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Abstract: Sympathetic nerve activity (SNA) regulates the contraction of vascular smooth muscle and
leads to a change in arterial blood pressure (BP). It was observed that SNA, vascular contractility,
and BP are heightened in patients with peripheral artery disease (PAD) during exercise. The exer-
cise pressor reflex (EPR), a neural mechanism responsible for BP response to activation of muscle
afferent nerve, is a determinant of the exaggerated exercise-induced BP rise in PAD. Based on recent
results obtained from a series of studies in PAD patients and a rat model of PAD, this review will
shed light on SNA-driven BP response and the underlying mechanisms by which receptors and
molecular mediators in muscle afferent nerves mediate the abnormalities in autonomic activities of
PAD. Intervention strategies, particularly non-pharmacological strategies, improving the deleterious
exercise-induced SNA and BP in PAD, and enhancing tolerance and performance during exercise
will also be discussed.

Keywords: sympathetic nerve activity; arterial blood pressure; peripheral artery disease; static
exercise; muscle afferent nerve; heat treatment

1. Introduction

Peripheral artery disease (PAD) is a common and disabling cardiovascular disease
that affects over 200 million worldwide and ~20% of Americans over age 60 [1–4]. Patients
with PAD are at a high risk of myocardial infarctions, cerebral vascular accidents, and
all-cause mortality with a death rate like that in patients with coronary or cerebral vascular
disease [5–7]. The atherosclerotic alternation in the affected vessel results in progressive
narrowing of the lower extremity conduit vasculature and eventually leads to severe limb
ischemia. As one of the consequences of limb ischemia, the syndrome of “intermittent
claudication” in PAD patients which is characterized by pain in the lower limbs that
occurs with walking and is relieved by rest limits their tolerance and performance in daily
physical activities.

Compared with the major advances seen in the management of other cardiovascular
diseases such as coronary artery disease and systolic heart failure, therapeutic options other
than surgery for PAD remain extremely limited [8]. Several pharmacological interventions
have been evaluated for use in patients with claudication symptoms, but efficacy has
only been reported for cilostazol and anti-platelet agents [9,10]. In fact, exercise training
(advice to walk more often) is commonly recommended for PAD patients. It has been
supported by studies [11–13] that supervised treadmill exercise is effective in attenuating
pain perception and improving the exercise performance of PAD patients. However, the
implementation of exercise into the daily lives of PAD patients is met with significant
challenges. During exercise, sympathetic nerve activity (SNA) and blood pressure (BP)
responses are amplified in PAD patients [14–17], which is associated with a higher risk and
incidence of cardiovascular events [18,19].
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In this regard, experimental animal models are necessary for studying the underlying
molecular mechanisms leading to the exaggerated SNA and BP responses in the patholog-
ical conditions of PAD; human clinical studies in both the healthy population and PAD
patients are essential to examine the clinical conditions and validate the results of the
mechanism studies with approved medications. More importantly, by incorporating the
animal study and human study, intervention studies on the treatment targets are vital to
develop strategies aiming to be effective and low-cost and to attenuate the above adverse
conditions in PAD patients.

2. Sympathetic Nerves and BP Regulation during Exercise in PAD
2.1. Exercise Pressor Reflex (EPR)

During the muscle movements of exercise, the sympathetic nervous activity (SNA)
increases, resulting in increased arterial BP and heart rate (HR), myocardial contractility,
and peripheral vasoconstriction [20,21]. Two mechanisms: central command and exercise
pressor reflex (EPR) [21–26] are considered involved in this regulatory process. Specifically,
“Central Command” [27] is initiated by a volitional signal emanating from central motor
units and then induces the enhancement of SNA; and the “Exercise Pressor Reflex” [26,28]
originates from the signal inputs from the afferents of the contracting skeletal muscle and
then induces a subsequent autonomic reflex. For the specific types of signal input, the EPR
responds to metabolic stimulation (i.e., “metaboreceptor” stimulation in Group IV afferents)
and mechanical deformation (i.e., “mechanoreceptor stimulation” in Group III afferents)
in the muscle afferents receptive field [29]. Thin fiber muscle afferent nerves are engaged
following the stimulation of the receptors during the exercise, therefore inducing the
activation of cardiovascular nuclei in the brainstem [28]. Figure 1 illustrates the activation
of the EPR and its neural pathways.

Figure 1. Diagram indicates the potential signaling pathways leading to the exaggerated EPR in IR
rats via enhancing acidic metabolites, ATP, and proinflammatory cytokines (PICs) in skeletal muscle
and thereby stimulating ASIC3 and P2X3 receptors in muscle sensory nerves. This proposal will
examine the integrated signals in both skeletal muscle and primary sensory neurons involved in the
EPR of rats with femoral artery occlusion followed by reperfusion. ASIC3: acid-sensing ion channel
3; P2X3: purinergic P2X subtype 3; HIF-1α: hypoxia-induced factor-1α; ROS: reactive oxygen species;
IL-1β: interleukin-1β; TNF-α: tumor necrosis factor-α.
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2.2. EPR in PAD Patients

In PAD patients, the pressor response to walking is significantly greater than that in
healthy control subjects [14–17]. Human studies further indicate that the responses in BP,
renal vasoconstriction, and total peripheral resistance (TPR) during plantar flexion exercise
are accentuated in PAD [30,31]. In these studies, the increase in BP occurred before the
subjects reported pain. Thus, it is believed that an exaggerated EPR is a major determinant
of why BP rises with exercise in PAD [32]. The muscle SNA (MSNA) increases in PAD
occurred early and were much greater than those at the same exercise time/workload in
matched healthy control subjects [33]. Figure 2 shows increased MSNA in PAD patients. It
is believed that an exaggerated MSNA response contributes to the accentuated TPR and BP
responses to leg exercise in PAD patients and any mechanisms for intervention/therapy
decreasing the MSNA response to exercise would alleviate the exaggerated EPR in PAD.

Figure 2. MSNA during plantar flexion with incremental loading (2 kg, +1 kg/min) in a PAD patient.
The exercise was ended after min 5 due to the tolerance level of this patient. In the matched healthy
control subject, increases in MSNA and BP occurred after min 7 with a 9 kg workload. (Abstract
presented at EB 2021; unpublished figure).

3. Experimental Models to Study the Pathological Status in Human PAD
3.1. Blood Flow Restriction (BFR) and Ischemia-Reperfusion (IR) in Healthy Subject

Other than involving PAD patients, there are two popularized experimental models to
simulate PAD, namely BFR and IR, in healthy humans. They provide low-risk and feasible
ways to mimic the pathological status (e.g., ischemia and ischemia-reperfusion) in PAD.

BFR: Regarding the pathophysiology of PAD, the consequences of limb ischemia have
been emphasized [34–38]. It is known that the EPR is amplified as oxygen delivery to
skeletal muscle is reduced [39]. Acute flow limitation during exercise also raises BP in a
canine hindlimb occlusion model [40]. In humans, BFR is achieved by placing a pressure
cuff proximal to the working muscle and inflating it to achieve a pressure-limiting flow to
the muscles. BFR has been used for augmenting the peripheral adaptations to resistance
training [41–46]. Importantly, a recent report [47] and data showed that the BP response
to exercise is accentuated under BFR conditions, even when the blood flow is not fully
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occluded. Thus, there is technical and ethical feasibility of using the BFR model in healthy
humans to simulate the flow limitation in PAD.

IR: The IR injury is a main feature of various cardiovascular diseases, including myocar-
dial infarction, stroke, and PAD [48,49]. Figure 3 illustrates the potential effect of IR on the
metabolic milieu in the skeletal muscle tissue. The tissue damage associated with ischemic
events occurs due to a combination of ischemia and paradoxical reperfusion following the
restoration of blood flow to ischemic tissue, commonly referred to as IR injury. Following
ischemia, the muscles may be salvaged by reperfusion. However, the re-introduction
of oxygen to hypoxic muscles can also lead to damage by oxygen-derived free radicals.
In PAD patients, IR injury was observed after limb revascularization [50,51]. Moreover,
walking in PAD patients can induce ischemia (indicated with pain), while reperfusion can
occur after stopping walking. Thus, intermittent claudication has been linked to ischemia
followed by reperfusion leading to repeated IR injuries in their daily life [35,48,49,52].

Figure 3. A diagram illustrates the potential effects of IR on muscle metabolic milieu in the hindlimb.
We will study integration of the signaling pathways between skeletal muscle metabolites and primary
muscle sensory neurons in regulation of the exercise pressor reflex in IR rats. ROS: reactive oxygen
species; PIC: proinflammatory cytokine. Dark arrow indicates “increase” and light arrow indicates
“alleviate”. Note that the diagram is simplified to show the mechanisms more related to our proposed
studies, but not all the molecular mediators responsible for IR are shown.

Prior studies [53–55] have employed a 20-min period of ischemia followed by a 20-min
period of reperfusion (i.e., 20–20 min) to induce IR stress in a limb of healthy subjects to
examine the effects of IR stress on vascular function [56,57]. This model has been used
to simulate the IR stress in PAD and examine the effects of IR on the EPR. In our prior
study [58], subjects performed fatiguing handgrip exercise before and ~20 min after a
20-min period of muscle ischemia (i.e., the limb circulation was totally occluded) in the
control trial. The results showed that the MSNA responses to handgrip were accentuated
after the 20-min period of muscle ischemia. Thus, the IR stress in healthy subjects and PAD
patients with leg revascularization can be used to examine the role played by the IR in
regulating the EPR.

3.2. Animal Models of Studying Human PAD

By effectively restricting and eliminating the blood flow in the affected limbs, the
animal model of PAD proves an essential tool for studying the underlying molecular
mechanism under the ischemic-related etiological and pathological conditions in PAD
patients. In a recent review of the literature, we summarized the features of representative
animal models of PAD [59]. Based on different feasibilities and approaches, the experi-
mental animal options are rodents (e.g., mice, rats, and rabbits) and large animals such as
swine. Methods of inducing blood flow restriction and elimination include single/double
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occlusion with or without blocking the branches in the femoral artery [60–65], ultra-sound
assisted endovascular occlusion [66,67], and chemical-induced thrombus ischemia [68],
etc. In the following sections, we will focus on discussing two animal models that mimic
the blood flow restriction and ischemia-reperfusion status in human PAD: femoral artery
occlusion/ligation and hindlimb ischemia-reperfusion.

3.2.1. Femoral Artery Occlusion/Ligation

Femoral artery occlusion in rats has been widely used to study human PAD [69]
as it mimics one of the critical characteristics seen in PAD patients, namely intermittent
claudication manifested by insufficient blood flow to the legs during exercise or slightly
decreased blood flow to the legs under resting conditions. Notably, 24 h or 72 h femoral
occlusion exaggerates BP response to muscle contraction (Figure 4 and muscle metabolites
(e.g., acidic products and ATP) in the occluded limb (Figure 1), but not in the opposing
control limb of the same rats [70,71]. Meanwhile, it has also been reported that the BP
response during exercise is still exaggerated ~1 month and ~2 months after the femoral
artery occlusion [72]. These findings parallel those reported in humans, showing that
the BP response to walking is enhanced in PAD and the BP response during the exercise
with the “diseased” limb is greater than that during the exercise with the “non-diseased”
limb [16]. Therefore, it is indicated that a rat model of the femoral artery ligation is suitable
for studying exercise-induced ischemia that occurs in PAD. Moreover, PAD in human
subjects is not solely a disease of large vessel obstruction, but it is a disease of large vessel
obstruction in the setting of a chronic disease process (atherosclerosis) that is influenced
by oxidative stress and inflammation [73]. Femoral artery occlusion increases products of
oxidative stress in the hindlimb muscles of rats and activates inflammatory signals (i.e.,
IL-6 and TNF-α) [74–76] as shown in Figure 1. This also makes the femoral occlusion model
reflective of human conditions.

Figure 4. Mean arterial pressure (AP) response to static muscle contraction (30 s) induced by electrical
stimulation of the L4&5 ventral roots in controls rat and PAD rats. (A) Typical recordings of arterial
pressure (AP) response to static muscle contraction in control and PAD rats. (B,C) A greater MAP
response was seen in PAD rats than in control rats, without different muscle tension between two
groups * p < 0.05 between control and PAD.
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3.2.2. Hindlimb Ischemia-Reperfusion

The hindlimb IR is induced by femoral artery ligation, followed by re-opening the
ligation and is used to study PAD. To date, little is known about the engagement of a
reperfusion component of IR injury in the pathophysiological processes of BP response
in PAD. In the previous studies with forelimb IR models with mice, 18 h of blood flow
reperfusion following 6 h of ischemia lowered the pain threshold of the affected limbs and
increased the BP response during the dynamic global exercise. Meanwhile, the mRNA
levels of primary sensory receptors (e.g., acid-sensing ion channel 3, ASIC3 and purinergic
P2X3, P2X3) and the receptors for cytokines (e.g., interlukin-1β receptor, IL-1 βr) in the
DRG were also increased [77]. With further development of the hindlimb IR model, we
characterized a rat model of IR, showing that BP response to muscle contraction in different
time courses following IR (e.g., 18, 66, and 114 h) were exaggerated. Notably, the increment
of BP response 18 h following reperfusion was the most profound. It should also be
noted that the BP response to muscle contraction was evaluated in decerebrated animals,
which excluded the effect of central command. Further underlying mechanism studies
with this IR model have shown that the intra-arterial injection of lactic acid (activator of
ASIC3 receptor) and α,β me-ATP (activator of P2X3 receptor) were amplified in rats (IR18h)
who experienced 6 h of femoral artery ligation followed by 18 h of reperfusion [78]. The
increasing levels in BP response were similar in IR18h rats and rats with 24 h of femoral
artery occlusion (24 h-occlusion rats). Moreover, the protein levels of ASIC3 and P2X3
expression in dorsal root ganglion (DRG) were increased to a similar degree in IR18h rats
and 24 h-occlusion rats. These data suggest that reperfusion following 6 h ischemia is likely
a factor leading to the remaining exaggeration of the BP response in IR rats and it is rational
to utilize a rat model of IR18h for studying IR injury in PAD.

4. Molecular Mechanisms Leading to Exaggerated SNA and BP Responses in PAD
4.1. Effects of Muscle Metabolic Products and Their Responsive Receptors (Figures 5 and 6)

Using this PAD rat model with femoral artery ligation/occlusion, the previous studies
have demonstrated that the SNA and pressor responses to muscle contraction and stimu-
lation of muscle metabolite receptors i.e., acid-sensing ion channel 3 (ASIC3), purinergic
P2X (subtype P2X3), transient receptor potential vanilloid 1 and ankyrin 1 (TRPV1 and
TRPA1) are amplified in PAD rats as compared with control rats [71,79–83]. In addition,
other receptors in muscle afferent nerves including µ-opioid/δ-opioid, bradykinin (BK)
B2, prostaglandin (PGE2) EP4, and thromboxane (TP) receptors are engaged in the reflex
responses in processing chronic ischemia of the hindlimb muscles [71,84–87].

In addition to the previous works on the roles of ASICs, TRPV1, and P2X receptors [70],
we will focus on the updated research of ASIC3 and the interaction effect of ASIC3 and
P2X3 on muscle sensory nerves in mediating the exaggerated sympathetic response in
hindlimb muscle ischemia seen in PAD patients. Those receptors to be studied are expressed
at both the peripheral terminals and the cell body of the sensory afferent neurons-DRG.
With greater feasibility, receptor activity of DRG cell bodies has been used frequently as a
surrogate for the nerve-ending receptor activity and physiology [88,89]. In particular, the
whole cell patch-clamp methods are used to characterize the precise mechanisms by which
those receptors mediate responses in the DRG neurons [88,89].
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Figure 5. (A) The dual immunofluorescence method showing co-existence of ASIC3 and peripherin
staining in DRG neurons. Arrows indicate representative cells positive for both ASIC3 and peripherin
after they were merged. Scale bar = 50 µm. Peripherin was used to label C-fiber of DRG neurons.
(B) Bands and averaged data (mean ± SD) showing that IR increased the protein levels of ASIC3 in
DRGs. ** p < 0.01 between control and IR 18h rats. (C) Original traces of patch clamp showing that the
amplitudes of ASIC current (elicited by pH 6.7 solution) in were largely decreased after application
of ASIC3 antagonist rAPETx2 (1 µM).
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Figure 6. Effect of ASIC3 KO on BP response and DRG currents to activation of P2X3. (A,B): Two
doses of αβ-me ATP were given intra-arterially into the hindlimb muscles to stimulate P2X3 in
muscle afferents; and activation of P2X3 receptors amplified MAP response to a greater degree in WT
rats with femoral occlusion, but not in ASIC3 KO rats. (C,D) Patch-clamp method shows averaged
amplitude of P2X3 currents in Dil-labelled DRG neurons of WT rats and ASIC3 KO rats. (C): transient
and (D): sustained P2X3 currents. An amount of 10 µM of αβ-me ATP was applied to induce current
response. * p < 0.05 between control and occlusion in WT rats, but no significant difference in current
response was seen between control and occlusion in ASIC3 KO rats. Data presented as mean ± SD.

4.1.1. ASIC3 KO Suppresses the Exercise Pressor Response under Ischemic Situation

ASICs are members of a family of amiloride-sensitive sodium channels and are con-
sidered as molecular sensors in afferent neurons [90–93]. They are almost ubiquitous in the
mammalian nervous system and are activated as pH drops below 7.0. Among six different
proteins of ASICs (ASIC1a, 1b, 2a, 2b, 3, and 4), encoded by four genes (ASIC1, 2, 3, and 4),
the ASIC3 protein, however, is mostly found in DRG where it forms functional channels
that are responsive to proton concentration fluctuation [90–93]. The pH range required
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to activate ASIC3 is approximately 6.5–7.0 [94,95], which is close to what is observed in
exercising muscle and/or moderately ischemic tissues [96–99].

Prior to utilizing the genetic approach of ASIC3 knockout, several studies were per-
formed to assess the role played by ASIC3 in evoking the exercise pressor reflex in PAD
by comparing with sham control rats on the protein expression currents [82] of ASIC3
in DRG [81], and the blood pressure responses before and after the application of phar-
macological blockades (e.g., amiloride and APETx2) [100]. ASIC3 knockout provides a
powerful tool to validate the role of ASIC3 on the exercise pressor reflex in PAD as it not
only blocks the function of this receptor but also induces a significant reduction of the
protein expression.

In the ASIC3 KO rats, the peak mean arterial pressure (MAP) and the blood pressure
index (BPI) following the static muscle contraction were similar to the wide type (WT) rats
when the blood flow was freely perfused. However, under the ischemia conditions induced
by femoral artery occlusion, the peak MAP and BPI were significantly lower in ASIC3
KO rats than in the WT rats. This effect was not seen in the EPR response induced by the
passive tendon stretch. Researchers also injected the solutions of diprotonated phosphate
(86 mM; pH 6.0), lactic acid (12 mM; pH 2.85), and capsaicin (0.2 µg; pH 7.2) to evoke the
EPR response. Compared with the WT rats, the EPR response induced by diprotonated
phosphate and lactic acid was significantly attenuated in ASIC3 KO rats. Interestingly,
the EPR response induced by capsaicin (0.2 µg; pH 7.2) was also attenuated. However,
blocking the ASIC3 in ligated WT rats by APETx2 did not suppress this capsaicin induced
EPR response. This suggests there may be a special interaction or coupling effect between
ASIC3 and TRPV1 receptors during the activation of TRPV1.

4.1.2. ASIC3 KO Attenuates the Exercise Pressor Response and the Activities of P2X3 under
Ischemic Situation

Apart from the potential interaction between ASIC3 and TRPV1, it has been reported
that there is a functional interaction between ASIC3 and P2X3 receptors [93,101]. In a
published work, we used ASIC3 KO rats to examine the underlying mechanisms by which
ASIC3 receptors affect P2X3 functions in regulating the EPR following femoral artery
occlusion. Figure 6 shows that compared with wild-type (WT), ASIC3 KO attenuated
the exaggeration of the BP response to injections of α,β-me ATP, a P2X3 agonist, into the
arterial blood supply of the hindlimb muscles of occluded rats. This result is consistent
with the notion suggested by our previous work that blocking ASIC3 signaling pathways
can attenuate amplification of the BP response to stimulation of P2X3 receptors under the
acidic milieu of the hindlimb muscles [102].

We further determined if ASIC3 KO attenuates P2X3 currents in DRG neurons inner-
vating ischemic muscles. Figure 6 shows that muscle DRG neurons from both WT rats
and ASIC3 KO rats exhibited the typical transient and sustained current responses with
activation of P2X3 receptors by applying α,β-me ATP. The data further show that femoral
artery occlusion augmented the amplitude of P2X3 currents in response to α,β-me ATP
in muscle DRG neurons of WT rats, but this effect appeared to be less in ASIC3 KO rats.
This result further supports the notion that inhibition of ASIC3 has a regulatory role in
P2X3 function, and this is likely to be involved in causing the exaggerated EPR in PAD rats
following femoral artery occlusion.

4.2. Other Ischemia-Induced Products

In addition to ASIC3, TRPV1, and P2X3, it must be pointed out that other muscle
afferents’ receptors, including µ-opioid and thromboxane (TP) receptors, etc., are engaged
in processing chronic ischemia of the hindlimb muscles [84,85]. In addition, studies showed
that bradykinin B2 and peripheral δ-opioid receptors contribute to the exaggerated exercise
pressor reflex via a mechanically sensitive group III muscle afferents in rats with femoral
artery occlusion [87,103]. Blocking PGE2 EP4 also attenuates the augmented BP response
to static exercise observed in PAD rats [86]. Meanwhile, the role of nerve growth factor
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(NGF) in regulating the metabolic receptors in the ischemia-muscles of PAD has been
extensively discussed in one of the previous reviews [104], highlighting its elevation under
the ischemia condition and upregulating the protein expression and function of ASIC3,
P2X3, and TRPV1 in the DRG neurons. In this review, we will focus on extending our
discussion on the role of hypoxia-inducible factor 1α (HIF-1α) and the reactive oxygen
species (ROS).

4.2.1. HIF-1α

HIF-1 is a heterodimeric protein composed of constitutively expressed HIF-1α and
HIF-1β subunits [105]. In the two subunits, oxygen-sensitive HIF-1α accumulates rapidly
under hypoxic conditions and modulates the expression of several target genes in protecting
tissues against ischemia and infarction [106–109]. HIF-1α is considered a transcription
factor that mediates adaptive responses to hypoxia and ischemia [106–109]. Thus, we
have examined if arterial occlusion increases the levels of HIF-1α in sensory neurons and
if engagement of HIF-1α is responsible for the enhancement in the reflex cardiovascular
responses induced by activation of muscle afferent nerves [110].

The first insight we gained in this previous study by using western blot analysis
showed that HIF-1α protein expression is significantly increased in DRG neurons 6–72 h
after femoral artery ligation as compared with non-ligated controls [110]. This result
suggests that femoral occlusion induces HIF-1α response in sensory nerves. In addition,
DMOG, an inhibitor of prolyl hydroxylase, has been shown to stabilize or increase HIF-1α
protein and enhance the expression of downstream target genes [111,112]. It was reported
that inhibition of endogenous HIF inactivation by DMOG induces angiogenesis in the
ischemic skeletal muscles of mice [112]. In this previous study, we further examined
the expression of HIF-1α protein in DRG neurons induced by intramuscular injection
of DMOG [110]. HIF-1α protein expression was significantly increased in lumbar DRG
neurons 24 hrs after injection of DMOG into the hindlimb muscles as compared with sham
controls. In this prior report, we also examined the effects of femoral occlusion on the
reflex cardiovascular responses evoked by activation of muscle afferent nerves [110]. Our
data have shown that 24 h of femoral artery occlusion significantly increased arterial BP
response induced by static muscle contraction. To determine if HIF-1α has a potential effect
on the exercise pressor reflex, we injected DMOG into the hindlimb muscles. Then, BP and
HR responses induced by static muscle contraction were examined 24 hrs after DMOG
injection. Our results showed that there were no significant differences in increases of the
reflex MAP and HR responses after DMOG as compared with controls [110].

In contrast, BAY87, a synthesized compound with characteristics of highly potent and
specific suppressive effects on expression and activity of HIF-1α, was given into the arterial
blood supply of the ischemic hindlimb muscles three hours before the exercise pressor
reflex was evoked by static muscle contraction. First, arterial injection of BAY87 inhibited
expression of HIF-1α in the DRG of occluded limbs three hours following its injection.
Second, muscle contraction evoked a greater increase in BP in occluded rats and BAY87
attenuated the enhanced BP response in occluded rats to a greater degree than in control
rats. Taken together, these data suggest that inhibition of HIF-1α alleviates exaggeration of
the exercise pressor reflex in rats under ischemic circumstances of the hindlimbs in PAD
induced by femoral artery occlusion; however, an increase in HIF-1α of DRG neurons per
se may not alter the muscle pressor reflex.

Nonetheless, it should be noted that the time courses are very similar in increased
HIF-1α expression, and elevated NGF and amplitude of DRG response to stimulation of
ASIC3, P2X3, and TRPV1receptors after ischemic insult induced by the femoral artery
occlusion [83,113–115]. This similarity may indicate that there is a close relationship be-
tween NGF and HIF-1α responses in the DRG neurons in the processing of muscle ischemia.
Interestingly, published work shows that increasing HIF-1α or inhibiting HIF-1α prolyl
hydroxylases can attenuate NGF deprivation-induced effects on neurons, suggesting that
HIF-1α plays a regulatory role in affecting effects of NGF [116–118]. Therefore, we postu-
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late that HIF-1α likely contributes to the effects of NGF on augmented muscle metabolic
responses in the DRG neurons after arterial occlusion.

4.2.2. Reactive Oxidative Species

Notably, a number of studies suggest that reactive oxidative species (ROS) contribute
to the regulation of discharges of vagal lung thin afferent fiber nerves [119,120]. Addition-
ally, it has been reported that an increase in muscle NADPH oxidase-derived ROS sensitizes
the exercise pressor reflex in a decerebrate rat model [121]. Likewise, a decrease in ROS can
attenuate the reflex [121]. Thus, it is speculated that ROS is engaged in augmented SNA and
BP response during activation of the exercise pressor reflex in rats with femoral occlusion.
Superoxide dismutases (SOD), are a class of enzymes that catalyze the dismutation of
superoxide into oxygen and hydrogen peroxide as considered an important antioxidant.
In a published work, tempol, a mimic of SOD, was arterially injected into the hindlimb
muscles of rats and results demonstrated that tempol attenuates BP response evoked by
contraction of occluded hindlimb muscles, but the attenuation was not seen when contrac-
tion was induced in freely perfused control legs [122]. A following study suggested that
effects of tempol on the BP response during contraction are via ATP-dependent potassium
channels [123]. However, a prior study suggested that ROS plays an important role in
regulating discharges of vagal lung thin afferent fiber nerves via engagement of TRPV1
and P2X receptors [119,120]. In those experiments, the reflex pulmonary chemical response
induced by a ROS stimulant hydrogen peroxide was attenuated by the prior application of
i-RTX (TRPV1 antagonist) and PPADS (P2X antagonist) [119,120]. Thus, it is likely that ROS
can alter the response of sensory nerves with activation of TRPV1 and P2X. Nevertheless,
the augmented exercise pressor reflex is significantly attenuated after tempol is given to
compensate SOD in occluded muscles of rats [122].

In addition, ROS activates the transient receptor potential channel A1 (TRPA1) [124–126].
TPRA1 is a member of branch A of the transient receptor potential (TRP) family of nonselective
cation channels and expressed in the sensory (nerves) neurons and is involved in acute and
inflammatory pain [124,127–132]. A published work has demonstrated that intra-arterial
injection of AITC, a TRPA1 agonist, into the hindlimb muscle circulation of healthy rats led to
increases in SNA and BP via a reflex mechanism [133]. Additionally, this study has suggested
that TRPA1 plays a role in regulating the exercise pressor reflex and acid phosphate, bradykinin,
and arachidonic acid, which are accumulated in exercising muscles are likely engaged in the
role played by TRPA1 as endogenous stimuli. Interestingly, it was observed that femoral artery
occlusion (1) upregulates the protein levels of TRPA1 in DRG tissues; (2) selectively increases
expression of TRPA1 in DRG neurons supplying metabolically sensitive afferent nerves of
C-fiber (group IV); (3) enhances renal SNA and BP responses to AITC (a TRPA1 agonist)
injected into the hindlimb muscles, and (4) blocks TRPA1 attenuates SNA and BP responses
during muscle contraction to a greater degree in ligated rats than those responses in control rats.
Overall, the results of these studies indicate that alternations in muscle afferent nerves’ TRPA1
likely contribute to the enhanced sympathetic and BP responses via the metabolic component
of the muscle reflex under circumstances of chronic muscle ischemia in PAD, and the effects of
oxidative stress are also likely associated with expression and activities of TRPA1 in sensory
nerves of PAD.

4.2.3. Endothelin-1 (ET-1)

ET-1 is originally characterized as an endothelium-derived peptide which majorly
functions as constricting factor in the vasculature [134,135]. It affects several tissues includ-
ing the smooth muscle and the nervous system [136]. During inflammatory conditions,
ET-1 has been found to be associated with an inflammatory response involving the ex-
pression of proinflammatory cytokines including TNF-α, IL-1 and IL-6 [137]. Meanwhile,
ROS stimulates the production of ET-1 in both in vivo and in vitro situations [138,139]. In
PAD patients, it has been reported that the ET-1 was elevated in the plasma [140,141]. In
an animal model of PAD, the ET-1 concentration was also elevated in the gastrocnemius
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muscle [142]. Of note, ET-1 is an important vasoconstrictor for the restraint of blood flow
in active skeletal muscle and the maintenance of arterial BP during exercise [143]. The
underlying mechanism of the ET-1 on EPR response in PAD patients has not yet been fully
investigated. However, a number of previous studies of the peripheral nerve establish a
fundamental rationale for further mechanism and intervention studies on the ET-1-related
cellular and molecular pathways during evoking the EPR response in PAD.

In the peripheral nervous system, two subtypes of ET-1 receptors,
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that ET-1 plays an important role in modifying peripheral pain signaling. In humans,
exogenous ET-1 causes tactile allodynia and severe pain. In rodents, an intra-plantar
injection of ET-1 produces mechanical and thermal hyperalgesia and spontaneous pain-
like behaviors [145,146]. Paw withdrawal thresholds to mechanical stimuli and heat are
significantly altered in conditioned ET-1 knockout mice [147]. Peripheral ET-1 acts on
nociceptors through its cognate receptors, which subsequently modify pain-related ion
channels to amplify signal generation [148]. In DRG neurons, ET-1 increases neuronal
excitation by hyperpolarizing tetrodotoxin-resistant (TTX-R) Na+ channels and by
suppressing the delayed outward rectifier K+ current via
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4.3. Pro-Inflammation Cytokines and Ion Channels in Muscle Sensory Neurons (Figures 7 and 8)
4.3.1. TNF-α and Activities of Nav Channels in Muscle DRG Neurons

The augmented exercise pressor reflex might be due in part to inflammation, specifi-
cally pro-inflammatory cytokines (PICs) associated with PAD. Numerous cells (i.e., leuko-
cytes, myocytes, microglia, astrocytes, and Schwann cells) produce and release PICs [153],
which include interleukins, lymphokines, and cell signaling molecules. In particular, the
roles of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β)
are significant in regulating immune and inflammatory reactions. These PICs modulate
the activities of many cell types in various diseases. For example, during diseased states,
PICs help to recruit cells to inflammatory sites, stimulating cell survival, division, and
enhancing proliferation and differentiation [154]. Evidence indicates that PICs are involved
in regulating physiological functions, with their levels increasing in the circulation and in
the affected tissues [153,155,156]. Increased circulating and intramuscular levels of PICs
(such as IL-6 and TNF-α) were also found in coronary and/or atherosclerotic vascular
disorders such as PAD [157–159].

It was first observed that the levels of TNF-α and protein expression of TNF-α receptor
type 1 (TNFR1) were increased in the DRG of the hindlimbs of PAD rats. Note that
TNF-α was observed within DRG neurons of C-fiber afferent nerves. Capsaicin (TRPV1
agonist) and AITC (TRPA1 agonist) were injected into the arterial blood supply of the
hindlimbs to stimulate metabolically sensitive thin-fiber muscle afferents. The effects of
these injections on the SNA and pressor responses were attenuated in PAD rats after TNF-α
synthesis suppressor pentoxifylline (PTX) was previously administered into the hindlimb
with femoral artery occlusion. These data suggest that TNF-α plays a role in modulating
exaggerated SNA via the metabolic component of the exercise pressor reflex in PAD.
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Figure 7. Passive stretch during post-exercise circulatory occlusion evoked MSNA and BP increases
in normothermic conditions. These responses were attenuated under heat stress conditions. (Unpub-
lished figure).

Tetrodotoxin (TTX)-resistant Na+ (i.e., NaV1.8) channels are highly expressed in group
IV afferents [160]. The role played by NaV1.8 in evoking the exercise pressor reflex was
examined using whole animal preparations. A803467, a NaV1.8 blocker, attenuates the
pressor response evoked by arterial injection of lactic acid and capsaicin stimulating thin
fiber afferents [161]. There is a linkage between TNF-α and the activity of Na+ current
in sensory nerves [162]. A prior study demonstrated the role of TNF-α in enhancing the
current densities of Nav1.8 in DRG neurons [163]. In an additional work, the role played
by TNF-α in regulating the activity of NaV1.8 currents in muscle DRG neurons of PAD rats
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was specifically examined. Results showed that peak amplitude of TTX-resistant (TTX-R)
Nav and NaV1.8 currents in muscle DRG neurons were increased in PAD rats. Meanwhile,
the amplification of TTX-R and NaV1.8 currents induced by TNF-α was attenuated in
DRG neurons with pre-incubation with respective inhibitors of the intracellular signaling
pathwaysp38-MAPK, JNK, and ERK. It was concluded that NaV1.8 is engaged in the role
of TNF-α in amplifying muscle afferent inputs as the hindlimb muscles are ischemic in
PAD. The pathways of p38-MAPK, JNK, and ERK are likely necessary to mediate the effects
of TNF-α.

Figure 8. Tcore and Tm, MAP response and muscle tension in control rats (left panels) and PAD
rats (right panels). (A): Baseline Tm was lower in PAD rats and Tcore was not altered during heat
treatment. (B): MAP response to contraction was increased in PAD rats and amplification of pressor
response was attenuated after heat treatment. * p < 0.05 vs. control rats; and ** p < 0.05 vs. control
group without heat treatment. (C): No difference in muscle tension among groups (p > 0.05).
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4.3.2. IL-6 and Activities of Kv4 Channels in Muscle DRG Neurons

Increased circulating and intramuscular levels of interleukin-6 (IL-6) are detected in
PAD patients [164,165]. The activity of exercise induces a greater increase in the levels of
IL-6 of the mixed venous blood in PAD patients than those levels in healthy age-matched
subjects [166,167]. Consistently, during the exercise ischemic insult also enhances the
circulating IL-6 levels compared with non-ischemic exercise [168].

Seventy-two hours of femoral artery occlusion increases products of oxidative stress
in the hindlimb muscles of rats and activates inflammatory signaling pathways [74–76].
IL-6 also plays a role in regulating the exaggerated BP response to static exercise in PAD
rats [169] likely via membrane-bound IL-6R or gp130 trans-signaling pathways assembled
by soluble forms of IL-6R [163,170,171]. Thus, it was anticipated that the activity of IL-6
signaling would be increased in muscle afferent nerves involving the exercise pressor reflex
in PAD rats.

We found that the protein levels of IL-6 and its receptor IL-6R expression were in-
creased in the DRGs of PAD rats with 72 h of femoral artery occlusion. Inhibition of muscle
afferents’ IL-6 trans-signaling pathway (gp130) by intra-arterial administration of SC144,
a gp130 inhibitor, into the hindlimb muscles of PAD rats alleviated BP to static muscle
contraction. On the other hand, it was found that PAD decreased amplitude of Kv4 currents
in rat muscle DRG neurons. The homo IL-6/IL-6Rα fusion protein (H. IL-6/6Rα) but not
IL-6 alone significantly inhibited Kv4 currents in muscle DRG neurons; the effect of H.
IL-6/6Rα was largely reverted by SC144. Consistent with the previous findings, these data
suggest that via trans-signaling pathway upregulated IL-6 in muscle afferent nerves by
ischemic hindlimb muscles inhibits the activity of Kv4 channels and therefore likely leads
to adjustments of the exercise pressor reflex in PAD.

5. Heat Treatment and Nutrition Intervention on Improving Exercise-Induced
Exaggerated SNA and BP Responses in PAD

Supervised exercise intervention is one of the most effective means of maintaining
or restoring the exercise tolerance of PAD patients [12,172]. However, as above mentions,
the challenge exists in the adherence to exercise training programs due to the symptom
of intermittent claudication, which is partly attributed to the exaggerated EPR response.
Therefore, in this review, we discuss three other non-pharmacological interventions that
may be helpful to ameliorate the hyper-amplified EPR response in PAD patients. With
the introduction of those promising economic strategies, we are aiming to incorporate
them into the well-established exercise training protocols to enhance the adherence to
exercise training, improve the efficacy of the intervention protocols, and benefit the overall
well-being of PAD patients.

5.1. Heat Treatment (Figures 7 and 8)

In recent years, heat treatment has been obtaining significant attention in terms of its
beneficial effect on cardiovascular patients including PAD. In a rat model of PAD, the heat
treatment protocol of increasing the muscle temperature (Tm) by 1.5 ◦C (30 min period each
heating protocol, 2 times/day for 3 days) attenuated ET-1 in both red and white portions of
gastrocnemius muscle in PAD [142]. It has been reported that repeated heating exposure
suppressed the production of plasma ET-1 in human participants with symptomatic PAD
in both rest [173] and post-exercise situations [174]. Meanwhile, heating exposure increases
the contraction force of the ischemia-induced damaged skeletal muscle [175]. In a mice
obesity model, the heating exposure also decreased the percentage of fat and increase the
ratio of muscle mass to body mass even if capillary density and collateral supply diameter
was unchanged [176].

In terms of the blood flow dynamic response, heat exposure increases skin blood flow
(SkBF), heart rate, cardiac output [177], ejection fraction, and systolic function in healthy
individuals [178,179] and heart failure patients [180,181]. Based on these observations, ther-
mal therapy has been suggested for patients with heart diseases [180–184]. Moreover, it has
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been shown that heat treatment (e.g., dry sauna) may improve chronic endothelial function
in patients with heart diseases or in those with atherosclerotic risk factors [183,185–187]. A
recent report also shows that hot water immersion raised the blood flow in lower limbs
of PAD patients [188]. It should be noted that these prior studies [188–190] only focused
on the effects of heating on blood flow and vascular function in PAD. The effects of heat
exposure on EPR in PAD have not been examined.

Thus, the effects of heating on EPR were studied in PAD patients and PAD rats induced
by femoral artery occlusion. First, to determine how whole-body heating alters muscle
mechanoreflex and metaboreflex responses, we measured MSNA in healthy subjects during
fatiguing isometric handgrip exercise, PECO, and passive muscle stretch (extension of
wrist, EOW) during PECO. The protocol was performed under both normothermic and
whole-body heating (∆Tcore ~0.6 ◦C via a heating suit) conditions. Under normothermic
conditions, passive stretches during PECO evoked significant increases in mean arterial
pressure (MAP) and MSNA. However, during heating, passive stretch did not significantly
increase MSNA or MAP (Figure 7). These data show that sympathetic response to the
mechanoreceptor stimulation [191] is attenuated by heat exposure when body temperature
is elevated [192]. The attenuated MSNA response to stretch during heating should not be a
“ceiling effect” because there was no significant difference in the MSNA burst incidence
during stretches between thermal conditions.

Although there was no difference in MSNA response to PECO (i.e., non-specific
metaboreceptor stimulation), the MAP response to PECO during heating was much less
(by ~50%) than in normothermic conditions. Thus, the EPR (i.e., pressor response) is
attenuated during heating. It is speculated that the BP response to sympathetic activation
is also attenuated during heating [193]. It is known that MSNA response to metaboreceptor
stimulation is attenuated in heart failure [194]. On the other hand, it is unclear if the MSNA
response to metaboreceptor stimulation is altered in PAD. Therefore, it is necessary to
examine both MSNA and BP responses to exercise in PAD.

A prior study [195] demonstrated that local heating of an isometric exercising forearm
muscle group augmented the increase in MSNA during fatiguing exercise. They speculated
that the elevated Tm might sensitize muscle mechanosensitive afferents. It should be noted
that in those studies, local heating increased forearm Tm from ~34 to 39 ◦C [195–197]. Our
pilot study shows that whole-body heating only raised forearm Tm of ~1.5 ◦C. Thus, the
fewer increases in the Tm in our studies are likely to lead to the different effects on the
muscle afferents at the receptor level, necessitating the study engagement of P2X in the
EPR after heat exposure.

Group III and IV respond to changes in Tm [198,199]. In animals, we have shown that
a higher Tm response is linked to a lower BP response and elevated Tm attenuates the
P2X receptor-mediated reflex activation of muscle mechano- and metabo-receptors [200].
We have shown that arterial injection of α,β-me ATP into the hindlimb muscles evoked
a dose-dependent response, and the peak pressor response evoked by α,β-me ATP was
attenuated as Tm was increased by heat exposure. Additionally, α,β me ATP amplified the
reflex BP response evoked by stretch and the effect was blunted with heat exposure.

The effects of heat exposure on EPR in PAD have not been well understood. Due to
limb ischemia, the lower limb temperature is lower and revascularization therapy raised the
limb temperature [201]. In addition, a decrease in the Tm induces a decelerated rate of ATP
turnover [202], which likely leads to an elevation of ATP concentration in the extracellular
space. It is, therefore, speculated that the lower Tm may contribute to the accentuated
EPR in PAD. In turn, a suitable rise in Tm may attenuate the sympathetic response and
decrease the exaggerated BP response to exercise in PAD. To obtain the same degree of Tm
increase in animal models, the temperature in rat hindlimb muscle was monitored and
increased by 1.5 ◦C (30 min period each heating protocol, two times/day for three days)
and then BP response to static muscle contraction was examined (Figure 8). These data
demonstrated that a raise in muscle temperature attenuated the exaggerated BP response
to muscle contraction. This study further showed that a protocol with increasing muscle
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temperature by 1.5 ◦C decreased expression and current response of P2X3 in DRG neurons
of PAD rats, suggesting P2X3 signaling is a part of the mechanisms leading to inhibition
of BP response. Based on those published results in humans and animals, it is speculated
that heat exposure and/or heat treatment would be beneficial to attenuate the sympathetic
response and decrease the exaggerated BP response in PAD.

The effect of a short period heating intervention on relieving the symptoms of
intermittent claudication is also intriguing to study. In one of the previous studies,
the one-time acute effect on the EPR response in PAD was evaluated. The muscle
temperature was increased by 1.5 ◦C and the length was 5 min. The EPR response
induced by both static muscle contraction and α,β-Me-ATP injection was evaluated
20 min before, immediately after, and 20 min after the heat exposure. The results of this
study were interesting as the static muscle contraction induced EPR was attenuated
following the heat exposure, and the EPR response attenuation was recovered 20 min
after the muscle temperature returned to the baseline. However, the α,β-Me-ATP-
induced EPR response did not alter with heat exposure. This suggested the attenuation
of static-muscle-contraction-induced EPR response following one-time heat exposure
may not work through alternating the expression and function of P2X3 receptors.
Instead, it may work through the alternation of the ATP metabolism enzyme activity,
e.g., ATPase, which will be one of the further directions of the mechanism study on this
topic. As intermittent claudication frequently occurs and interrupts the daily physical
movement of the patients, this study provides a fundamental basis for the daily base
intervention strategy for the PAD patients.

5.2. Effects of Supplemental Nutrients
5.2.1. Vitamin B6

A diet deficient in vitamin B6 leads to a decreased activity of cystathionine β-synthase
and cystathionase in the liver. Dietary supplementation of vitamin B6 stimulates the activity
of these enzymes and increases the endogenous synthesis of cysteine from methionine.
In hypertensive animals and humans, increased production of cysteine would lead to
more efficient excretion of excess metabolic aldehydes, normalizing vascular calcium
channels and lowering blood pressure [203]. A regression study has also shown that
an increase in the daily intake of vitamin B6 by one standard deviation (approximately
0.5 mg per day) would reduce the risk of PAD by 29% [204]. More importantly, once
consumed vitamin B6 will be converted into a P2-purinoceptor antagonist called pyridoxal-
5-phosphate (PLP) [205]. In animal studies, the intraperitoneal injection of the vitamin B
complex (B1/B6/B12 = 100/100/2 mg/kg) attenuated the expression of P2X3 in DRG of
diabetic rats [206]. By locally infusing the vitamin B6 into human participants’ forearms,
previous studies [207] suggested that the MSNA responses to fatiguing handgrip, post-
exercise circulatory occlusion (PECO), and PECO + passive stretch were all significantly
less than those before pyridoxine. The blood pressure responses were also significantly less
than those before vitamin B6 infusion.

5.2.2. Vitamin C

Low levels of Vitamin C supplementation (assessed by dietary intake or plasma
analysis) are associated with multiple conditions, including high blood pressure (BP),
endothelial dysfunction, heart disease, atherosclerosis, and stroke [208]. For the mechanism
work on the Vitamin C supplementation on blood pressure regulation, the information
is lacking in terms of the efficacy of Vitamin C supplementation on the ERP response in
cardiovascular patients, especially in PAD, and the IR injury of PAD patients following
the revascularization surgery. A previously performed human study [17], investigated the
efficacy of Vitamin C intravenous infusion in attenuating oxidative stress and therefore the
subsequent EPR responses in PAD patients. In this study, the Vitamin C infusion elicited a
lower MAP response to low-intensity rhythmic plantar flexion in the affected legs of PAD
patients than that in the condition without Vitamin C infusion.
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6. Conclusions

Studies using a rat model of femoral artery occlusion show that sympathetic re-
sponses of the exercise pressor reflex engagement are exaggerated as observed in PAD
patients. As summarized in Figure 1, findings of the completed studies suggest that
enhanced protein levels of ASIC3, P2X3, and TRPV1 in muscle afferent nerves and
amplified responses of those receptors contribute to the exaggerated reflexive sympa-
thetic and pressor responses to their individual receptor stimulus. The findings further
suggest that NGF is likely responsible for enhanced ASIC3, P2X3, and TRPV1 and plays
a role in modulating the metaboreceptor component of the exercise pressor reflex in
hindlimb muscle ischemia. Lactic acid, ATP, and acid phosphate are the major muscle
by-products in exercising muscles and ASIC3, P2X3, and TRPV1 receptors are sensitive
to those individual metabolites and/or combined metabolites. Overall data presented
here provide evidence that alteration in chemically sensitive receptors ASIC3, P2X3, and
TRPV1 in primary afferent neurons innervating ischemic muscles plays an important
role in the development of the exaggerated reflexive sympathetic responses, likely
leading to worsening exercise capacity in patients with PAD. Moreover, NGF in sen-
sory nerves plays a role in regulating abnormal responses of those metabolic receptors.
Also, HIF-1α likely contributes to the effects of NGF on augmented muscle metabolic
responses in the DRG neurons after arterial occlusion. A study limitation needs to
be mentioned based on the fact that the studies included in this current review are
varied from factors such as sample size, gender ratio, and the choices of different animal
models as well as human populations. Therefore, additional studies are warranted to
verify and confirm the underlying mechanism and clinical results. More animal models
to exemplify different stages or pathological conditions of PAD are also necessary to
explore. In combination with the fundamental work performed by the previous studies,
those mechanistic foundations formed by studies in animal models will shed light on
the targets of the translational intervention studies to alleviate the adverse effects that
increase the cardiovascular event risk in PAD patients.
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