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Craniosynostosis is a congenital malformation of the infant skull typically treated via corrective surgery. To accurately quantify the extent of
deformation and identify the optimal correction strategy, the patient-specific skull model extracted from a pre-surgical computed tomography
(CT) image needs to be registered to an atlas of head CT images representative of normal subjects. Here, the authors present a robust multi-
stage, multi-resolution registration pipeline to map a patient-specific CT image to the atlas space of normal CT images. The proposed
registration pipeline first performs an initial optimisation at very low resolution to yield a good initial alignment that is subsequently
refined at high resolution. They demonstrate the robustness of the proposed method by evaluating its performance on 560 head CT images
of 320 normal subjects and 240 craniosynostosis patients and show a success rate of 92.8 and 94.2%, respectively. Their method achieved
a mean surface-to-surface distance between the patient and template skull of <2.5 mm in the targeted skull region across both the normal
subjects and patients.
1. Introduction: Craniosynostosis is the premature fusion of
sutures in the infant skull that restricts the normal growth of the
skull and brain. It is a congenital malformation occurring in 1 of
2500 live births [1]. Early diagnosis and surgical treatment is
essential to avoid the elevated intracranial pressure that leads to
respiratory and visual impairments associated with the
malformation [2, 3]. Craniosynostosis treatment involves cranial
surgery to provide adequate intracranial volume facilitating brain
growth and to create an aesthetically normal skull shape and
facial appearance. While there is no single best method for
treatment, therapy is driven by the philosophy of the institution
and the wishes of the parents [4]. When cranial reconstruction
surgery is the selected treatment plan, careful preoperative
planning is required to minimise complications and morbidity.

Computed tomography (CT) imaging is the preferred modality
for diagnosis, preoperative planning and post-surgical assessment
of craniosynostosis patients [2]. A high-quality 3D skull model is
reconstructed from the patient’s CT image and used to analyse
the precise skull deformation relative to a normal skull shape [5].
Subsequently, the closest normal skull is identified to serve as the
target skull shape for corrective surgery. Hence, a surgical plan to
cut and reconfigure the bones is prepared using computer-aided
design software or 3D-printed models, such that the pathological
skull matches the target skull shape. A critical step in this pre-
surgical planning is the registration of the craniosynostotic skull
into the normative image space.

Various image registration techniques have been proposed in [6],
yet despite their exhaustive dissemination and citation, medical
image registration is seldom used in clinical practice [7]. Of the dis-
seminated registration methods, only a few study skull registration
of craniosynostotic cases. The study in [8] was limited to generating
an average normative pediatric skull model from 103 normal infant
skulls aged 8–12 months using point-set-based registration algo-
rithm [9], but did not include any pathological cases. Sahilliouglu
et al. [10] used PCA alignment of point sets and performed a
modified iterative closest point (ICP) global registration
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followed by deformable volumetric registration, but evaluated
their method on only five craniosynostotic patients. Therefore, a
robust registration technique to map a pathological case into the
normative image space would be very useful to precisely plan the
corrective surgery.

Here we describe and validate a robust multi-stage, multi-
resolution image registration pipeline for craniosynostotic skull
registration. We propose a clinically applicable method that
leverages the lower skull features not affected by the disease path-
ology to map the patient skull into the image space of normal skulls,
despite the large deformities induced by craniosynostosis.
Moreover, we implement and assess the performance of the regis-
tration on a large number of both normal (320) and pathological
(240) cases.

The proposed registration pipeline, which is the focus of this
paper, serves as the first step in planning the skull correction
surgery. Following patient skull mapping into the normative skull
space, a normal skull closest in shape to the craniosynostosis
skull is identified and used as a post-surgical target. The surgery
is then planned according to the estimated deformation required
to correct the diseased skull shape to its desired normal shape.
Fig. 1 shows how this proposed image registration pipeline fits
within the larger scope of the project aimed at optimising pre-
surgical planning for craniosynostotic corrective surgery.
2. Methods:Our workflow entails several stages: first we extract the
head and segment the skull using fixed and adaptive thresholds,
respectively. We then employ a robust five-stage multi-resolution
registration pipeline to register the segmented binary skull with
the template skull. Since CT image intensities are a direct measure
of tissue density and standardised via the Hounsfield unit (HU)
[12], a good skull segmentation is achieved by simple adaptive
thresholding. We then employ a segmentation-based registration to
map the normal and craniosynostosis patient skulls into the
template image space.
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Fig. 1 Craniosynostosis skull correction pipeline. Normal skulls segmented
from CT images are registered to the template skull to create a normal skull
shape atlas. Craniosynostosis patient skull is registered to the atlas to quan-
tify skull deformity, determine the best patient-specific target skull shape
after surgery, and perform the cranial deformation analysis to plan the sur-
gical correction of skull shape as in [11]
2.1. Head segmentation: Since the Hounsfield number of air is
−1000 HU and that of fat ranges between −100 and −50 HU, we
select a heuristic threshold of −200 HU to delineate the structures
of interest (tissues, fat, and bones) from the CT image. We then
use a binary morphological opening operation to separate noisy
structures attached to the patient head, followed by largest
connected component extraction to retain the head segmentation
as shown in Fig. 2. It is worth noting that due to the binary
morphological opening operation, the obtained segmentation
features holes in the nose, air tract, and ear regions that serve as
landmarks for the subsequent image registration.

2.2. Skull segmentation using adaptive thresholding: Since we
cannot rely on a single threshold to delineate between bone and
soft tissues, we threshold the image region within the head mask
(Section 2.1) using several threshold values between 60 and
300 HU at an increment of 20 HU and select the optimum
threshold that yields a minimum number of connected
components. A low threshold would produce high number of
connected components by segmenting soft tissues as bone, while
a high threshold would split bones into pieces leading to a higher
number of connected components. Since the largest connected
component might not include all the major bones, due to open
Fig. 2 Input CT image is thresholded and cleaned to obtain the head seg-
mentation. The optimum threshold resulting in minimum number of con-
nected components is used to segment the skull
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sutures in infant skull, we retain the connected components
comprising of at least 95% of the total number of segmented
pixels to obtain the optimal skull segmentation as shown in Fig. 2.

2.3. Image registration: To register a patient head CT image into
the normative space, we select an 8-month-old healthy patient
with high CT resolution and adequate extent of imaged anatomy
to serve as a template. We then segment the individual bones
from the template CT image manually to generate a template
skull model (Fig. 4c). Automatically segmented normal and
craniosynostosis skulls are registered to the template skull space
for further analysis.

The skull is a rigid object and to maintain its shape proportions,
we parameterise the registration using a seven degree of freedom
similarity transformation – translation along and rotation about
the x-, y-, and z-axes and isotropic scaling. We define a similarity
function f (.) based on the sum of squared difference between the
images being registered:

f (x; p) = 1

N

∑

Vt
F,M

(IF (x)− IM (t(x; p)))
2 (1)

where x is a three-dimensional vector representing image space, IF
and IM are Gaussian filtered fixed and moving images, respectively,
t(.) is the similarity transform (with seven-parameters p) applied to
IM , and N is the number of voxels in the image overlap domain
Vt

F,M . Hence, the image registration is formulated as a minimisation
of the similarity function in a seven-dimensional parametric space
p. We use the regularised gradient descent algorithm [13] imple-
mented in the Insight Toolkit (ITK) to minimise the function f (.)
using the parameter update:

pn+1 = pn + h
∂f (pn)

∂pn
(2)

where h is the learning rate set to 0.5, which reduces by a relaxation
factor of half each time the gradient of the objective function
changes abruptly, facilitating the convergence of the algorithm
towards the closest optimum. The algorithm converges when the
step size gets very small or the parameter difference Dp or the dif-
ference in the cost function Df between consecutive iterations is
either very small or maximum number of iterations have been
reached.

The similarity function f (.) is highly non-linear in the seven-
dimensional parametric space and hence the probability of conver-
ging to a local minimum during the optimisation is very high. To
avoid convergence to local minima, we employ a five-stage registra-
tion pipeline (Fig. 3) where the first three optimisations are per-
formed at low resolution with high Gaussian blurring to obtain a
coarse alignment, whereas the final two stages refine the registration
results at higher resolution. The optimal transformation obtained
from each stage is used as an initialisation for the subsequent stage.
2.3.1. Binary head mask registration: We recover the initial transla-
tion between the two CT images by aligning the centroids of the
head masks (Section 2.1). Next, to recover the scaling between
the patient and the template head, we modify the similarity metric
(1) such that:

IF (x) = MHT(4x), IM (x) = MHS(4x),

N = N1 and Vt
F,M = V

t1
T ,S

where MHT and MHS are Gaussian filtered binary head segmenta-
tions for template and subject CT images, respectively, and N1 is
the number of voxels in the image overlap domain V

t1
T ,S . The
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Fig. 3 Proposed registration pipeline for aligning normal and craniosynos-
tosis skulls to the template skull. We start by aligning the head centroids fol-
lowed by three stages of optimisation performed at low-resolution to obtain
a coarse initial alignment; this alignment is then refined at higher resolution
in final two stages. Finally, we use the lower region to refine the registration
in the final stage to obtain good alignment for highly deformed craniosynos-
tosis skulls
optimisation is performed at one-fourth of the original resolution
using the parameter update (2).
2.3.2. Signed distance-based head registration: The anatomical
extent and orientation of a patient’s head varies significantly
between the images being registered. Hence, we use the holes in
nose, air tract, and ear regions as landmarks to recover the accurate
orientation from the head segmentations. As such, the similarity
metric (1) is modified using:

IF (x) = DT(MHT(4x)), IM (x) = D(MHS(4x)),

N = N2 and Vt
F,M = V

t2
T ,HS

where D(.) is the signed distance function (SDF) with positive
values outside and negative values inside the binary object, DT(.)
is the truncated SDF with a fixed high value T = 1000 assigned
to the positive distances, and N is the number of voxels in the
image overlap domain V

t2
T ,HS within the moving image mask

MHS. Assigning high values to the distances outside MHT restricts
the MHS to be transformed within the MHT, forcing the orientation
recovery via the landmarks in the head segmentations. The opti-
misation is performed at one-fourth of the original resolution.
Fig. 4 Absolute distance error between the registered subject and template
skulls mapped onto the subject skull model with corresponding error bar
a Normal skull
b Craniosynostosis skull
c The lower ROI mapped onto the template skull (all 8 months old).
Highest error occurs in the fontanel region due to the anatomical mismatch
between the subject and template models, hence we rely on 95th percentile
distance instead of the maximum distance. The normal skull has better
alignment compared with the craniosynostosis skull. Also the errors are
larger in the upper region compared with the stable lower regions which
are used for registration
2.3.3. Signed distance-based skull registration: To recover the
appropriate scaling factor between the two skull segmentations
following the rotation correction, we modify the similarity metric
(1) using:

IF (x) = D(MST(4x)), IM (x) = D(MSS(4x)),

N = N3 and Vt
F,M = V

t3
T ,S

whereMST andMSS are the binary skull segmentations (Section 2.2)
for template and subject CT images, respectively, D(.) is the SDF
operator, and N is the number of voxels in the image overlap
domain V

t3
T ,S . The optimisation is also performed at one-fourth of

the original resolution.

2.3.4. Binary skull registration: The first three low-resolution
optimisation steps yield a good coarse skull alignment, which we
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then refine by modifying the cost function (1) using:

IF (x) = MST(2x), IM (x) = MSS(2x),

N = N4 and Vt
F ,M = V

t4
HT,HS

where N4 is the number of voxels in the image overlap domain
V

t4
HT,HS, within the fixed and moving image masks MHT and MHS,

respectively. The optimisation is performed at half the original
resolution.
2.3.5. Binary skull registration in low region of interest (ROI):
Since our registration algorithm is targeted for craniosynostosis ap-
plication, it must retain robust and accurate alignment despite se-
verely deformed skull shapes. Hence, we use the lower region of
the skull located below four anatomical landmarks – the
Opisthion, Nasion, and Left and Right Dorsum Sellae [5] – to regis-
ter the skulls, since this region is not affected by the disease path-
ology and features low shape variability across normal and
craniosynostosis patients. The final registration stage refines the
skull alignment within the low ROI (Fig. 4c) using:

IF (x) = MST(x), IM (x) = MSS(x),

N = N5 and Vt
F,M = V

t5
LROI,HS

in (1), where t5(.) is the final similarity transform between the
subject and template CT images, and N5 is the number of voxels
in the image overlap domain V

t5
LROI,HS, within the fixed and

moving image masks MLROI andMHS, respectively. The final align-
ment is performed at full image resolution.

3. Results: The proposed algorithm was implemented in C++ using
the ITK library on a 2.4 GHz Xenon machine with 72 GB of RAM
and took 450 s on average to segment a subject CT image and
register it to the template skull model.

We tested our registration pipeline on 560 CT images with an age
range of 1 week to 19 years (3.0+ 24.24 months) and in-plane and
slice resolution of 0.26–0.49 mm and 0.625–5 mm, respectively.

We quantitatively evaluate our registration accuracy by comput-
ing the mean absolute distance and 95th percentile symmetric dis-
tance between the template skull model and the registered subject
model. Fig. 4 shows the absolute distances between the registered
subject and template model mapped onto the subject model for
both normal and craniosynostosis cases.

Fig. 5 shows the registration accuracy of successfully registered
skulls compared against the template skull model. Mean registration
accuracy for the normal and craniosynostosis skulls in the lower
Healthcare Technology Letters, 2017, Vol. 4, Iss. 5, pp. 174–178
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Fig. 5 Median, inter-quartile range and outliers
a Mean absolute distance
b 95th percentile
surface-to-surface distance between the registered patients against the
template. The distance metric for full skull, upper ROI and lower ROI
regions are plotted from left to right. Normal (297) and craniosynostosis
(226) cases are shown in light and dark colours, respectively. The mean
and 95th percentile distances in the lower ROI are within 2.5 and 5.0 mm,
respectively

Table 2 Age of the subjects used in the study

Subject Mean + std. dev. Range

normal, months 10.6+ 7.2 1 week–24
craniosynostosis, months 17.6+ 31.9 1 week–228
all, months 13.6+ 21.8 1 week–228

Table 1 Evaluation of the robustness of our registration pipeline against
the baseline registration [5] for both normal and craniosynostosis skulls

Registration method Failed normal,
N= 320

Failed craniosynostosis,
N= 240

baseline method [5] 47 30
proposed method 23 14
percentage
improvement,%

48.9 46.7
ROI are 1.29+ 0.32 and 1.79+ 0.53mm, whereas that for the
upper ROI are 3.34+ 1.31 and 4.95+ 1.96mm, respectively.
High registration accuracy in the lower ROI region for both
normal and craniosynostotic cases demonstrates the robustness of
our method. As expected, registration error in upper ROI for cranio-
synostosis patients is high due to the deformity of the pathological
skull.
A small surface-to-surface distance is a necessary condition for

good registration but not sufficient. Hence, we also perform quali-
tative evaluation by visual inspection of the registration results. The
algorithm produced visually correct results for 297 normal (out of
320) and 226 craniosynostosis (out of 240) cases as shown in
Table 1.
A general registration approach is to align the centroids of skull

segmentations and perform optimisations as described in fourth and
fifth stages of Section 2.3 as employed in [5]. Here we compare the
additional registration robustness introduced by the first three stages
of our pipeline that perform initial alignment in low resolution,
against the baseline scheme [5] in Table 1. We are able to reduce
the number of registration failures from 47 to 23 for normal cases
Healthcare Technology Letters, 2017, Vol. 4, Iss. 5, pp. 174–178
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and from 30 to 14 for craniosynostosis cases, therefore leading to
a 47% improvement in registration robustness on average.
4. Discussion: As evident from Fig. 1, this paper addresses the
most important and difficult part of the problem of robustly
registering a diseased patient skull to the ‘normative’ space of
normal skulls. Although registration algorithms exist that register
the image of a normal skull to another reasonably well, there are
unfortunately no sufficiently robust registration methods that are
specifically tailored to registering deformed skulls to normal skulls.

In the second part of the project, which is currently underway,
following the accurate recovery of pose and scaling using linear
registration, we perform the shape analysis using non-rigid registra-
tion algorithms to quantify the amount and nature of deformity
associated with the diseased skull and hence to determine the
closest normal skull shape to serve as target during corrective
surgery.

Briefly, our proposed strategy is to use non-rigid registration to
compute the closest normal target skull shape based on the deform-
ation of the diseased patient’s skull with respect to the unbiased,
average skull shape obtained by co-registering normal skulls, there-
fore removing the bias towards a single subject.

The goal of this first stage is to remove the pose and scale vari-
ation in the normal and diseased patients and bring them all into the
same coordinate space. Existing alternative solutions for linear
registrations can be broadly classified as point-set-based algorithms
and image-based algorithms. The ICP algorithm is a popular
point-set-based algorithm where the point sets are initially aligned
using the principal component directions. Due to the deformations
induced by the premature fusion of the sutures, the structure of the
skull changes significantly, rendering the principal components-
based initial alignment highly susceptible to error, and, as a
result, the final registration result is highly inaccurate and unrealis-
tic. Although the image-based linear registration algorithms are
computationally demanding, they have more flexibility in imple-
mentation. Here we alternate between the binary image and distance
maps to carefully guide the registration towards the appropriate so-
lution and compare our results against a standard image-based
registration algorithm. Moreover, by selecting and optimising
the registration parameters, we demonstrate that our method per-
forms well on registering both the normal subjects and diseased
patients.

Specifically, we demonstrated the robustness of our algorithm by
evaluating its performance on 360 image datasets of normal sub-
jects and 240 image datasets of diseased patients. The age of the
normal subjects and diseased patients is summarised in Table 2:
177
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Table 3 Type of craniosynostosis patients used in the study

Craniosynostosis type Number of patients

coronal 56
sagittal 105
metopic 25
pansynostosis 15
frontal sphenoid 2
coronal-sagittal 7
coronal-lamboidal 3
unknown 27
total 240
normal subjects were 10.6+ 7.2 months (1 week to 24 months),
and the diseased patients were 17.6+ 31.9 months (1 week to
228 months). While the early diagnosis and treatment of the patients
occurs within the first 2 years of age and considering that there is
minimal skull growth beyond 6 years of age, the normal subjects
used to create an atlas are in the representative age range of
1 week to 24 months. Nevertheless, eight patients above
84 months old who underwent craniosynostosis correction
surgery at Children’s National Medical Center were included in
our study to demonstrate that our registration method is robust
across a wide variety of patient populations, clinical data, and
disease characteristics (Table 3).

Moreover, the radiation exposure to the patients should be mini-
mised, and hence the CT scans are acquired with a limited anatom-
ical coverage, mostly including the regions affected by the
malformation. Our approach focuses on registering the malformed
patient to the normal template by excluding the regions significantly
affected by the disease from the registration in the final stage.
As evident from the registration accuracy in the lower stable parts
of the skull, the algorithm performs reasonably well even for the
malformed patients.

5. Conclusion: We presented a robust multi-stage, multi-resolution
pipeline for registration of both normal and craniosynostosis skulls
and conducted an exhaustive evaluation on 560 clinical CT images
with success rates of 92.8 and 94.2% across 320 normal and
240 craniosynostosis patients, respectively. We evaluated our
registration success using surface-to-surface distance accompanied
by a visual inspection. Our method reduced the registration
failure in both normal and craniosynostosis cases by 47%
compared with a baseline registration algorithm employed in [5].
Finally, this registration yielded an accuracy within 2.5 and
5.0 mm for mean absolute and 95th percentile surface-to-surface
distance across the lower skull ROI for both normal and
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craniosynostosis cases, respectively. Hence, this registration
pipeline can be reliably used to map craniosynostotic skulls into
the normative skull space to help identify the closest normal skull
shape that serves as post-procedural target during corrective
surgery planning.

6. Acknowledgment: The content is solely the responsibility of the
authors and does not necessarily represent the official views of the
National Institutes of Health.

7. Funding and Declaration of interests: Research reported in this
publication was supported by the Eunice Kennedy Shriver National
Institute Of Child Health & Human Development of the National
Institutes of Health under Award Number R42HD081712.

8 References

[1] Lajeunie E., Merrer M.L., Binaiti-Pellie C., ET AL.: ‘Genetic study of
nonsyndromic coronal craniosynostosis’, Am. J. Med. Genet., 1995,
55, (4), pp. 500–504

[2] Nagaraja S., Anslow P., Winter B.: ‘Craniosynostosis’, Clin. Radiol.,
2013, 68, (3), pp. 284–292

[3] Kirmi O., Lo S.J., Johnson D., ET AL.: ‘Craniosynostosis: a radiologic-
al and surgical perspective’, In: Seminars in Ultrasound, CT and
MRI, 2009, vol. 30, Elsevier, pp. 492–512

[4] Szpalski C., Weichman K., Sagebin F., ET AL.: ‘Need for standard
outcome reporting systems in craniosynostosis’, Neurosurgical
Focus, 2011, 31, (2), pp. E1

[5] Mendoza C.S., Safdar N., Okada K., ET AL.: ‘Personalized assessment
of craniosynostosis via statistical shape modeling’,Med. Image Anal.,
2014, 18, (4), pp. 635–646

[6] Maintz J.A., Viergever M.A.: ‘A survey of medical image registra-
tion’, Med. Image Anal., 1998, 2, (1), pp. 1–36

[7] Viergever M.A., Maintz J.A., Klein S., ET AL.: ‘A survey of medical
image registration - under review’, Med. Image Anal., 2017, 33,
pp. 140–144

[8] Saber N.R., Phillips J., Looi T., ET AL.: ‘Generation of normative pedi-
atric skull models for use in cranial vault remodeling procedures’,
Child’s Nervous Syst., 2012, 28, (3), pp. 405–410

[9] Myronenko A., Song X.: ‘Point set registration: coherent point drift’,
IEEE Trans. Pattern Anal. Mach. Intell., 2010, 32, (12),
pp. 2262–2275

[10] Sahillioglu Y., Kavan L.: ‘Skuller: a volumetric shape registration
algorithm for modeling skull deformities’, Med. Image Anal., 2015,
23, (1), pp. 15–27

[11] Porras A.R., Zukic D., Equobahrie A., ET AL.: ‘Personalized optimal
planning for the surgical correction of metopic craniosynostosis’.
In: Workshop on Clinical Image-Based Procedures, 2016, Springer,
pp. 60–67

[12] Goldman L.W.: ‘Principles of CT and CT technology’, J. Nucl. Med.
Technol., 2007, 35, (3), pp. 115–128

[13] Avants B.B., Tustison N.J., Stauffer M., ET AL.: ‘The insight toolkit
image registration framework’, Front. Neuroinform., 2014, 8, pp. 44
Healthcare Technology Letters, 2017, Vol. 4, Iss. 5, pp. 174–178
doi: 10.1049/htl.2017.0067


	1 Introduction
	2 Methods
	3 Results
	4 Discussion
	5 Conclusion
	6 Acknowledgment
	7 Funding and Declaration of interests

