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Abstract

Striatal oscillatory activity is associated with movement, reward, and decision-making, and

observed in several interacting frequency bands. Local field potential recordings in rodent

striatum show dopamine- and reward-dependent transitions between two states: a “sponta-

neous” state involving β (*15-30 Hz) and low γ (*40-60 Hz), and a state involving θ (*4-8

Hz) and high γ (*60-100 Hz) in response to dopaminergic agonism and reward. The mech-

anisms underlying these rhythmic dynamics, their interactions, and their functional conse-

quences are not well understood. In this paper, we propose a biophysical model of striatal

microcircuits that comprehensively describes the generation and interaction of these

rhythms, as well as their modulation by dopamine. Building on previous modeling and exper-

imental work suggesting that striatal projection neurons (SPNs) are capable of generating β
oscillations, we show that networks of striatal fast-spiking interneurons (FSIs) are capable of

generating δ/θ (ie, 2 to 6 Hz) and γ rhythms. Under simulated low dopaminergic tone our

model FSI network produces low γ band oscillations, while under high dopaminergic tone

the FSI network produces high γ band activity nested within a δ/θ oscillation. SPN networks

produce β rhythms in both conditions, but under high dopaminergic tone, this β oscillation is

interrupted by δ/θ-periodic bursts of γ-frequency FSI inhibition. Thus, in the high dopamine

state, packets of FSI γ and SPN β alternate at a δ/θ timescale. In addition to a mechanistic

explanation for previously observed rhythmic interactions and transitions, our model sug-

gests a hypothesis as to how the relationship between dopamine and rhythmicity impacts

motor function. We hypothesize that high dopamine-induced periodic FSI γ-rhythmic inhibi-

tion enables switching between β-rhythmic SPN cell assemblies representing the currently

active motor program, and thus that dopamine facilitates movement in part by allowing for

rapid, periodic shifts in motor program execution.
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Author summary

Striatal oscillatory activity is associated with movement, reward, and decision-making,

and observed in several interacting frequency bands. The mechanisms underlying these

rhythmic dynamics, their interactions, and their functional consequences are not well

understood. In this paper, we propose a biophysical model of striatal microcircuits that

comprehensively describes the generation and interaction of striatal rhythms, as well as

their modulation by dopamine. Our model suggests a hypothesis as to how the relation-

ship between dopamine and rhythmicity impacts the function of the motor system,

enabling rapid, periodic shifts in motor program execution.

Introduction

As the largest structure of the basal ganglia network, the striatum is essential to motor function

and decision making. It is the primary target of dopaminergic (DAergic) neurons in the brain,

and its activity is strongly modulated by DAergic tone. Disorders of the DA and motor sys-

tems, such as Parkinson’s, Huntington’s, Tourette’s, and many others, result in abnormal net-

work activity within striatum [1–9]. Rhythmic activity is observed in both striatal spiking and

local field potential, and oscillations in the striatum are correlated with voluntary movement,

reward, and decision-making in healthy individuals [10–18], while disruptions of these

rhythms are biomarkers of mental and neurological disorders [1, 2, 19–27]. However, the

mechanisms of these oscillations, and their role in motor behavior and its dysfunctions,

remain poorly understood.

The current study focuses on the oscillatory bands frequently observed in striatal local field

potential: δ (1-3 Hz), θ (4-7 Hz), β (8-30 Hz), low γ (50-60 Hz), and high γ (70-80 Hz) [10, 16,

28]. Power in these bands consistently correlates with responses to task parameters including

motor initiation, decision making, and reward [10–12, 20]. Power in the β band is elevated in

Parkinson’s disease and correlates with the severity of bradykinesia [2], while striatal γ is asso-

ciated with the initiation and vigor of movement [18, 20]. In the healthy basal ganglia, β and γ
activity are inversely correlated and differentially modulated by slower basal ganglia rhythmic

activity, suggesting that the balance of these distinct oscillatory dynamics is important to

healthy motor function [16]. In rat striatum in vivo, spontaneous β and low γ oscillations tran-

sition to θ and high γ dynamics upon reward receipt and with administration of DA agonist

drugs [10]; similarly, in rat caudate and putamen, DAergic agonists produce robust low-fre-

quency modulation of high γ amplitude [28].

In this paper, we propose a biophysical model of striatal microcircuits that comprehensively

describes the generation and interaction of these rhythms, as well as their modulation by DA.

Our simulations capture the dynamics of networks of striatal fast-spiking interneurons (FSIs)

and striatal projection neurons (SPNs), using biophysical Hodgkin-Huxley type models. Our

model consists of three interconnected populations of single or double compartment Hodg-

kin-Huxley neurons: a feedforward network of FSIs, and two networks of SPNs (the D1

receptor-expressing “direct pathway” subnetwork and the D2 receptor-expressing “indirect

pathway” subnetwork). SPNs, responsible for the output of the striatum, make up 95% of stria-

tal neurons in rodents [29]. SPN firing is regulated by relatively small populations of striatal

interneurons, including fast spiking interneurons (FSIs), which strongly inhibit SPNs. Our

model FSIs exhibit a D-type potassium current [30], and our model SPNs exhibit an M-type

potassium current [31]. Both cell types are modulated by DAergic tone: FSIs express the excit-

atory D1 DA receptor [32], while two distinct subpopulations of SPNs express exclusively the
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D1 or the inhibitory D2 receptor subtype. We modeled both SPN subpopulations, with high

simulated DAergic tone increasing and decreasing D1 and D2 SPN excitability, respectively.

To model DA effects on the FSI network, we simulated three experimentally observed effects:

increased excitability due to depolarization [32], increased gap junction conductance [33], and

decreased conductance of inhibitory synapses [32]. Both gap junctions and inhibition are

known to play a role in the generation of rhythmic activity [34–44].

Our previous experimental and modeling work suggests that striatal SPN networks can pro-

duce a β (15-25 Hz) oscillation locally [45]. Our current model demonstrates that FSI networks

can produce δ/θ (~3-6 Hz), low γ, and high γ oscillations. A fast-activating, slow-inactivating

potassium current (the D-type current) allows FSIs to produce γ and δ/θ rhythms in isolation,

and network interactions make these rhythms, otherwise highly susceptible to noise, robust. In

our simulations, DA induces a switch between two FSI network states: a low DA state exhibit-

ing persistent low γ rhythmicity, and a high DA state in which a δ/θ oscillation modulates high

γ activity. As a result of FSI inhibition of SPNs, DA induces a switch in striatal dynamics,

between a low DA state in which low γ and β rhythms coexist, and a high DA state in which

bursts of FSI-mediated high γ and SPN-mediated β rhythms alternate, nested within (and

appearing at opposite phases of) an FSI-mediated δ/θ rhythm. Thus, our model generates a

hypothesis as to how observed relationships between DA and rhythmicity impact the function

of the motor system. Namely, DA appears to encourage or permit periodic motor program

switching, allowing the emergence of an FSI-mediated δ/θ-nested γ rhythm, which in turn

breaks up the “stay” signal mediated by SPN β rhythms [46].

Results

Single model FSIs produce δ/θ-nested γ rhythms whose power and

frequency is modulated by excitation

We modified a previous single-compartment striatal FSI model [47] by adding a dendritic

compartment (shown to be an important determinant of gap-junction mediated synchrony

[48–51]) and increasing the conductance of the D-type K current to 6mS/cm2. Previous work

showed that two characteristic attributes of FSI activity in vitro, stuttering and γ resonance

(defined as a minimal tonic firing rate in the γ frequency range), are dependent on the D-cur-

rent [30, 47]. Our modified FSI model successfully reproduced these dynamics as well as

revealing other dynamical behaviors (Fig 1).

With increasing levels of tonic applied current (Iapp), our model FSI transitions from quies-

cence to (periodic) bursting to periodic spiking. The bursting regime, of particular interest in

this work, is dependent on the level of tonic excitation and, centrally, the D-current conduc-

tance (Fig 1). FSI spiking frequency increases with tonic drive (Fig 1A). As shown previously

[47], the FSI model’s γ-rhythmic intraburst spiking arises from its minimum firing rate, which

is also set by the D-current conductance. When this conductance is zero, the model has no

minimum firing rate; firing rate is a continuous function of Iapp with a minimum firing rate of

zero (Fig 1B). As the D-current conductance is increased, the firing rate below which the cell

will not fire also increases. Therefore, our choice of D-current (gd = 6, resulting in a minimum

firing rate around 40 Hz) reflects not only our interest in the bursting regime, but also our

desire to match experimental observations of striatal γ frequency [10, 47].

The frequency of bursting depends on the decay time constant of the D-type potassium cur-

rent (τD); in the absence of noise, it is in the δ frequency range for physiologically relevant τD

(<*200 ms, Fig 1C). Note that τD changes the inter-burst interval without changing the tim-

ing of spikes within a burst. With lower levels of D-current (as used in previous FSI models

[30, 47, 52]), bursting is aperiodic. For sufficiently large D-current conductance, FSI bursting
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occurs for a broad range of applied currents (Iapp over 5 μA/cm2, Fig 1D and 1E). Since simu-

lated DA acts on our FSI model by increasing tonic excitation, DA causes an increase in model

FSI spiking from low γ rhythmicity to high γ rhythmicity. Below, we demonstrate that the FSI

γ is determined by this single-cell rhythmicity and is mostly independent of the timescale of

inhibitory synapses.

In addition to increasing with tonic excitation, burst frequency increases to δ/θ frequencies

when the input includes small amounts of noise (Fig 2A and 2B), which decrease the interburst

interval. However, noise of sufficient amplitude abolishes rhythmic bursting altogether (at

least in single cells, Fig 2C).

In summary, a single model FSI displays low-frequency-nested γ oscillations, dependent on

the D-type current, under a wide range of tonic excitation levels. Both low frequency power

and γ frequency increase with tonic excitation. While noise increases the frequency of the

slower rhythm from δ to θ, it also diminishes the power of this rhythm in the single cell. Below

we demonstrate that all of these effects are also present in a network of FSIs, with a key differ-

ence: the network δ/θ rhythm is robust to noise.

FSI networks produce DA-dependent δ/θ and γ rhythms

To determine if γ and δ/θ oscillations persist in networks of connected FSIs, and how DA

could modulate these network dynamics, we simulated a network of 50 model FSIs connected

randomly by both inhibitory synapses (connection probability 0.58 [53]) and gap junctions

Fig 1. Behavior of single model FSI over a range of applied currents and D-current conductances. (A) i. A single model FSI with low tonic

excitation (Iapp = 8μA/cm2) spikes at a low γ frequency within periodic bursts, while a single model FSI with high tonic excitation (Iapp = 20μA/cm2)

spikes at a high γ within periodic bursts. ii. Power spectral density of voltage traces in (A)i, comparing low and high levels of tonic excitation. Power

spectra are derived using Thomson’s multitaper power spectral density (PSD) estimate (MATLAB function pmtm). (B) Plot of the minimal firing rate

within a burst of a single model FSI with zero and nonzero D current conductance gD. Note that the cell does not fire below 40 Hz when the D-current

is present. (C) Plot of the maximal inter-burst (δ) frequency and intraburst (γ) firing rate of a single model FSI as τD, the time constant of inactivation of

the D current, is increased. (D) Three-dimensional false-color plot demonstrating the dependence of the bursting regime on gd and Iapp. (E) Three-

dimensional false-color plot demonstrating the dependence of firing rate on gd and Iapp.

https://doi.org/10.1371/journal.pcbi.1007300.g001
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(connection probability 0.33 [54]). We also implemented three experimentally observed effects

of DA on FSI networks: increased tonic excitation of individual FSIs [32], increased gap junc-

tion conductance between FSIs [33], and decreased inhibitory conductance between FSIs [32]

(see Methods). We used the sum of all synaptic inputs within the network as a surrogate mea-

sure for simulated local field potential (LFP); this measure is hereafter referred to as “surrogate

LFP”.

Unlike in single cells, FSI network δ/θ rhythmicity is dependent on sufficient levels of tonic

excitation: at low levels of tonic input (Iapp <* 1μA/cm2), the FSIs do not attain enough syn-

chrony for a strong network δ/θ (Fig 3Ai). As in single cells, FSI network δ/θ power increases

with tonic input strength (Fig 3Ai). Sufficiently strong gap junction coupling is also a require-

ment for the FSI network to attain sufficient synchrony to produce δ/θ rhythmicity (Fig 3Bi).

Gap junctions function to protect the FSI network δ/θ rhythm from the effects of noise (as in

[39, 55]); the δ/θ oscillation in the network is far more robust to noise than the same oscillation

in a single cell (S1 Fig). Finally, inhibitory synaptic interactions between FSIs have a desyn-

chronizing effect that interferes with network δ/θ, and increasing inhibitory conductance

within the FSI network decreases power in the δ/θ band (Fig 3Ci). FSI network γ power and

frequency both increase with tonic input strength (Fig 3Aii), and, like the network δ/θ, the net-

work γ rhythm is dependent on sufficient gap junction conductance and is disrupted by inhi-

bition (Fig 3Bii & 3Cii). Both network rhythms are robust to a wide range of heterogeneity in

applied current and conductances (S2 Fig).

To explore whether the γ rhythms observed in the FSI network are generated by inhibitory

interactions, we examined the dependence of γ frequency on the time constant of GABAA

Fig 2. Applied noise determines interburst and intraburst frequency of FSI spiking. (A) i. Single model FSI with tonic excitation (7 μA/cm2) and

weak Poisson noise (λ = 500) spikes at γ nested in δ/θ, while a single model FSI with tonic excitation (7 μA/cm2) and strong Poisson noise (λ = 7000)

has limited low-frequency content. ii. Power spectral density of voltage traces in (A)i, comparing low and high levels of noise. The solid line represents

the mean value over 20 simulations per point. Shading represents standard deviation from these means. Power spectra are derived using Thomson’s

multitaper power spectral density (PSD) estimate (MATLAB function pmtm). (B) Plot of the inter-burst frequency and power of a single model FSI as

Poisson noise of varying rates is applied. (C) Plot of the inter-burst frequency and power of a single model FSI as Poisson noise of varying amplitudes is

applied. For B and C Iapp = 7 μA/cm2.

https://doi.org/10.1371/journal.pcbi.1007300.g002
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inhibition, as the characteristic frequency of canonical interneuron network γ (ING) has been

shown to depend on this time constant [38, 40, 56, 57]. The frequency of the γ rhythm pro-

duced under low DA conditions decreased with increases in the GABAA time constant (Fig

3D), suggesting this rhythm is ING-like. However, the γ produced under high DA conditions

had a frequency that was not highly dependent on the inhibitory time constant, suggesting

that this γ rhythm is mechanistically different from previous ING models, being generated by

synchronous γ frequency bursts in individual cells, as opposed to inhibitory interactions.

In order to explore FSI network dynamics that might be observed during normal fluctua-

tions in DA during goal-directed tasks [58], we simulated FSI network activity under two con-

ditions, simulated low (or baseline) and high DAergic tone (Fig 4A). Parameter values for low

and high DA were chosen so as to best demonstrate qualitative differences in network behav-

iors while maintaining physiologically realistic behavior on the cellular level (see Methods).

During simulated low DAergic tone, characterized by low levels of FSI tonic excitation and

gap junction conductance, and high levels of inhibitory conductance, the network produces a

persistent low frequency γ oscillation (* 60 Hz) in the surrogate LFP (Fig 4Bi–4Di). The raster

plot of FSI spike times (Fig 4Eii) shows that individual FSIs exhibit sparse spiking in the low

DA state. Although individual FSIs exhibit periodic spike doublets or bursts (γ-paced and

entrained to the network γ) that recur at δ/θ frequency, the timing of these bursts is indepen-

dent (Fig 4Di and 4Ei). Therefore, while δ/θ power is present at the level of individual FSIs,

there is not sufficient synchrony for it to appear in the network; while the voltages of individual

cells show power in the δ/θ band, a power spectrum of the surrogate LFP does not (Fig 4Di).

During simulated high DAergic tone, characterized by high levels of tonic excitation and

gap junction conductance and low levels of inhibitory conductance, network activity is

Fig 3. FSI network rhythms change with background excitation and synaptic strength. Power and frequency of δ/θ and γ rhythms in FSI network

mean voltage as a function of (A) tonic input current, (B) gap junction conductance, and (C) GABAA conductance. The parameters not being varied in

plots A-C are held at the high DA values (Iapp = 14 μA/cm2, gGJ = 0.3mS/cm2, gsyn = 0.005mS/cm2, τgaba = 13 ms. The solid line represents the mean

value over 10 simulations per point. Shading represents standard deviation from these means. Power spectra are derived using Thomson’s multitaper

power spectral density (PSD) estimate (MATLAB function pmtm). (D) Gamma frequency as a function of GABAa synaptic time constant and level of

dopamine. High DA values are as previously stated; low DA values are Iapp = 7 μA/cm2, gGJ = 0.15mS/cm2, gsyn = 0.1mS/cm2.

https://doi.org/10.1371/journal.pcbi.1007300.g003
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much more structured: a strong 80 Hz γ rhythm, phase-modulated by a 3 Hz δ/θ rhythm, is

evident in both the surrogate LFP and network raster plots (Fig 4Bii–4Eii, right). In this

state, active FSIs spike at the same phase of both δ/θ and γ, producing dual (and nested) net-

work rhythms.

Fig 4. FSI network activity and rhythms are altered by DA. (A) Schematics showing the effects of dopamine on the FSI network during the baseline

(i) and high (ii) DAergic tone conditions. (B) Sum of synaptic currents (surrogate LFP) for the FSI network in the two conditions. (C) Spectrograms of

(B). (D) Solid line: Power spectral density of summed FSI synaptic currents (surrogate LFP), averaged over 20 simulations. Dashed line: Average power

spectral density of each individual FSI voltage trace in the network, averaged over 20 simulations. Shading represents standard deviation from the

mean. (E) Raster plots of FSI network activity at multisecond and subsecond timescales (red bars indicate time limits of lower raster plot).

https://doi.org/10.1371/journal.pcbi.1007300.g004
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SPN networks generate DA-dependent β oscillations

Previous work by our group on the striatal origin of pathological oscillations in Parkinson’s

disease found that robust β oscillations can emerge from inhibitory interactions in model net-

works of SPNs [45]. The interaction of synaptic GABAA currents and intrinsic M-currents

promotes population oscillations in the β frequency range; their β timescale is promoted by

the M-current, which allows rebound excitation at *50 ms in response to synaptic inhibition.

Excitation of SPNs increases β power and frequency (see Methods). With this previous striatal

SPN network model, we explored the transition from a healthy to a parkinsonian state with

pathologically low levels of striatal DA [45]. Here, to explore the generation of β rhythmicity

during normal fluctuations in DAergic tone, we simulated two independent networks of 100

D1 receptor expressing (“direct pathway”) SPNs and 100 D2 receptor expressing (“indirect

pathway”) SPNs. Model SPNs are single compartment neurons expressing the Hodgkin-Hux-

ley spiking currents and the M-type potassium current, interconnected all-to-all by weak

inhibitory GABAA synapses (i.e., connection probability 1). We simulated the effects of DA on

model D1 and D2 SPNs by increasing and decreasing their levels of tonic excitation, respec-

tively. (Whether DA generates a positive or negative applied current was the only difference

between D1 and D2 expressing SPNs in our model; see Methods and Fig 5A. For further expla-

nations of parameter choices and discussion of simplifications made while modeling the net-

work, see the “Caveats and limitations” section of the Discussion.) In the absence of FSI input,

neither population was sufficiently excited to exhibit spontaneous spiking under low DA con-

ditions (Fig 5i). Subthreshold low-β oscillations are present in the mean voltage of the non-fir-

ing SPN networks due to the timescale of the M-type potassium current [45]. Under high DA

conditions, D1 SPNs exhibited persistent high-β rhythmicity at *20 Hz (Fig 5ii) due to the

increase in applied current.

FSI network γ and δ/θ oscillations rhythmically modulate SPN network β
oscillations only in high DA state

To understand the interactions between FSI and SPN networks, and between β, γ, and δ/θ
rhythms, we simulated a combined FSI-SPN striatal microcircuit, in which 50 model FSIs ran-

domly connect to two independent networks of 100 SPNs, one each consisting of D1 and D2

SPNs (connection probability from FSIs to D1 or D2 SPNs of 0.375 [52]). FSIs were intercon-

nected by gap junctions and inhibitory synapses (connection probability 0.33 and 0.58 respec-

tively). D1 and D2 SPNs were connected by all-to-all inhibitory synapses (connection

probability 1) within but not across populations. There were no connections from SPNs back

to FSIs [59].

During simulated baseline DAergic tone, we modeled D1 and D2 SPNs as being equally

excitable, with equal firing rates matching in vivo observations [60] while under the influence

of FSI inhibition. The presence of FSIs is sufficient for the SPNs to fire in the low dopamine

state (Fig 6i); this paradoxical excitatory effect of GABAergic input arises because SPNs can be

excited via post-inhibitory rebound, as demonstrated in previous work [45]. Both SPN net-

works produce a low-β rhythm (15 Hz), while the FSI network produces a low γ (60 Hz, Figs 6i

& 7i). The SPN subnetwork does not entrain to the FSI γ. The generation of low γ and β
rhythms matches observations of striatal rhythmicity in resting healthy animals in vivo [10].

Our model suggests that these γ and β rhythms are independently generated by FSI and SPN

networks, respectively.

During simulated high DAergic tone, an FSI-mediated high γ (*80 Hz) and an SPN-medi-

ated β (*15-20 Hz) are observed during opposite phases of an ongoing FSI network δ/θ
rhythm (Figs 6ii & 7ii). During the peak of the δ/θ, the incoming γ frequency input from the

Interleaved striatal oscillations mediate periodicity in motor control
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FSIs silences the SPNs. When the FSIs are silent during the δ/θ trough, both D1 and D2 SPN

populations are sufficiently excited to produce a β rhythm. Thus, while the SPNs cannot

entrain to the γ frequency of FSI inhibition, they are modulated by the FSI-generated δ/θ
rhythm. Due to the differences in excitability under high DAergic tone, the D1 SPN subpopu-

lation produces a higher frequency β (*20 Hz) than does the less excitable D2 subpopulation,

Fig 5. Baseline SPN activity is characterized by β oscillations only in the D1 subnetwork under high DA conditions. (A) Schematics depicting the

baseline (i) and high DAergic tone (ii) conditions in an isolated SPN-only network. (B) Mean voltages for the D1 and D2 SPN populations in the two

conditions. (C) Spectrograms of mean voltage for the D1 subpopulation (upper) and D2 subpopulation (lower). (D) Power spectral density of D1 and

D2 population activity, averaged over 20 simulations. Shading represents standard deviation from the mean. Power spectra are derived using

Thomson’s multitaper power spectral density (PSD) estimate (MATLAB function pmtm). (E) Raster plots of SPN population activity.

https://doi.org/10.1371/journal.pcbi.1007300.g005
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Fig 6. FSIs paradoxically excite and pattern SPN network activity. (A) Schematics showing modulation during the baseline (i) and high (ii) DAergic

tone conditions in a combined FSI-SPN network. (B) Mean voltages for the D1 and D2 SPN populations in the two conditions. (C) Spectrograms of

mean voltage for the D1 subpopulation (upper) and D2 subpopulation (lower). (D) Power spectral density of D1 and D2 population activity, averaged

over 20 simulations. Shading represents standard deviation from the mean. Power spectra are derived using Thomson’s multitaper power spectral

density (PSD) estimate (MATLAB function pmtm). (E) Raster plots of SPN population activity.

https://doi.org/10.1371/journal.pcbi.1007300.g006
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which produces a low β (*15 Hz). Preliminary data suggest that the SPN network is more sen-

sitive to input in the high DA condition, when the ongoing β rhythm is periodically disrupted

by the FSI-induced δ/θ (S3 Fig).

Discussion

Our model suggests that DAergic tone can produce a transition between two dynamical states

in striatal GABAergic networks. In the baseline DAergic tone state, ongoing low γ (55-60 Hz)

and β (*15 Hz) oscillations are generated by striatal FSI and SPN networks, respectively (Fig

7i). In the high DAergic tone state, packets of FSI-mediated high γ (*80 Hz) and SPN-medi-

ated β (10-20 Hz) rhythms alternate at δ/θ (*3 Hz) frequency (Fig 7ii). Our results make pre-

dictions about the generation of striatal rhythms, have implications for the role of FSIs in

regulating the activity of SPNs, and suggest an underlying mechanism for the temporal

dynamics of motor program selection and maintenance (Fig 7D).

Mechanisms of γ and δ/θ oscillations in single FSIs

Prior work has shown γ oscillations in striatal FSIs arising from an interaction between the

spiking currents and the spike frequency adaptation caused by the potassium D-current,

Fig 7. In the high DA state, packets of FSI γ and SPN β alternate at a δ/θ timescale. (A) LFP surrogates (summed synaptic currents) for baseline (i)

and high (ii) DAergic tone conditions. (B) Spectrograms of LFP surrogates. (C) Wavelet-filtered β and γ oscillations from the population activity in (A).

(D) Schematic of oscillatory activity during baseline and high DAergic tone conditions, with proposed functional impact on ensemble activity.

https://doi.org/10.1371/journal.pcbi.1007300.g007
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which produces a minimum FSI firing rate in the γ range [47, 61]. The frequency of the

FSI γ depends on excitatory drive to the FSIs, which in our model leads to the modulation

of γ frequency by DA, a phenomenon also observed in striatal γ oscillations in vivo [14,

62–64].

Prior work has also suggested that the D-current is responsible for the bursting or stuttering

behavior of FSIs, in which brief periods of high frequency activity are interspersed with periods

of quiescence [30]. However, regularity in these periods of quiescence has not been previously

observed. Thus, the present study is novel in its prediction of the generation of low-frequency

rhythms by FSIs, dependent on high levels of D-current conductance; FSIs have previously

been characterized solely as generators of γ oscillations. In our model, the D-current is acti-

vated by burst spiking, e.g., at γ frequency, and hyperpolarizes the cell for roughly a δ/θ period

due to its long time constant of inactivation. Though the δ rhythm produced by individual

cells decreases in frequency in response to excitatory drive (Fig 1D), the frequency of the

resulting δ/θ oscillation in the network has a minimum around 3 Hz (Fig 3i). This lower

bound on δ/θ frequency in the network is likely a result of gap-junction induced synchrony

driving burst frequency higher than in the individual cell while maintaining robustness to

noise. Notably, this study is also a novel demonstration of the generation of both δ/θ and γ
oscillations by a single membrane current.

Mechanisms of γ and δ/θ oscillations in FSI networks

Our model FSI network produces qualitatively different dynamics at high and baseline levels

of simulated DA. Under high dopaminergic tone, the FSI network produces high γ band (80

Hz) oscillations modulated by a δ/θ (* 3 Hz) oscillation, while under low dopaminergic tone

the FSI network produces low γ band (60 Hz) oscillations alone (Fig 4). While both δ/θ and γ
are present at the level of individual cells under all dopaminergic conditions, only in the high

DA condition is bursting sufficiently synchronized that δ/θ power is present in the network.

The presence of δ/θ at the network level can be attributed to the higher level of gap junction

conductance in the high DA condition (Fig 3Bi).

The ability of gap junctions to generate synchrony is well established in computational and

experimental work [34, 41–44, 48, 50, 54, 55, 65, 66]. Previous models from other groups sug-

gest that gap junctions can enable synchronous bursting in interneurons, by aligning the burst

envelopes, as in our model [39]. While a shunting effect of low conductance gap junctions can

inhibit spiking [54], gap junctions with high enough conductances have an excitatory effect,

promoting network synchrony [42, 65]. Previous work has also shown the importance of gap

junction connectivity in stabilizing network γ oscillations in silico [34, 41, 67], as well as net-

work γ and δ/θ oscillations in inhibitory networks in vitro and in silico containing noise or het-

erogeneity [42]. Striatal FSIs in vivo are highly connected by gap junctions as well as inhibitory

synapses [68], similar to the networks of inhibitory interneurons that produce ING rhythms

[40]. Unlike ING, however, our FSI network γ is independent of GABAergic synapses: inhibi-

tory conductance has only a small impact on γ frequency, and γ power is highest when inhibi-

tory synapses are removed (Fig 3C). In slice, the γ resonance of striatal FSIs is dependent on

gap junctions but not on GABA [69], suggesting that our model is an accurate representation

of striatal FSI γ.

It is important to note that, while our model is conceived as a representation of the striatal

microcircuit, physiologically similar FSI networks are present in cortex [30]; therefore, the

mechanisms described here may contribute to the generation of δ/θ-modulated γ oscillations

in cortex as well.
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Support for striatal rhythm generation

Our model provides mechanistic explanations for all four oscillatory bands observed in ventral

striatum in vivo (δ/θ, β, low γ, and high γ) [70]. Previous modeling and experiments suggest β
can be generated by striatal SPNs [45, 71, 72]. Our results suggest that FSIs generate striatal γ,

and that motor- and reward-related increases in γ power reflect increased striatal FSI activity.

There is evidence to support the existence of a locally generated striatal γ oscillation that is

not volume conducted and that responds to local DAergic tone [27, 73]. The FSIs of the stria-

tum are the most likely candidate generator of this rhythm: they are unique among striatal cell

types in preferentially entraining to periodic input (from each other and from cortex) at γ fre-

quencies [5, 44, 74–76]. Different populations of striatal FSIs in vivo entrain to different γ fre-

quencies, and FSIs entrained to higher frequencies are also more entrained to cortical input

[14, 62–64, 70]. It is likely that different subpopulations of FSIs selectively entrain to specific γ
frequencies, determined by physiological and contextual, including neuromodulatory (e.g.,

DAergic), factors.

Experimental evidence also supports striatal FSI involvement in a DA-modulated δ or θ
rhythm. FSIs phase lock to spontaneous striatal LFP oscillations at δ [22, 77, 78] and θ [60, 79–

81] as well as γ frequencies. In vivo, striatal δ and θ power are modulated by task-related phe-

nomena such as choice points and motor execution, as well as by reward and reward expecta-

tion, suggesting responsiveness in both frequency bands to DA (known to phasically increase

in response to reward cues) [12, 82–86]. θ has also been shown to modulate the response of

SPNs to reward [15].

The slow rhythm generated by our model network is on the boundary between the δ and θ
frequency bands, and as such it is difficult to determine for which of the two bands our model

has more substantial implications. However, many electrophysiological studies of striatum

find a low frequency rhythm in this intermediate 3 to 5 Hz range [28, 87, 88]. While rodent

electrophysiology suggests that δ is more prevalent in the striatum of the resting animal and θ
is stronger during high DAergic tone [89, 90], human studies suggest that DAergic reward sig-

nals are associated with increased power in the δ band in nucleus accumbens and that θ power

(which originates in cortex) is associated with the decreased DA signal following an unex-

pected loss [91, 92]. The frequency of this slow rhythm may be determined by entrainment to

rhythmic cortical input, or by different subpopulations of cells responding to different compo-

nents of the dopamine signal (e.g. tonic versus phasic, anticipatory vs consummatory, etc.).

The β oscillations produced by our model network vary in frequency. During simulated

baseline DAergic tone, the β frequency in both SPN subnetworks is closer to 15 Hz, while dur-

ing high DAergic tone, the β frequency produced by the D1 SPN subnetwork approaches 20

Hz, without a change in the frequency generated by the D2 SPN subnetwork (Figs 5 and 6).

This behavior is not unexpected, as our previous modeling work suggested that the frequency

of the β generated by SPN networks is sensitive to excitatory drive [45], which is the difference

between the cell subtypes in this model. Experimental evidence also supports the association of

low-β but not high-β frequencies with the indirect (D2-expressing) pathway of the basal gan-

glia [93]. Corticostriatal models constructed by our group that include connectivity differences

between D1 SPNs and D2 SPNs suggest that these differences in β frequency may be an essen-

tial component of how cortical input is routed to the direct versus the indirect pathway during

decision making [94].

Rhythmicity in striatal dynamics and movement

In vivo, striatal β power has a well established negative correlation with DA and locomotion in

both health and disease, while striatal γ power has a positive correlation with both [2, 11, 12,
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19, 20, 95]. β oscillations in the basal ganglia are thought to provide a “stay” or “status quo” sig-

nal that supports maintenance of the currently active motor program [46], and they are caus-

ally implicated in motor slowing and cessation [16, 17, 21, 25, 95, 96].

In our simulations of high DAergic tone, FSI spiking at high γ frequencies δ/θ-periodically

inhibits SPN-generated β oscillations, permitting SPN β only during the 150-200 millisecond

δ/θ trough corresponding to the FSIs’ interburst interval. We hypothesize that these periodic

gaps between SPN β packets are necessary to terminate ongoing motor programs and initiate

new motor programs, both represented by active SPN cell assemblies. During the δ/θ trough,

all SPN cell assemblies are simultaneously released from inhibition and viable to compete once

again to determine the current motor program, with incoming input from cortex influencing

this competition. Under this interpretation, our results predict that striatal networks oscillate

between a “stay” or “program on” state marked by SPN β oscillations, and a “switch” or “pro-

gram off” state marked by FSI high γ oscillations, and that the δ/θ period limits the speed of

sequential motor program execution (Fig 7D). Accordingly, the SPN network responds more

specifically to input when the FSI-induced δ/θ is periodically disrupting the intrinsic SPN β
rhythm (S3 Fig). Associations formed between sets of SPNs receiving similar input persist dur-

ing an ongoing β oscillation, but these associations are broken by FSI-mediated rhythmic inhi-

bition. This inhibitory disruption thereby allows SPNs to flexibly respond to new input, which

would otherwise be unable to override the coordinated activity of pre-existing cell assemblies.

In support of this hypothesis, striatal representations of behavioral “syllables” combined to

create motor programs are active for a maximum of *200 ms [97], and the velocity of contin-

uous motion is modulated intermittently at a θ frequency (*6-9 Hz) [98]. In healthy animals,

the duration of β bursts has an upper limit of *120 ms, about half a θ cycle [16], in agreement

with our prediction that β activity is δ/θ phase-modulated. Striatal γ has also been observed in

transient (*150 ms) bursts that are associated with the initiation and vigor of movement [18].

Additionally, other biophysically constrained computational models have suggested that SPN

assemblies fire in sequential coherent episodes for durations of several hundred milliseconds,

on the timescale of one or several δ/θ cycles [99]. Overall, evidence supports the hypothesis

that β and γ oscillations in striatum in vivo, and therefore the motor states they encode, are

activated on δ/θ-periodic timescales.

Furthermore, β and γ power are anticorrelated in EEG and corticostriatal LFP [20, 28, 100],

in agreement with our model’s prediction that these rhythms are coupled to opposite phases of

ongoing δ/θ rhythms. FSI and SPN firing are inversely correlated in vivo, entrained to θ, and

they are active during opposite phases of θ, as observed in our model [60, 79, 101–103]. δ/θ-γ
cross-frequency coupling is observed in striatum and increases during reward, when DAergic

tone is expected to be high [13, 28, 90, 104, 105]. Our model suggests that these cross-fre-

quency relationships occur in part due to FSI inhibition of SPNs. Though FSIs are smaller in

number, FSI-SPN synapses have a much stronger effect than SPN-SPN connections, with each

FSI inhibiting many SPNs [59, 106].

During baseline DAergic tone in our model, FSIs produce an ongoing low γ that does not

effectively suppress SPN β activity (produced sporadically in both D1 and D2 SPN networks),

and thus does not facilitate the switching of the active SPN assembly. Thus, our model suggests

that at baseline levels of DA, switching between SPN assembles may be more dependent on

cortical inputs or downstream basal ganglia circuit computations. Although the function of

FSI low γ input in SPN dynamics is unclear, it may facilitate striatal responsivity to cortical low

γ input, which occurs in an afferent- and task-specific manner [70]. SPNs do not entrain to γ
in our model, suggesting that γ oscillations are not transmitted to downstream basal ganglia

structures.
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In contrast, both the β and δ/θ rhythms in our model entrain SPN networks and may be

relayed to other basal ganglia structures. Intriguingly, alternation between β and γ on a δ/θ
timescale has been observed in the globus pallidus in vivo, and DAergic tone modulates these

oscillations and their interactions [28, 87]. Thus, the mechanisms proposed in our model may

also play a role in the oscillatory dynamics of other basal ganglia structures, through a combi-

nation of rhythm propagation and local rhythm generation by similar circuits. Similar pauses

in FSI activity, allowing transient SPN disinhibition and production of β oscillations, occur in

a recent computational model of the striatal-GPe network [52], also based on an earlier model

of stuttering FSIs [30]. In contrast to this work, we emphasize the mechanisms producing β
and the coordination of β and γ by δ/θ, not addressed previously [52].

Implications for disease

In Parkinson’s disease, which is characterized by motor deficits and chronic DA depletion, β
power is correlated with the severity of bradykinesia [2]. Parkinsonian βmay be generated by

striatal D2 SPNs [45, 71, 72]. Parkinsonian conditions also produce high cholinergic tone

[107], known to decrease the conductance of GABAergic FSI-SPN synapses [108]. Thus, the

failure of the FSI inhibition-mediated motor program switching described above may play a

role in the motor deficits observed in Parkinson’s: if DA is low, and FSIs are unable to inhibit

either D1 or D2 SPNs, δ/θmodulation of SPN β rhythmicity will be supplanted by ongoing D2

β rhythmicity, impairing motor initiation by reducing the possibility of motor program

switching in the Parkinsonian striatum. Supporting this hypothesis, the β frequency generated

by D2 SPNs in our model is substantially lower than that generated by the D1 SPN subnetwork

in the high DA condition (Fig 6). Experimental work suggests that parkinsonian β is specifi-

cally a low (<20 Hz) β, and that treatment by L-DOPA or deep brain stimulation specifically

reduces power in the low β band without affecting high β power [93, 109, 110]. Our model sug-

gests that this distinction in β frequency bands is at least in part due to differences in excitatory

drive between subtypes of SPNs expressing different DA receptors.

In hyperkinetic motor disorders, γ and θ rhythms are potentiated: mouse models of Hun-

tington’s disease (HD) displays unusually high δ/θ and γ band striatal LFP power [3, 5, 6]; and

L-DOPA-induced hyperkinetic dyskinesia is also characterized by increased high γ and δ/θ
power and reduced β power in the striatal LFP [1, 22, 23]. As these rhythms are tied to FSI acti-

vation in our model, we suggest that hyperkinetic disorders may result from striatal FSI hyper-

function. Consistent with this hypothesis, in HD model animals, FSI to SPN connectivity is

increased, and SPNs respond more strongly to FSI stimulation [7]. Computational modeling

suggests that FSI-generated γmore readily entrains to δ-frequency input during HD [5].

However, hypofunction of striatal FSI networks can also lead to hyperkinetic disorders,

including Tourette’s syndrome, dystonia, and dyskinesias [1, 4, 8, 9, 111–113]. Dystonia,

which as a disorder of involuntary muscle activation is considered hyperkinetic, can also be

characterized by rigidity and freezing due to activation of antagonistic muscles. Indeed, dysto-

nia may be the consequence of an increase in SPN firing rate due to D2 receptor dysfunction

[114]. Our model suggests that FSI hypofunction may contribute to dystonia by resulting in

excessive SPN β rhythmicity and decreased probability of motor program switching. A reduc-

tion in θ-γ cross frequency coupling has been reported in L-DOPA-induced dyskinesia, sug-

gesting that a chronic hyperkinetic high-DA state may also abolish the FSI-generated δ/θ-

coupled γ produced here, possibly by pushing the FSI out of its bursting regime and into a

tonic spiking mode [24]. These findings underscore the importance of balanced FSI inhibition

of SPNs, exemplified by the periodic suppression observed in our model, which we suggest

enables the flexible striatal network activity that allows for smooth, purposeful movements.
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Caveats and limitations

Little experimental evidence on the striatal FSI D-current conductance exists. The level of D-

current conductance we’ve chosen leads to γ frequencies and FSI firing rates that are more in

line with experimental observations than with previous models; this level of D-current also

produces δ/θ rhythmicity in FSI networks. Our parameter choices result in a model exhibiting

a transition between “low DA” and “high DA” dynamic states that matches experimental

observations and has powerful functional interpretations. Validating our results will require

further experimental investigation of the D-current in striatal FSIs. Interestingly, DA has been

shown to downregulate D-current conductance in prefrontal cortical FSIs [115]. If striatal FSIs

exhibited a similar DA-dependent D-current downregulation, our simulations suggest that the

transition between high and low DA states could be different from that described in the cur-

rent study. The existence and functional interpretations of other dynamic transitions are

beyond the scope of this paper.

In general, many DA-dependent changes in striatal neurophysiology have been observed.

For the sake of simplicity, most of these have been left out of our modeling. For example, D1

and D2 SPNs respond differently to adenosine [116] and peptide release [117], but we did not

consider these significant factors in the production of striatal β oscillations. While the nature

of the changes induced by DA in our network is based on a review of the literature, the actual

values chosen are assumptions of the model. Details on the rationale behind each specific

value are given in the Methods section.

We also omitted inhibitory connections between D1 and D2 SPN populations. The connec-

tivity from D1 to D2 SPNs is very sparse (6 percent). Connections from D2 to D1 SPNs are

more prevalent, but it seems unlikely that these projections would qualitatively alter our

results: during the baseline state, the D1 and D2 SPNs are identical; during the high DA state,

SPN inhibition tends to increase SPN β rhythmicity and spiking.

In our model the number of FSIs is small, so every FSI participates on every θ cycle; in vivo,

the participation of multiple FSI populations is likely coordinated by cortex. Coordinated FSI

activity has proven hard to observe over long periods in vivo [14, 118]. However, FSIs form

local functional circuits [119], and in vivo, striatal FSI assemblies exhibit transient gap-junction

dependent synchronization [66], possibly resulting from brief bouts of correlated cortical or

homogeneous DAergic input. Furthermore, different subpopulations of FSIs have strong pref-

erences for projecting to either D1 or D2 SPNs, as opposed to the overlapping projections

modeled in our current study, and these distinct populations respond differently to cortical

oscillations [80]. Thus, local γ synchrony may exist in small striatal subnetworks and be ampli-

fied by DA or cortical input via the differential recruitment of multiple FSI subpopulations.

Compounding the issues of unrealistic population size, the ratio of FSIs to SPNs in our

model is much higher than data from rodent striatum suggest. 20% of the cells in our model

network are FSIs, while FSIs comprise only about 0.7-1% of cells in rodent striatum [120].

Unfortunately, it would be computationally intractable to reproduce the network dynamics of

the present model at a ratio of 50 or 100 SPNs per FSI. However, in humans the proportional

number of FSIs is much higher; interneurons may account for as many as 25% of human stria-

tal neurons [121]. We have attempted to structure our model such that each SPN receives a

realistic number of incoming connections from FSIs (mean 18.75 in our model, based on a

range of 4 to 27 [29]), and such that these synapses are of realistic strengths. Therefore, it is rea-

sonable to predict that the qualitative dynamics of FSI to SPN inhibition in our model would

be similar even if the number of SPNs present were much higher.

Finally, cortical input to both FSIs and SPNs was simulated as Poisson noise. In a sense, we

simulated a model of striatum to which cortex is not providing informative input. It could be
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the case that this is a population that is not “selected” by cortex to take part in motor activity, a

population that is in a “listening” state awaiting cortical input, or a population taking part in a

learned behavior that can be executed without cortical input. However, cortical input is proba-

bly essential in determining which SPNs and FSIs take part in network oscillatory activity. If

the FSIs play a role in organizing the response of the SPNs to cortical input, changing the prop-

erties of the simulated input may prove informative in terms of how this organization might

take place. In particular, cortical inputs may be more correlated within certain FSI subpopula-

tions than others. Previous modeling work has shown that networks of striatal FSIs can detect

correlated input [54], a property that may play an important computational role in striatal

function. Additionally, we can expect that input from cortex has oscillatory properties of its

own. Exploring these complexities is an important direction for future research into the role of

striatal GABAergic networks and rhythmic dynamics in motor behavior.

Materials and methods

All neurons (FSIs and SPNs) are modeled using conductance-based models with Hodgkin-

Huxley-type dynamics. SPNs are modeled with a single compartment and FSIs have two com-

partments to represent the soma and a dendrite. The temporal voltage change of each neuron

is described by (Eq 1):

cm
dV
dt
¼ �

X
Imemb �

X
Isyn þ Iapp ð1Þ

Membrane voltage (V) has units ofmV. Currents have units of μA/cm2. The specific mem-

brane capacitance (cm) is 1mF/cm2 for all FSIs and SPNs. Each model neuron has intrinsic

membrane currents (Imemb) and networks of neurons include synaptic currents (Isyn). The

applied current term (Iapp) represents background excitation to an individual neuron and is

the sum of a constant and a noise term.

All membrane currents have Hodgkin-Huxley-type conductances formulated as:

I ¼ �gðmnhkÞðV � EionÞ ð2Þ

Each current in Eq 2 has a constant maximal conductance (�g) and a constant reversal

potential (Eion). The activation (m) and inactivation (h) gating variables have nth and kth order

kinetics, where n, k� 0. The dynamics of each gating variable evolves according to the kinetic

equation (written here for the gating variablem):

dm
dt
¼
m1 � m
tm

ð3Þ

The steady-state functions (m1) and the time constant of decay (τm) can be formulated

using the rate functions for opening (αm) and closing (βm) of the ionic channel by using the

equations:

m1 ¼ am=ðam þ bmÞ

tm ¼ 1=ðam þ bmÞ:

The specific functions and constants for different cell types are given below.

Striatal fast spiking interneurons

Striatal fast spiking interneurons (FSIs) were modeled as in Golomb et al., 2007 [30], using two

compartments. The voltage in the somatic compartment (V) and in the dendrite (Vd) evolve
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according to:

cm
dV
dt
¼ � INa � IK � IL � ID � Isyn þ Ids ð4Þ

cm
dVd
dt
¼ � INa � IK � IL � ID � Isyn þ Iext þ Isd ð5Þ

Background excitation is represented by the term Iext, which is formulated as the sum of a

tonic, DA dependent current and Poisson input. The units of Iext are in μA/cm2. The tonic, DA

dependent current is discussed below. Each FSI receives independent, excitatory Poisson input

with a rate of 100 inputs per second.

The synaptic current (Isyn) is the sum of GABAA currents and electrical connections

between FSIs (formulated below). The FSI membrane currents (Imemb) consisted of a fast

sodium current (INa), a fast potassium current (Ik), a leak current (IL), and a potassium D-cur-

rent (ID). The formulations of these currents were taken from previous models of striatal FSIs

[30, 47]. Ids represents the current from the dendritic compartment to the somatic compart-

ment and Isd represents the current from the somatic compartment to the dendritic

compartment.

The maximal sodium conductance is �gNa ¼ 112:5mS/cm2 and the sodium reversal poten-

tial is ENa = 50 mV. The sodium current has three activation gates (n = 3) and one inactivation

gate (k = 1). The steady state functions for the sodium current activation (m) and inactivation

(h) variables and their time constants (τm and τh, respectively) are described by:

m1 ¼
1

1þ exp ½� ðV þ 24Þ=11:5�
ð6Þ

h1 ¼
1

1þ exp ½ðV þ 58:3Þ=6:7�
ð7Þ

th ¼ 0:5þ
14

1þ exp ½ðV þ 60Þ=12�
ð8Þ

The maximal conductance for the fast potassium channel is �gK ¼ 225mS/cm2 and the

reversal potential for potassium is EK = -90 mV. The fast potassium channel has no (k = 0)

inactivation gates but has two (n = 2) activation gates described by its steady state function

(n1) and time constant (τn):

n1 ¼
1

1þ exp ½� ðV þ 12:4Þ=6:8�
ð9Þ

tn ¼ ð0:087þ
11:4

1þ exp ½ðV þ 14:6Þ=8:6�
Þð0:087þ

11:4

1þ exp ½� ðV � 1:3Þ=18:7�
Þ ð10Þ

The leak current (IL) has no gating variables (n = 0, k = 0). The maximal leak channel con-

ductance is gL = 0.25mS/cm2 and the leak channel reversal potential is EL = -70 mV.

The fast-activating, slowly inactivating potassium D-current (ID) is described mathemati-

cally as in Golomb et al, 2007 [30] and has three activation gates (n = 3) and one inactivation

(k = 1) gate. The steady state functions for the activation (a) and inactivation (b) variables are
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formulated as:

a1 ¼
1

1þ exp ½� ðV þ 50Þ=20�
ð11Þ

b1 ¼
1

1þ exp ½ðV þ 70Þ=6�
ð12Þ

The time constant of the decay is 2 ms (τa) for the activation gate and 150 ms (τb) for the

inactivation gate. The maximal conductance of the D-current is 6mS/cm2.

All conductances in the dendritic compartment of the FSIs (gNa, gK, gD, gL) are 1/10 the

strength of those in the somatic compartment. The somatic and dendritic compartment of

each cell are connected bidirectionally with a compartmental conductance of 0.5mS/cm2. This

electrical coupling is formulated as:

Isd ¼ 0:5ðVsoma � VdendÞ ð13Þ

Ids ¼ 0:5ðVdend � VsomaÞ ð14Þ

where Isd is the current from the somatic compartment to the dendritic compartment and Ids
is the current from the dendritic compartment to the somatic compartment.

Striatal spiny projection neurons

Spiny projection neurons were modeled with four membrane currents: a fast sodium current

(INa), a fast potassium current (Ik), a leak current (IL), and an M-current (Im) [31]. We do not

model SPN up and down states which are not prevalent in the awake state of striatum [122],

the state being modeled, and therefore we do not include the Kir current in our model, which

is active during the SPN down state.

The sum of all excitatory inputs from the cortex and thalamus and inhibitory inputs from

striatal interneurons is introduced into the model using a background excitation term (Iapp).

Iapp is the sum of a constant term and a Gaussian noise term. The Gaussian noise has mean

zero, standard deviation one and an amplitude of 4
ffiffiffiffiffi
dt
p

where δt is the time step of integration.

D1 and D2 SPNs were distinguished only by the value of tonic term of Iapp when DA levels

were high. DA is excitatory to D1 receptors and inhibitory to D2 receptors [123]. Thus, we

modeled D1 and D2 SPNs as having the same tonic Iapp at baseline DAergic tone state with

Iapp = 1.19 μA/cm2. To model the high DA state, let the tonic term of Iapp = 1.29 μA/cm2 for the

D1 SPNs and Iapp = 1.09 μA/cm2 for the D2 SPNs.

The rate functions for the sodium current activation (m) and inactivation (h) variables are

formulated as:

am ¼
0:32ðV þ 54Þ

1 � exp ½� ðV þ 54Þ=4�
ð15Þ

bm ¼
0:28ðV þ 27Þ

exp ½ðV þ 27Þ=5� � 1
ð16Þ

ah ¼ 0:128 exp ½� ðV þ 50Þ=18� ð17Þ
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bh ¼
4

1þ exp ½� ðV þ 27Þ=5�
ð18Þ

The maximal conductance of the sodium current is �gNa ¼ 100mS/cm2. The sodium reversal

potential is ENa = 50 mV. The sodium current has three activation gates (n = 3) and only one

inactivation gate (k = 1).

The fast potassium current (IK) has four activation gates (n = 4) and no inactivation gates

(k = 0). The rate functions of the activation gate are described by:

am ¼
0:032ðV þ 52Þ

1 � exp ½� ðV þ 52Þ=5�
ð19Þ

bm ¼ 0:5 exp ½� ðV þ 57Þ=40� ð20Þ

The maximal fast potassium channel conductance is �gK ¼ 80mS/cm2. The reversal poten-

tial for potassium is EK = -100 mV.

The leak current (IL) has no gating variables (n = 0, k = 0). The maximal conductance of the

leak channel is gL = 0.1mS/cm2. The leak channel reversal potential is EL = -67 mV.

The M-current has one activation gate (n = 1) and no inactivation gate (k = 0). The rate

functions for the M-current activation gate are described by:

am ¼
Qs10� 4ðV þ 30Þ

1 � exp ½� ðV þ 30Þ=9�
ð21Þ

bm ¼ �
Qs10� 4ðV þ 30Þ

1 � exp ½ðV þ 30Þ=9�
ð22Þ

We use a Q10 factor of 2.3 to scale the rate functions of the M-current since the original for-

mulation of these kinetics described dynamics at 23˚C [124]. Thus, for a normal body temper-

ature of 37˚C, the M-current rate equations are scaled by Qs, which is formulated as:

Qs ¼ Q
ð37 �C� 23 �CÞ=10

10 ¼ 3:209 ð23Þ

The maximal M-current conductance is �gm ¼ 1:25mS/cm2.

Synaptic connectivity and networks

Networks of FSIs contained 50 neurons. For networks that additionally had SPNs, we modeled

100 D1 SPNs and 100 D2 SPNs. The model synaptic GABAA current (IGABAA
) is formulated as

in McCarthy et al., 2011 [45] and is the only synaptic connection between SPNs and from FSIs

to SPNs. The GABAA current has a single activation gate dependent on the pre-synaptic volt-

age.

IGABAA
¼ �g iisiðV � EiÞ ð24Þ

The maximal GABAA conductance between FSIs is �g ii ¼ 0:1mS/cm2. Conductances from

FSIs to SPNs and between SPNs (but not between FSIs) were normalized to the number of

SPNs in the target network. Therefore, the maximal GABAA conductance from FSIs to SPNs is

�g ii ¼ 0:6=100 ¼ 0:006mS/cm2 and between SPNs was �g ii ¼ 0:1=100 ¼ 0:001mS/cm2. These

values are consistent with FSI to SPN inhibition being approximately six times stronger than

inhibition between SPNs [29].
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The gating variable for inhibitory GABAA synaptic transmission is represented by si. For

the jth neuron (FSI or SPN) in the network:

sj ¼
XN

k¼1

Sikij ð25Þ

The variable Sikij describes the kinetics of the gating variable from the kth pre-synaptic neu-

ron to the jth post-synaptic neuron. This variable evolves in time according to:

dSikij
dt
¼ gGABAA

ðVkÞð1 � SikijÞ �
Sikij
ti

ð26Þ

The GABAA time constant of decay (τi) is set to 13 ms for SPN to SPN connections [123] as

well as for FSI to FSI connections and FSI to SPN connections [54] The GABAA current rever-

sal potential (Ei) for both FSIs and SPNs is set to -80 mV. The rate functions for the open state

of the GABAA receptor (gGABAA
ðVkÞ) for SPN to SPN transmission is described by:

gGABAA
ðVkÞ ¼ 2ð1þ tanhð

Vk
4
ÞÞ ð27Þ

The rate functions for the open state of the GABAA receptor (gGABAA
ðVkÞ) for FSI to FSI and

FSI to SPN transmission is:

gGABAA
ðVkÞ ¼

1

tr
ð1þ tanhð

Vk
10
ÞÞ ð28Þ

The value of τr is 0.25 ms. FSIs were additionally connected by dendritic electrical connec-

tions. The electrical coupling for dendritic compartment i is denoted as Ielec, has units in μA/

cm2 and is formulated as:

Ielec ¼ gGJðVdj � VdiÞ ð29Þ

The value of the gap junction conductance gGJ depended on DA level (see below). Within

the 50-cell FSI network, each pair of FSIs had an independent 33 percent chance of a dendro-

dendritic gap junction chosen from a uniform random distribution [54], and an independent

58 percent chance of a somato-somatic inhibitory synapse also chosen from a uniform distri-

bution [53]. SPNs are connected with each other in a mutually inhibitory GABAergic network

[125]. We modeled all to all connectivity of inhibitory synapses from any SPN to any SPN of

the same receptor subtype, as in [45]. Probability of connection from any given FSI to any

given MSN was 37.5 percent, chosen from a uniform random distribution [52, 53].

Dopamine

DA impacts both connectivity and excitability in the model networks. DAergic tone was simu-

lated as having five components: direct excitation of FSIs [32], increased gap junction conduc-

tance between FSIs [33], decreased inhibitory conductance between FSIs [32], increased

excitation to D1 SPNs, and decreased excitation to D2 SPNs. DA-induced changes to SPN

excitation were discussed above. Excitation to FSIs was modeled as the sum of a tonic, DA

dependent input current (Iapp) and a noise term. DA did not change the noise term in either

SPNs or FSIs. The baseline DAergic tone state was modeled in FSIs using Iapp = 7 μA/cm2, gGJ
= 0.15mS/cm2 and the GABAA conductance between FSIs was gii = 0.1mS/cm2. The high DA

state was modeled in FSIs using Iapp = 14 μA/cm2, gGJ = 0.3mS/cm2 and gii = 0.005mS/cm2.

The synaptic conductances were chosen so as to be within an order of magnitude of
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physiological estimates (0.05mS/cm2 for gGABAA [52, 53]; 0.2mS/cm2 for gGJ [126]). The inhibi-

tory conductance for the high DAergic tone state was chosen to be the lowest value possible in

this range; the inhibitory conductance for the low DAergic tone state was chosen to be the

highest value that would still reliably allow oscillatory behavior in the network. The value of

gGJ in the low DAergic condition was then chosen to be the lowest value that was permissive of

oscillatory behavior, and the value in the high DAergic condition was chosen to be twice that.

Finally, the values of Iapp were chosen in order to correspond to physiologically realistic firing

rates (a minimum of 5 and a maximum of 30 Hz; see [103, 118]).

Local field potential

The local field potential (LFP) was calculated as the sum of all synaptic currents in all cells. Sta-

tionarity of the network appears in the raster plots after about 500 ms. To eliminate transients

due to initial conditions, our LFP is evaluated only after 1,000 ms of simulated time. We esti-

mated the power spectral density of the simulated LFP using the multitaper method. [127].

Simulations

All simulations were run on the MATLAB-based programming platform DynaSim, a frame-

work for efficiently developing, running and analyzing large systems of coupled ordinary dif-

ferential equations, and evaluating their dynamics over large regions of parameter space [128].

DynaSim is open-source and all models have been made publicly available using this platform.

All differential equations were integrated using a fourth-order Runge-Kutta algorithm with

time step .01 ms. Plotting and analysis were performed with inbuilt and custom MATLAB

(version 2017b) code.

Supporting information

S1 Fig. Low frequency oscillations are more robust to noise in the high dopamine FSI net-

work than in a single FSI. (A) Plot of normalized low frequency (<10 Hz) power of the volt-

age of a single model FSI (blue) and the summed voltages of the high DA FSI network (red) as

Poisson noise of varying rate is applied. Each cell in the network receives the same amount of

noise that the isolated cell receives. Iapp = 14 μA/cm2 for all simulations; in the high DA FSI

network, ggap = 0.3mS/cm2, gsyn = 0.005mS/cm2. The solid line represents the mean value over

10 simulations per point. Shading represents standard deviation from these means. Power

spectra are derived using Thomson’s multitaper power spectral density (PSD) estimate

(MATLAB function pmtm). (B) Plot of normalized low frequency (<10 Hz) power of the volt-

age of a single model FSI and the summed voltages of the high DA FSI network as Poisson

noise of varying amplitude is applied.

(TIF)

S2 Fig. FSI network rhythms are robust to noise and heterogeneity. Power and frequency of

δ/θ and γ rhythms in FSI network mean voltage as a function of (A) noise frequency, (B) noise

amplitude, (C) heterogeneity in leak current conductance, (D) heterogeneity in potassium D

current conductance, and (E) heterogeneity in applied current. For heterogeneity values, 0 rep-

resents completely uniform values and 1 represents a level of heterogeneity where values vary

between zero and twice the default value. Default leak current conductance is 0.25mS/cm2 and

default D current conductance is 6mS/cm2; default applied current is 7mA/cm2 for low DA

and 14mA/cm2 for high DA. The parameters not being varied in plots A-C are held at either

the high DA values (solid lines, Iapp = 14 μA/cm2, ggap = 0.3mS/cm2, gsyn = 0.005mS/cm2) or

the low DA values (dotted lines, Iapp = 7 μA/cm2, ggap = 0.15mS/cm2, gsyn = 0.1mS/cm2),
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according to the legend. The solid line represents the mean value over 10 simulations per

point. Shading represents standard deviation from these means. Power spectra are derived

using Thomson’s multitaper power spectral density (PSD) estimate (MATLAB function

pmtm).

(TIF)

S3 Fig. SPN assemblies are more readily formed in response to new input when FSIs are

imposing a δ/θ rhythm that disrupts prior activity. (A) Example raster plot of the D1 SPN

subnetwork receiving δ/θ frequency FSI input while being subjected to input during high

DAergic tone: An excitatory 20 millisecond pulse of input is provided to cells 50-100 (assembly

1) at t = 1680 ms and a later excitatory pulse of input is provided to cells 25-75 (assembly 2) at

t = 2080 ms. Assembly 1 is active for several β cycles after the first input, causing rebound spik-

ing at antiphase of the cells not in assembly 1 (as in McCarthy 2011 [45]), but becomes inactive

during the δ/θ peak beginning around t = 1800 ms. Assembly 2 can then respond with a high

degree of coherence shortly after the second input. (B) Example raster plot of the isolated D1

SPN subnetwork (not receiving any FSI input) being subjected to the input during high DAer-

gic tone. The same two excitatory pulses are provided. Assembly 1 and its antiphase activity

begin firing similarly to the example in (A), but since there is no δ/θ input, the β-rhythm firing

of assembly 1 persists indefinitely. Input to assembly 2 is thereby unable to generate a specific

response, and the coherence of assembly 1 persists even after the second input. (C) Plot show-

ing history-independence of SPN responses when FSIs are present. Regardless of the phase at

which input is given, the maximal response of SPNs in any given cell assembly occurs at a pre-

ferred δ/θ phase around -2 radians, “erasing” the information of when the input arrived.

When FSIs are not present, there is no theta rhythm in the network, and the response of the

cells to input is more random.

(TIF)

S1 File. Complete DynaSim code for reproduction of figures in this manuscript.

(ZIP)
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spheric functional interactions between the subthalamic nuclei of patients with Parkinson’s disease.

European Journal of Neuroscience. 2014; 40(8):3273–3283. https://doi.org/10.1111/ejn.12686 PMID:

25195608

111. Gittis AH, Leventhal DK, Fensterheim BA, Pettibone JR, Berke JD, Kreitzer AC. Selective inhibition of

striatal fast-spiking interneurons causes dyskinesias. Journal of Neuroscience. 2011; 31(44):15727–

31. https://doi.org/10.1523/JNEUROSCI.3875-11.2011 PMID: 22049415

112. Reiner A, Shelby E, Wang H, DeMarch Z, Deng Y, Guley NH, et al. Striatal parvalbuminergic neurons

are lost in Huntington’s disease: implications for dystonia. Movement Disorders. 2013; 28(12):1691–

1699. https://doi.org/10.1002/mds.25624 PMID: 24014043

113. Xu M, Li L, Pittenger C. Ablation of fast-spiking interneurons in the dorsal striatum, recapitulating

abnormalities seen post-mortem in Tourette syndrome, produces anxiety and elevated grooming.

Neuroscience. 2016; 324(2):321–329. https://doi.org/10.1016/j.neuroscience.2016.02.074 PMID:

26968763

114. Sciamanna G, Bonsi P, Tassone A, Cuomo D, Tscherter A, Viscomi MT, et al. Impaired striatal D2

receptor function leads to enhanced GABA transmission in a mouse model of DYT1 dystonia. Neurobi-

ology of Disease. 2009; 34(1):133–145. https://doi.org/10.1016/j.nbd.2009.01.001 PMID: 19187797

Interleaved striatal oscillations mediate periodicity in motor control

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007300 February 25, 2020 29 / 30

https://doi.org/10.1016/j.cell.2018.04.019
https://doi.org/10.1016/j.cell.2018.04.019
http://www.ncbi.nlm.nih.gov/pubmed/29779950
https://doi.org/10.1073/pnas.032682099
https://doi.org/10.1016/j.neunet.2009.07.018
https://doi.org/10.1016/j.neunet.2009.07.018
http://www.ncbi.nlm.nih.gov/pubmed/19646846
https://doi.org/10.1007/s11571-016-9376-2
https://doi.org/10.1007/s11571-016-9376-2
http://www.ncbi.nlm.nih.gov/pubmed/27275380
https://doi.org/10.1073/pnas.1113158108
https://doi.org/10.1073/pnas.1113158108
https://doi.org/10.1523/JNEUROSCI.1782-13.2014
http://www.ncbi.nlm.nih.gov/pubmed/24553926
https://doi.org/10.1016/j.neuron.2004.08.035
http://www.ncbi.nlm.nih.gov/pubmed/15363398
https://doi.org/10.1523/JNEUROSCI.4289-10.2010
http://www.ncbi.nlm.nih.gov/pubmed/21123577
https://doi.org/10.1073/pnas.0810524105
https://doi.org/10.1073/pnas.0810524105
https://doi.org/10.1016/j.brainresrev.2007.10.008
https://doi.org/10.1016/j.brainresrev.2007.10.008
http://www.ncbi.nlm.nih.gov/pubmed/18054796
https://doi.org/10.1016/s0361-9230(96)00351-6
https://doi.org/10.1016/s0361-9230(96)00351-6
http://www.ncbi.nlm.nih.gov/pubmed/9205804
https://doi.org/10.1523/JNEUROSCI.22-02-00529.2002
http://www.ncbi.nlm.nih.gov/pubmed/11784799
https://doi.org/10.3389/fnhum.2016.00517
https://doi.org/10.3389/fnhum.2016.00517
http://www.ncbi.nlm.nih.gov/pubmed/27826233
https://doi.org/10.1111/ejn.12686
http://www.ncbi.nlm.nih.gov/pubmed/25195608
https://doi.org/10.1523/JNEUROSCI.3875-11.2011
http://www.ncbi.nlm.nih.gov/pubmed/22049415
https://doi.org/10.1002/mds.25624
http://www.ncbi.nlm.nih.gov/pubmed/24014043
https://doi.org/10.1016/j.neuroscience.2016.02.074
http://www.ncbi.nlm.nih.gov/pubmed/26968763
https://doi.org/10.1016/j.nbd.2009.01.001
http://www.ncbi.nlm.nih.gov/pubmed/19187797
https://doi.org/10.1371/journal.pcbi.1007300


115. Gorelova N, Seamans JK, Yang CR. Mechanisms of dopamine activation of fast-spiking interneurons

that exert inhibition in rat prefrontal cortex. Journal of Neurophysiology. 2002; 88(6):3150–3166.

https://doi.org/10.1152/jn.00335.2002 PMID: 12466437

116. Schiffmann SN, Fisone G, Moresco R, Cunha RA, Ferré S. Adenosine A2A receptors and basal gan-
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