driver mutation candidates using a clus-
tering method. To evaluate the candidates and confirm
their validity, we referenced recent biomedical literature
in which true driver mutations are reported.

Method
Cancer cells do not arise from random combinations
of mutations. Cancer cells are due to their accumulated
mutations that occurred during their evolutionary process
[16]. Though mutations are abnormal in terms of their
origin, their occurrence is inevitable. From this aspect,
we set these co-occurring gene mutations in a sample as
“context.” Among them, we also exclusively selected
protein-altering mutations. Using the Skip-Gram model,
we constructed the basic Mut2Vec model and obtained
basic Mut2Vec vectors, where each vector is a 300-
dimensional distributed representation of mutations and
contains co-occurrence information of gene mutations
from ICGC dataset.

However, there still exists an insufficient amount of
data in the biomedical domain, compared with other
domains such as the Natural Language Processing (NLP)
domain. In the biomedical literature, gene names are
mentioned in their biological context. By extracting con-
texts from the literature and adding them to our vectors,
we overcome the limitations of data insufficiency and
enhance the vectors to capture more precise gene-level
mutational properties. We used the Skip-Gram model to
train word representations on PubMed abstracts. Based
on the learned word representations, we initialized the
weight matrix of the embedding lookup layer with the
word vectors of each gene when training mutation rep-
resentations on the ICGC dataset. Our Mut2Vec+PI
(PubMed Initialized) model initializes mutation vectors

using PubMed word vectors and trains the Skip-Gram
model on the ICGC dataset using the initialized vectors.
Furthermore, we added structured biological knowledge
using the PPI network BioGRID [17]. Assuming simi-
lar proteins are involved in similar cellular processes and
their alteration effects are alike, we utilized a retrofitting
process to post-process the output vectors [14]. Our
Mut2Vec+R (Retrofitted) model applies retrofitting to
the basic Mut2Vec output. Our Mut2Vec+PI+R model
employs both PubMed initialization and retrofitting.

Our Mut2Vec pipeline is summarized as follows. First,
we initialize the weight matrix in embedding lookup layer
of Skip-Gram model using word vectors, which is pre-
trained on PubMed abstracts. Because we needed initial
gene vectors, we selected only gene word vectors from
the pre-trained word vectors. Next, we trained the gene-
level mutation vectors with the ICGC mutation profiles
using the initialized Skip-Gram model. We considered co-
occurring gene mutations in a sample as contexts, just like
words co-occurring in a sentence are considered as con-
texts in the NLP domain. Finally, we retrofitted the trained
mutation vector on the Protein-Protein Interaction net-
work data of BioGRID. The whole pipeline is described in
Fig. 1.

Skip-Gram model
The Skip-Gram model is a multi-layered neural network,
as shown in Fig. 2. The ultimate objective of this model is
to correctly predict the surrounding entities based on the
entity that is embedded in the network. To achieve this
objective, we need to train the model by using our “entity”
and its contextual “entities”. The embedded entities are the
mutated genes while the output or their contextual entities
are the co-occurring mutated genes. Thus, we train the
Skip-Gram model in iteration by using mutated genes as
input and minimizing the prediction error gap between
the output and their co-occurred mutations.

Fig. 1 The overview of Mut2Vec Pipeline. Our pipeline is composed of two modules: an embedding module based on Skip-Gram and a vector
post-processing module equipped with retrofitting. In our pipeline, we make four mutation embedding models. The first model uses only the
Skip-Gram module on mutation profiles, and we call the model basic Mut2Vec. In our Mut2Vec+PI model, the weight matrix in the Skip-Gram model
is initialized with PubMed word vectors. In our Mut2Vec+R model, the output vectors of the basic Mut2Vec model is post-processed in the retrofitting
module. In our Mut2Vec+PI+R model, both the initialization with PubMed word vectors and the post-processing are applied
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Fig. 2 An overview of the Skip-Gram model. The Skip-Gram model
consists of an input layer, embedding lookup(hidden) layer, and
prediction layer. The result of the embedding lookup layer is the
distributed representation of the target word

By using the Skip-Gram model, we maximize the prob-
ability as follows,

p(Ci|ei) = p(c1, c2, . . . , ck , . . . , cl−1, cl|ei)

≈
∏

ej∈Ci

p(ej|ei)

(ei ∈ E and ej, ck ∈ Ci ⊂ E)

where Ci = {c1, c2, . . . , ck , . . . , cl−1, cl} is the context set of
an entity ei, context size l is |Ci|, and E is a set of entities
to be embedded. When embedding words in text, context
size l is fixed. However, in our case, it is difficult to fix
the context size because the number of mutations in each
sample varies. Some samples have less than 10 gene muta-
tions, while others have more than 1000 gene mutations.
In addition, since mutations included in a single patient
sample are not sorted according to a certain biological
order, drawing a mutation vector by shifting the context
window is illogical, unlike the case of NLP.

To assign various co-occurring contexts to a mutation,
we performed random sampling without replacement on
each patient sample 10 times. The size of the random sam-
ples was 10. We assumed that patient samples with an
excessive number of mutations tend to be highly noisy.
Also, we found the information extracted from patient

samples with small quantities of mutations was critical for
embedding each mutation vector. As we conducted the
same random sampling procedure regardless of the muta-
tion quantity of each patient sample, noisy samples with
an excessive number of mutations were used less in vector
embedding processes. On the other hand, patient samples
with small mutation quantities were used frequently.

The conditional probability mentioned above can be
expressed with latent parameters of a neural network and
a softmax function as below,

p(ej|ei) = exp
(
uT

i vj
)

∑|E|
k=1 exp

(
uT

i vk
)

J(U , V ) = 1
N

N∑

i

∑

ej∈Ci

log(p(ej|ei))

where U is a weight matrix for an embedding lookup layer,
uT

i is a distributed representation of i-th entity, N is the
number of all training entities which can be defined with
contexts, (ei, Ci). V is an output weight matrix, and vj is
j-th row of the matrix V. Our goal is to maximize the
objective function J(U , V ) above.

However, the basic Skip-Gram model described above
suffers from high computational cost. Due to the sum-
mation calculation in the denominator of p(ej|ei), the
computational cost for calculating J(U , V ) is often high
especially for large vocabularies (entities). To address this
issue, Mikolov et al. [18] proposed a Skip-Gram model
that has an additional feature called negative sampling.
Instead of using the softmax function, negative sampling
directly uses the sigmoid function σ(x) to represent each
entity’s conditional probability.

σ(x) = 1
1 + exp(−x)

p(ej|ei) = σ
(

uT
i vj

)

p
(
ēj|ei

) = 1 − σ
(

uT
i vj

)
(1)

Using the re-defined conditional probability above,
negative sampling maximizes the objective function
JNEG(U , V ) as below

JNEG(U , V )i =
∑

j∈Ci

log(p(ej|ei)) +
∑

l∈Di

log(p(ēl|ei))

JNEG(U , V ) = 1
N

N∑

i=1
JNEG(U , V )i

(
Di ⊂ CC

i , CC
i = E − Ci

)

where Di is a sampled subset of CC
i , which is a comple-

ment of Ci. Also, |Di| is fixed. The sampling process is
done using a distribution of entities raised to the 3/4rd
power. In conclusion, the Skip-Gram model equipped
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with negative sampling maximizes the occurrence proba-
bility of contextual entities and minimizes the occurrence
probability of non-contextual entities, conditioned on the
occurrence of the entity. We used Gensim [19], which is a
Python library, for the implementation.

Retrofitting
As words and phrases have synonyms and paraphrases
respectively, Faruqui et al. [14] utilized structured lexi-
cal meaning networks, WordNet [20], FrameNet [21] and
the Paraphrase database (PPDB) [22], to post-process vec-
tors of entities. The purpose of this post-processing was
to ensure the vectors have similar representations if they
are synonyms or paraphrases. The processing is done by
minimizing the function J(Q, Q̃) defined by Ji(Q, Q̃) and
J(i,j)(Q) as follows,

Ji(Q, Q̃) = αi
∥∥qi − q̃i

∥∥2

J(i,j)(Q) = βij
∥∥qi − qj

∥∥2

( j ∈ Si, qi, qj ∈ Q and q̃i ∈ Q̃ )

where q̃i is a trained vector, qi is a post-processed vector,
Si is a set of entities similar to an entity i, and qj is a vector
of which its entity is similar to an entity i and is included
in Si. αi and βij are hyperparameters for each entity and
a pair of entities, where αi = 1, and βij = |Si|−1. The
hyperparameter values were used as the default values for
the model. Finally, the objective function can be obtained
by the formula below.

J(Q, Q̃) =
n∑

i

⎛

⎝Ji(Q, Q̃) +
∑

j∈Si

J(i,j)(Q)

⎞

⎠

Likewise, if two gene mutations were involved in the same
cellular process, we assumed that they have similar effects,
such as malfunctions or abnormal activations, on biolog-
ical processes. From the BioGRID network, we selected
genes one hop apart from a certain gene as similarly func-
tioning genes, and made them similar each other using the
retrofitting process described above. Retrofitting codes
are available at https://github.com/mfaruqui/retrofitting.

Results
Driver/Passenger mutation visualization
Many mutations in a single cancer sample are not entirely
related to cancer. The driver mutation directly affects the
progression of the cancer, while the passenger mutation
does not play any particular role. In fact, driver muta-
tions are common in many cancer cells of patients, while
passenger mutations are not [23].

We performed data visualization to see if our muta-
tion vectors reflect the mutual distinction between
driver and passenger mutations in the vector space.
The driver/passenger mutation information was obtained

from the driver mutation database IntOGen [24]. We also
conducted k-means clustering on the driver and passenger
mutation vectors before reducing dimensions by Princi-
pal Component Analysis, and calculated the Normalized
Mutual Information(NMI) to assess the clustering result.
The NMI is defined as

NMI(�, C) = MI(�, C)

[ H(�) + H(C)] /2

where � = {ω1, ω2, ...ωI} is the set of cluster labels
and C = {

c1, c2, . . . cJ
}

is the set of class labels. In our
case, C = {

driver, passenger
}

. MI is mutual information
defined as

MI(�, C) =
∑

i

∑

j
p(ωi, cj)log

p(ωi, cj)

p(ωi)p(cj)

where p(ωi), p(cj), and p(ωi, cj) are the probabilities of a
mutation occurring in cluster ωi, class cj, and the intersec-
tion of ωi and cj, respectively.

H is entropy defined as

H(�) = −
∑

i
p(ωi)log(p(ωi))

Experiments were performed on three cancer types (CM,
BRCA, LUAD) with the highest number of “known” driver
mutations among 29 cancer types. According to Table 1,
driver mutation data contains far more predicted muta-
tions than known mutations. Passenger mutations are all
predicted mutations. Since known driver mutations are
more reliable than predicted driver mutations, we used
only “known" driver mutations for a more accurate com-
parison. Also, there are only “predicted” for passenger
mutations in the database. Since the number of passen-
ger mutations is much larger than the number of driver
mutations, randomly sampled passenger mutations were
selected for the visualization process.

We obtained interesting results using our mutation vec-
tors. As shown in Fig. 3, vectors using ICGC dataset per-
form slightly better than randomly generated vectors, and
the mutual distinction between driver mutations and pas-
senger mutations in the vector space became clearer when
PPI network knowledge was added. After adding PubMed
information, we could confirm that both driver and pas-
senger mutations were properly classified. Furthermore,

Table 1 IntOGen data description for three cancer types

Drivers Passengers

Type Known Predicted Predicted

BRCA 22 473 13702

CM 29 607 16863

LUAD 23 505 13929

https://github.com/mfaruqui/retrofitting
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Fig. 3 Driver/passenger mutations visualization. Visualization with Principal Component Analysis, shows the clear difference between driver and
passenger mutation classes when PubMed information is applied. Red dots represent known driver mutations and blue dots represent sampled
predicted passenger mutations. Normalized Mutual Information (NMI) is also calculated based on the results of k-means clustering

the improvements measured by NMI support our visual-
ization results. Compared with randomly generated vec-
tors, our mutation vectors improved the NMI scores of
all three cancer types. We could observe dramatic per-
formance improvements when both literature information
and PPI network information were applied together.

We also conducted this visualization experiment with
binary mutation representation. In the ICGC patient-
mutation profile, we defined a binary mutation vector

of dimension equal to the number of samples in the
ICGC dataset. Each dimension of the vector encodes the
existence of a mutation in a corresponding sample. In
other words, the binary vector of a mutation has a value of
1 only for the dimension corresponding to the sample that
has the mutation; however, the binary vector has a value
of 0 for all other dimensions. Figure 4 shows the visualiza-
tion of binary mutation vectors. The distinction between
passenger mutations (blue dots) and driver mutations (red
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Fig. 4 Driver/passenger mutations visualization of binary vectors. Visualization with Principal Component Analysis of binary mutation vectors. The
binary vectors are made by selecting column vectors of patient-mutation profiles. Because driver mutations tend to frequently appear in cancer
profiles of patients, there are many 1s in the driver mutation vectors and the size of the driver mutation vectors are large. Therefore, some of driver
mutation vectors are far from most mutation vectors, The “Boxed Area” is the expanded visualization of the boxed area of “Binary” visualization
where most of passenger mutation vectors exist. We found that the drivers and passengers were actually scrambled while they seemed to be
well-separated in a broader scope

dots) misleadingly seems to be accurate since the blue
dots are notably more clustered than the red dots. In
fact, driver mutations are more frequently observed in
patients than passenger mutations. Therefore, some of
the binary vectors of driver mutations are larger and are
positioned far from the area where most mutations are
clustered. However, when we expanded the area where
most passenger mutations existed, we could observe that
the drivers and passengers were actually scrambled. The
NMI scores of binary representation were also lower
than the Mut2Vec+PI+R scores. Binary representation
obtained scores of 0.031, 0.039, 0.071 for CM, BRCA, and
LUAD, respectively, using NMI, whereas Mut2Vec+PI+R
obtained scores of 0.650, 0.866, 0.713 for CM, BRCA,
and LUAD, respectively, using NMI. The mutation vec-
tors from Mut2Vec+PI+R model can better represent
the information on driver mutations than binary vector
representation.

For the comparison, we trained 300-dimensional muta-
tion vectors using an autoencoder [25] and a denoising
autoencoder [26], and conducted a visualization experi-
ment. The autoencoder obtained scores of 0.007, 0.074,
0.071 for CM, BRCA, and LUAD, respectively, using NMI.
The denoising autoencoder obtained scores of 0.031,
0.040, 0.038 for CM, BRCA, and LUAD, respectively,
using NMI. Also, we found that the vectors trained on
the autoencoders could not effectively distinguish driver
mutations from passenger mutations. The visualization
results are listed in Additional file 1.

Driver mutation identification
Based on our previous visualization, we can infer that
driver mutation vectors have their own properties which
help distinguish driver mutations from other mutations.
From this inference, we clustered the entire set of muta-
tions in vectors from Mut2Vec+PI+R and examined
whether the cluster contained many driver mutations.

The k-means algorithm with the option of 200 clus-
ters was applied to the clustering process. Next, we
selected the most enriched cluster that contains the most
driver mutations, and built a contingency table, which
is shown in Table 2. We estimated the statistical signif-
icance based on the hypergeometric test [27] on entire
driver gene mutations in the IntOGen database. In the
database, there were 67 unique “known" drivers and 594
“predicted" drivers, all of which intersect with embed-
ded mutations. In our most enriched cluster, we could
find 21 known drivers with a p-value of 3.74e-37. Con-
sidering both known and predicted driver mutations,

Table 2 The most enriched cluster characterized using mutation
vectors from Mut2Vec+PI+R

Labels In cluster In population p-value

Known 21 67 3.74e-37

Known+predicted 45 661 2.04e-51

Candidates 18 17923

All 63 18584
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we found 45 drivers with a p-value of 2.04e-51. The
remaining 18 mutations were not referred to as drivers
in the database. As the cluster had high statistical sig-
nificance, we concluded that the mutation vectors from
our Mut2Vec+PI+R model captured the characteristics
of driver mutations. Other contingency tables of differ-
ent clustering methods(Agglomerative hierarchical clus-
tering, BIRCH, Spectral clustering, Affinity propagation,
and Gaussian mixture) that performed based on different
numbers of clusters(50, 100, 300, and 500) are listed in
Additional file 2.

We also performed an enrichment analysis on the
KEGG PATHWAY database [28] using Fisher’s exact test.
We used a publicly available enrichment analysis plat-
form, which was given by Enrichr [29]. The p-value was
adjusted using the Benjamini-Hochberg method for cor-
recting multiple hypotheses testing. As Table 3 shows,
“Pathways in cancer" was the most enriched pathway with
an adjusted p-value of 9.98e-24 and 25 overlapped genes.
All the five pathways were related to cancer or the general
characteristics of cancer such as metabolism and mis-
regulation, since various types of driver mutations were
grouped in the most enriched cluster.

Based on the above observation, we carried out a further
experiment. We hypothesized that if most of the muta-
tions gathered in a cluster are drivers, the unidentified
mutations in the cluster are most likely to be driver muta-
tions. To test our assumption, we investigated mutations
in the most enriched cluster, as shown in Table 4. We
focused mainly on retrieving information on the 18 candi-
date mutations which were not identified as drivers in the
IntOGen database.

Through searching entire recently published biomedical
papers since 2015, we found out that 11 of the candi-
date mutations were reported as driver mutations. Table 5
shows the literature search results. BCL2 is an important
driver of leukemia and referred to as a driver mutation
[30]. ERG is reported to be a driver of carcinogenesis
in prostate cancer [31, 32]. The loss of fragile histidine
triad protein (FHIT) is strongly related to pancreatic duc-
tal adenocarcinomas [33]. MAML2-MECT1 fusion is a
driver in salivary gland and bronchial gland mucoepider-
moid carcinoma [34, 35]. MYBL1 is a driver of adenoid

Table 3 Pathway enrichment analysis of the most enriched
cluster characterized using mutation vectors from Mut2Vec+PI+R

KEGG PATHWAY Adjusted p-value Overlap

Pathways in cancer 9.98e-24 25/397

Central carbon metabolism in cancer 2.51e-22 15/67

Transcriptional misregulation in cancer 6.76e-19 17/180

MicroRNAs in cancer 6.27e-14 16/297

Prostate cancer 1.93e-13 11/89

Table 4 Genes in the most enriched cluster characterized using
mutation vectors from Mut2Vec+PI+R

Known Predicted Candidate

ABL1 ASXL1 BCL2

ALK BAP1 CISH

DNMT3A BCL6 CRLF2

EGFR CALR DUSP22

ERBB2 CCND1 ERG

FGFR2 CEBPA EWSR1

FGFR3 ETV6 FHIT

FLT3 FGFR1 MAML2

GNAQ H3F3A MYBL1

HRAS IKZF1 MYCL

IDH2 MET PDGFRB

JAK2 MYCN PLAG1

KIT NF2 PRKACA

MYC NOTCH1 SPINK1

MYD88 NTRK1 SS18

NPM1 PAX5 TERT

NRAS PDGFRA TFE3

RB1 PPM1D TP63

RUNX1 RET

SDHB RHOA

SMO ROS1

SMARCB1

TET2

WT1

cystic carcinoma when related to MYB [36, 37]. As a mem-
ber of the myelocytomatosis oncogene family, MYCL is a
driver oncogene of lung carcinoma [38, 39]. PDGFRB was
recently reported as a driver of the majority of sporadic
infantile and adult solitary myofibromas [40]. PRKACA
was identified by recent sequencing as a driver of cortisol-
producing adenomas and perihilar cholangiocarcinoma
[41, 42]. SS18 with SSX fusion has been reported as driver
of synovial sarcoma in many research studies [43–47].
TERT has also been reported as a cancer driver of vari-
ous tissues including thyroid and liver [48–57]. Variation
in TP63 is associated with drivers of squamous cell lung
cancer [58, 59].

We also analyzed candidates that cannot be found in
the current literature. Among them, CRLF2 is one of
the receptors in the JAK-STAT signaling pathway. This
gene is located on the upper part of the pathway, so
it affects the overall JAK-STAT pathway by JAK regula-
tion. Activated JAK enhances the dimerization of STAT
proteins, and STAT dimers regulate the transcription of
downstream proteins that affect cell fate decisions [60].
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Table 5 Literature search results on driver candidates

Gene Tissue References

BCL2 Leukemia [30]

ERG Prostate [31, 32]

FHIT Pancreas [33]

MAML2 Bronchial Glands [34]

Salivary Glands [35]

MYBL1 Gland [36]

MYCL Lung [38, 39]

Nerve Tissue [39]

PDGFRB Myofibroma [40]

PRKACA Cortisol [41]

Liver [42]

SS18 Diathrosis [43–45]

TERT Liver [48, 52, 54]

Melanocyte [49]

Thyroid [50, 53, 55]

Unknown [51, 57]

TP63 Squamous Cell [58, 59]

The overexpression of CRLF2 has already been reported
to be associated with acute lymphoblastic leukemia [61].
Similarly, activating mutations of CRLF2 may trigger
overactivation of the JAK-STAT signaling pathway, and
the activations may influence cell fate decisions. EWSR1
is an RNA binding protein and TFE3 is a transcrip-
tion regulator. Both genes have already been reported to
cause transcriptional misregulation in cancer when fused
with other proteins [62–66]. Also, the overexpression of
PLAG1 was reported as a driver event of T-cell acute
lymphoblastic leukemia [67]. Finally, the DUSP22 gene
fusion was reported to be related to anaplastic large-cell
lymphoma [68].

It shows our Mut2Vec+PI+R can discover potential
drivers that are not listed in the public driver muta-
tion database by capturing the characteristics of driver
mutations. By clustering in the whole mutation space,
we found a cluster of statistically significant driver muta-
tions and consider other mutations as driver candidates
while excluding known driver mutations. In our liter-
ature search, we found articles which some candidates
are referred to as actual driver mutations. To our sur-
prise, some of them were recently discovered as driver
mutations, which shows our vector captured recently
confirmed driver mutations in literatures only with the
application of the Skip-Gram model and retrofitting
process.

We could make this important discovery that our
vector captures novel driver mutations because our
vector learned the mutation context from the recent

PubMed articles and learned the differential characteris-
tics of driver mutations in patient profiles. Therefore, we
repeated the clustering method and literature search on
candidate driver mutations of the most enriched cluster
resulted from the clustering results using the new vectors
from Mut2Vec+PI+R model that was applied only to arti-
cles published from past until 2015, to see if our Mut2Vec
pipeline could find novel driver mutations just by this sim-
ple clustering method. We call this model which limits the
PubMed information Mut2Vec+PI(until2015)+R.

As Table 6 shows, the most enriched cluster with
known drivers obtained from the clustering results
using Mut2Vec +PI(until2015)+R. The table shows that
Mut2Vec+PI (until2015)+R still had statistically signifi-
cant p-values(1.21e-8 and 3.99e-28) in the case of known
and entire driver mutations. Among the candidate muta-
tions, we discovered two novel driver mutations which
were published after 2015, as listed in Table 7. The mis-
sense mutations in RAD51 could be drivers of lung and
kidney cancers and metastatic diseases [69]. RAD51AP1
was identified as a potential driver of melanoma metasta-
sis [70]. This finding implicates that the mutation vector
generated by our Mut2Vec pipeline can be used to find
novel driver mutations.

Discussion
Improvement with existing information
In this study, we attempted to integrate existing biomed-
ical literature and protein-protein interaction network
into mutation representations. The above two experi-
ments show that by applying knowledge from different
data sources, we can achieve quality improvements of
distributed representations of mutations.

We achieved a clearer distinction between driver and
passenger mutations in visualization when the vectors
were pre-trained on PubMed information. In the biomed-
ical literature, the surrounding context of driver and pas-
senger mutations is distinguishable. For example, words
such as “critical”, “drug”, “resistant” or “cancer progres-
sion” co-occur more frequently with gene names of driver
mutations than with gene names of passenger mutations.
In addition, driver mutations tend to appear simulta-
neously in a sentence or a paragraph. This contextual

Table 6 Statistics of the most enriched cluster characterized
using mutation vectors from Mut2Vec+PI(until2015)+R

Labels In cluster In population p-value

Known 8 67 1.21e-8

Known+predicted 40 661 3.99e-28

Candidates 81 17923

All 121 18584
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Table 7 Literature search results on driver candidates
characterized using mutation vectors from
Mut2Vec+PI(until2015)+R

Gene Date Tissue References

RAD51 2016 Lung, Kidney [69]

RAD51AP1 2017 Melanoma [70]

difference between driver and passenger mutations is con-
sidered when pre-training mutation vectors on PubMed
information.

After the BioGRID information was applied, the visu-
alization results and NMI scores improved. The muta-
tions of the interacting genes (proteins) are adjusted by
retrofitting so they are close to each other. Although some
mutation vectors are incorrectly trained and become out-
liers by the noise information in PubMed and ICGC,
they can be corrected using the biological knowledge.
In this work, we utilized BioGRID. However, due to the
availability of many other PPI networks, comparison with
those networks using our pipeline seems viable. Also, it
is important to consider negative interaction information
[71] regarding the absence of interaction between two
proteins. However, as the retrofitting procedure takes only
positive relations into account, we were unable to incor-
porate the negative interaction information in our current
pipeline, which we leave for future work.

After applying the biomedical literature and interac-
tion information, we clustered the resulting vectors. We
extracted the driver mutation candidates from a cluster
which was statistically enriched with the known driver
genes according to IntOGen, and found studies that
reported some of the candidates to be drivers. In this
work, we conducted an enrichment test using all known
drivers of the database regardless of the cancer types.
To provide the cancer-type-specific driver candidates, we
also conducted several enrichment tests using the known
drivers of each cancer type in the database. However, the
most enriched clusters with known drivers of each can-
cer type were actually identical to those with all known
drivers regardless of cancer type. To resolve this issue,
we produced cancer-type-specific embeddings with only
the ICGC samples corresponding to each cancer type.
However, the size of divided sample became too small to
train reliable mutation vectors, compared with the size
of entire ICGC sample. Moreover, the PubMed initial-
ization process provided general biological contexts, and
the retrofitting process fixed the incorrectly embedded
vectors using PPI information which is constructed with
general human biological process, not with the biological
process of specific tissue. Thus, the representations tend
to be general rather than cancer-specific especially when
the amount of cancer-type-specific data is insufficient.

We leave the task of training the cancer-type-specific
mutation representations for future work.

Application of Mut2Vec
Mut2Vec, our proposed pipeline for distributed represen-
tations of mutations, can be used for various purposes.
Unlike the conventional binary representation, Mut2Vec
contains mutation-specific properties in the continuous
vector. We demonstrated that it can be used to identify
potential driver mutations.

It can also be utilized as the properties of each muta-
tions for an analysis of disease or of patient characteris-
tics. After evaluating the results of the above clustering
experiment from Mut2Vec+PI+R, we found that other
clusters besides the driver cluster also had their own char-
acteristics. Table 8 shows the top 10 clusters from the
enrichment analysis of the KEGG PATHWAY. The result
shows that each of our mutation vectors has its own
functional characteristics, and the mutation vectors with
a similar function are grouped in the vector space with
strong statistical significance. The enrichment analysis of
KEGG PATHWAY shows that Mut2Vec considers genetic
functional similarity as well as mutational similarity.

Additionally, Mut2Vec can be used to construct can-
cer or patient vectors. However, it is difficult to repre-
sent the continuous cancer vector as a summation of
our continuous mutation vectors. Since the significance
of each driver mutation varies depending on the cancer
type and our embedding pipeline does not consider the
summation of mutation vectors when representing a

Table 8 Top 10 enriched clusters in KEGG PATHWAY

KEGG PATHWAY Adjusted p-value Overlap Cluster size

Neuroactive
ligand-receptor
interaction

2.22e-63 47/277 85

Chemical
carcinogenesis

9.37e-52 26/82 38

Cytokine-
cytokine
receptor
interaction

2.48e-46 36/265 72

Metabolic path-
ways

1.80e-45 58/1239 89

Ribosome 4.50e-40 27/265 35

Cell cycle 5.55e-37 24/137 37

Endocytosis 6.75e-34 25/277 32

Complement
and coagulation
cascades

8.25e-33 21/124 35

Fanconi anemia
pathway

6.41e-28 36/259 146

Systemic lupus
erythematosus

4.26e-27 19/265 20
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cancer vector, the mutation information can be unclear
due to the sum operation. In the NLP domain, a sen-
tence vector is not generated by a sum of word vectors.
Word vectors are used as features in a deep learning
model and a sentence vector is produced implicitly in
the model. Likewise, a cancer vector can be generated
implicitly when using our Mut2Vec in deep learning tasks
such as cancer subtype classification or drug sensitivity
prediction.

Conclusions
In this work, we proposed Mut2Vec, a novel pipeline,
for training a distributed representation of mutations on
ICGC genetic mutation profiles of cancer donors. To
compensate for the incompleteness and noise in the raw
data, we augmented our model using PubMed data and
the BioGRID protein-protein interaction network. In the
visualization of driver and passenger mutation vectors, we
showed that our vector determined whether a mutation
was a driver or passenger. We also identified driver muta-
tion candidates by investigating the most enriched cluster
with known driver mutations after clustering the entire
mutation vectors. We confirmed the validity of driver
candidates with recent literature in which true driver
mutations are reported.

We expect Mut2Vec to benefit researchers in many
applications such as patient classification and drug
response prediction. We also hope our discovery will
assist many research projects with insufficient dataset in
training embedding vectors.

The pre-trained mutation vectors and the candidate
driver mutations are available at
http://infos.korea.ac.kr/mut2vec.
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