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Non-alcoholic fatty liver disease (NAFLD) is characterized by hepatic steatosis and

progresses to non-steatohepatitis (NASH) when the liver displays overt inflammatory

damage. Increasing evidence has implicated critical roles for dysbiosis and microbiota-

host interactions in NAFLD pathophysiology. In particular, microbiota alter intestine

absorption of nutrients and intestine permeability, whose dysregulation enhances the

delivery of nutrients, endotoxin, and microbiota metabolites to the liver and exacerbates

hepatic fat deposition and inflammation. While how altered composition of gut microbiota

attributes to NAFLD remains to be elucidated, microbiota metabolites are shown to be

involved in the regulation of hepatocyte fat metabolism and liver inflammatory responses.

In addition, intestinal microbes and circadian coordinately adjust metabolic regulation

in different stages of life. During aging, altered composition of gut microbiota, along

with circadian clock dysregulation, appears to contribute to increased incidence and/or

severity of NAFLD.
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INTRODUCTION

Non-alcoholic fatty liver disease (NAFLD) has become a leading cause of chronic liver disease
worldwide. There are 25% of population in the world suffering from NAFLD, including children,
adolescents, and elderly (1). NAFLD is characterized by hepatic steatosis. When exhibiting
inflammatory damage and fibrosis in addition to steatosis, NAFLD progresses to non-alcoholic
steatohepatitis (NASH), the advanced form of NAFLD. As supported by the results from various
epidemiological and clinical studies, NASH is a causal factor of terminal liver diseases including
liver cirrhosis and hepatocellular carcinoma. Unhealthy nutrition-related metabolic disorders,
such as central obesity, insulin resistance, dyslipidemia, and hypertension are closely associated
with NAFLD (2). Although the etiology and progression of NAFLD remain to be elucidated,
growing studies indicate that, additional to insulin resistance and inflammation, gut microbiota,
and circadian rhythmicity of hepatic metabolic genes are considered to play key roles in the
pathogenesis of NAFLD (3, 4).

The gut microbiota is composed of huge numbers of microbes. Half century ago, it was
discovered that the toxicity of Escherichia coli’s endotoxin fatality rate was determined by the
administering time of endotoxin (5). This phenomenal finding and others led to validation
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that the microbiota colonized within the gastrointestinal
tract undergoes circadian oscillations, which influence the
composition and function of gut microbiota (6, 7). For instance,
the diurnal interaction between oscillating hosts and their gut
microbiome affect the circadian clock activities in other tissues
and organs (8, 9), which in turn critically regulate host’s metabolic
homeostasis (10).

It has been accepted that the intestine and the liver are
closely linked. This link is manifested by that gut microbiota
and its metabolites play critical roles in the pathogenesis of
NAFLD. Also, circadian rhythmwas reported tomaintain hepatic
glucose and lipid metabolic homeostasis through regulating gut
microbiota balance. In this review, we focused on the regulation
of gut microbiota in relation to hepatic lipid metabolism and liver
function, the alterations of gut microbiota in NAFLD, and the
effects of microbiota metabolites on the development of NAFLD.
Furthermore, we evaluated the relationships among circadian
clock, gut microbiota, and metabolic disease (in particular
NAFLD). We also summarized the effects of intestinal microbes
on regulating metabolism through reprogramming circadian
clock. Lastly, we summarized the effects of the interplays between
intestinal microbes and circadian on metabolism and NAFLD
aspects in different stages of life.

GUT MICROBIOTA AND LIVER
PATHOPHYSIOLOGY

Many studies have revealed that gut microbiota dysbiosis is
linked to NAFLD (11, 12). The composition of gut microbiota
varies from simple steatosis to NASH, fibrosis, and cirrhosis.
Therefore, gut microbiota may be useful as predictors for NAFLD
progression and severity (13, 14). Gut microbiota is capable
of fermenting indigestible carbohydrates, resulting in important
metabolites, such as short-chain fatty acids. The gut microbiota
can also ferment tryptophan to generate other metabolites such
as indole and indole derivatives. Animal studies and human
studies have shown that these metabolites have beneficial effects
on preventing against and/or alleviating obesity and NAFLD
(15, 16). Understanding the mechanisms of how gut microbiota
and metabolites are involved in NAFLD pathophysiology can
inspire us to find out potential strategies to prevent or
treat NAFLD/NASH. Recent advances in understanding the
crosstalk between the gut and the liver pertinent to NAFLD
pathophysiology is summarized in Figure 1 and detailed below.

Influences of the Gut on Liver Metabolism
The intestine digests foods and absorbs nutrients. The liver
receives nutrients from the intestine. As such, there are many
metabolic events exhibiting the crosstalk between the gut and
the liver. For instance, gut hormones participate in hepatic
metabolism. In response to feeding, glucagon-like peptide 1
(GLP-1), which is secreted by the L cells of the small intestine,
stimulates pancreatic β islet cells to produce insulin. Also, GLP-1
acts on GLP-1 receptor, present on human hepatocytes, to reduce
hepatic glucose production and ameliorate hepatic fat deposition
and insulin resistance (17). The release of intestinal GLP-1

enhances energy expenditure, which is associated with increases
in the peripheral utilization of triglycerides (TG) for energy
production, and reduces hepatic steatosis in mice fed a high-fat
diet (HFD) (18, 19). Insulin-like peptide 5 (INSL5), which is also
an L cell-derived gut hormone and regulated by gut microbiota,
is reported to influence hepatic glucose production. Compared
to that in conventionally raised (CONV-R) mice, the expression
of INSL5 in the gut was 80-fold higher in germ-free (GF) mice
and 20-fold higher in antibiotics-treated mice. The importance
of INSL5 in regulating metabolism is further supported by
the finding that INSL5−/− mice exhibited decreased hepatic
glucose production due to, in part, decreased expression of
gluconeogenic enzymes such as glucose-6-phosphatase (G6Pase)
and phosphoenolpyruvate carboxykinase (PEPCK) (20). In
addition, glucose-dependent insulinotropic polypeptide (GIP),
another gut hormone that is released from K cells located
in the duodenum and proximal jejunum, regulates glucose
homeostasis and lipid metabolism (21). Indeed, GIP appears to
inhibit glucagon-stimulated hepatic glucose production through
an indirect way (22). There is evidence suggesting that GIP
influences hepatic insulin resistance and steatosis via regulating
myeloid-cell-derived S100A8/A9 (23). Fibroblast growth factor
15 and 19 (FGF15 and FGF 19), which are also from the gut, were
reported to ameliorate HFD-induced hepatic fat accumulation
and ER stress (24). In particular, FGF 19 promoted hepatic
glycogen and protein synthesis (25), reduced inflammation and
fibrosis in liver injury mouse model through downregulating
the expression of cholesterol 7α-hydroxylase (CYP7A1) and
sterol-27-hydroxylase (CYP27A1) and thereby inhibiting bile
acid synthesis (26).

Additional to gut hormones that regulate hepatic metabolism
and inflammation, gut microbiota is associated with the
development of NAFLD (27). For instance, gut permeability and
small intestinal bacterial overgrowth are increased in patients
with NAFLD compared with those in health controls. In this
case, the increased gut permeability caused by alteration of
intercellular tight junction likely contributes to the development
and progression of NAFLD (28–30). Inflammation promotes
the development of simple steatosis into NASH. In NAFLD,
impaired intestinal barrier caused by nutrition stress increases
the translocation of microbes and their products into the blood,
leading to hepatic inflammation and even fibrosis/cirrhosis
(31). Gut-derived antigens in the circulation are considered as
major causing factors of strong inflammatory responses in the
liver. Although intestinal permeability is not the main cause
of liver inflammation and fibrosis, due to increased intestinal
permeability, the inflammatory responses to microbial antigen
strongly influence the progression of the disease.

Gut-derived bacterial products, such as lipopolysaccharides
(LPS) and unmethylated CpG DNA, activate the signaling
pathways involved in liver inflammation and fibrogenesis
through stimulating innate immune receptors, e.g., Toll-like
receptors (TLRs). In NASH patients, hepatic and serum TLR4
is significantly increased. Thus, high serum levels of TLR4
are considered as a bio-marker for liver fibrosis development
(32). In a study involving TLR4-mutant mice, the results
indicated that TLR4 was required for fructose to induce NAFLD.
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FIGURE 1 | The crosstalk between intestine and liver in the pathophysiology of NAFLD. Certain intestine hormones, e.g., GLP-1 and GIP, reduce hepatic glucose

production and fat accumulation. In L cells, secondary BAs stimulate GLP-1 synthesis and release via TGR5 activation whereas primary BAs activate FXR to inhibit

GLP-1 synthesis and release. Other intestine hormones, e.g., FGF15 and FGF19, decrease hepatic lipogenesis. BAs stimulate FXR in ileal enterocytes, leading to the

release of FGF15/19 into circulation. After reaching to hepatocytes, FGF15/19 suppresses BA synthesis through inhibiting CYP7A1 expression. Increased gut

permeability, altered composition of gut microbiota, and elevated levels of gut microbiota metabolites such as ethanol are shown to enhance hepatocyte fat deposition

and increase the flow of LPS into the circulation to promote proinflammatory responses through activating TLR4 signaling pathway in target cells. In hepatocytes,

certain primary BAs acts through activating FXR to suppress the activity of SREBP-1c and thus reduces the expressions of lipogenic genes. Primary BAs also inhibit

CYP7A1 expression and thus reduces BAs synthesis. Certain secondary BAs inhibit the activation of hepatic FXR. In addition to activation of FXR, BAs are shown to

regulate hepatic lipid and sterol metabolism through activating S1PR2. Certain gut microbiota metabolites such as SCFAs and indole reduce hepatocyte fat deposition

and proinflammatory responses via decreasing TNFα and IL-1β and/or activating PPARα, AMPK, and Nrf2.

Compared with fructose-fed wild type mice, fructose-fed TLR4-
mutant mice exhibited reduced hepatic fat accumulation, lipid
peroxidation, inflammation, insulin resistance, and plasma
ALT levels. This indicates the involvement of gut-derived
endotoxin in the development of fructose-induced NAFLD
(33). A similar study revealed that hepatic specific TLR4
deletion protected mice from fatty liver induced by 5% alcohol
diet via decreasing the expression of hepatic inflammatory
cytokines and endogenous lipogenesis (34). Saturated fatty
acids (SFA) such as palmitate can activate proinflammatory
signals through TLR4, inducing IL-1β and TNF-α production,
as well as enhancing ROS production in hepatic infiltrating
macrophages (35). Mechanistically, TLR4 promoting of the
progression from simple steatosis to NASH involves in increases
in ROS-dependent activation of X-box binding protein-1 (XBP-
1) in Kupffer cells (36). TLR4 also is shown to induce
transforming growth factor β (TGFβ) signaling pathway, activate
hepatic stellate cell and increase extracellular matrix deposition,
which all contribute to the progression of liver fibrosis (37).
Moreover, gut microbiota and TLR4 appear to be required
for the promotion of hepatocellular carcinoma (HCC), whose

pathogenesis is enhanced by chronic liver inflammation and
fibrosis (38).

More specific mechanisms of fat deposition and inflammation
in the liver, caused by the alterations of gut permeability and
barrier-induced infiltration of bacteria and bacteria products,
involve increased signaling through nuclear factor kappa-light-
chain-enhancer of activated B cells (NFκB) or c-Jun-N-terminal
kinase (JNK), as well as increased levels of tumor necrosis factor
alpha (TNFα) (39). Activation of NFκB in hepatocytes increased
the production of cytokines and resulted in the recruitment
and activation of Kupffer cells to mediate inflammation in
the progression of NASH. Activation of NFκB induced the
expression of TNFα, Fas ligand (FasL), and TGFβ, which
contributed to fibrosis in NASH (40). Disruption of NFκB p65
in mice ameliorated HFD-induced hepatic steatosis and insulin
resistance (41). JNK can be activated by diverse stimuli, such as
cytokines, FFAs, reactive oxygen species (ROS), pathogens, and
toxins. Activation of hepatic JNK decreased the expression of
PPARα target genes and FGF21, up-regulated cytokines such as
TNFα and interleukin-1 (IL-1), and promoted insulin resistance
in liver (42).
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Regulation of Gut Microbiota by Hepatic
Bile Acids
Primary bile acids (BAs), produced in the liver from cholesterol,
serve as an emulsifier for lipid digestion in the intestine. Primary
BAs become secondary BAs after being metabolized by intestinal
flora. BAs are associated with the establishment of the gut
microbiota; given that bile salts have anti-bacteria effects and only
bacteria that are resistant to bile salts can survive in the intestine
(43, 44). The antimicrobial actions of BAs are likely attributable
to that BAs cause bacterial cell membrane damage through
dissolving membrane lipids and dissociating membrane proteins.
BAs also disturb macromolecular stability, such as misfolding
or denaturing protein and inducing DNA damage and oxidative
stress (44). Moreover, in human, chenodeoxycholic acid (CDCA)
and cholic acid (CA), which are primary bile acids, as well as
deoxycholic (DCA) and lithocholic acid (LCA), which are the
predominant forms of secondary bile acids, activate the nuclear
receptor farnesoid X receptor (FXR) to induce the expression of
genes that are responsible for inhibition of microbial overgrowth
and intestinal mucosal damage (45). It is known that BAs play an
important role in regulating the composition of gut microbiota
in response to diet. When mice consumed a Western diet,
the profiles of BAs were altered, which increased Firmicutes,
decreased Bacteroidetes, and disturbed the ecological balance of
microbes (46). A similar study using FXR-deficient mice upon
HFD feeding also revealed that the abundance of Firmicutes
was increased and the abundance of Bacteroidetes was reduced.
The profiles of BAs were featured by increased levels of primary
bile acids such as beta-muricholic acids (βMCA) and taurine-
conjugated beta-muricholic acids (TβMCA) and decreased levels
of secondary bile acids such as ωMCA, hyodeoxycholic acid
(HDCA), and hyocholic acid (HCA) (47). A rapid increase in
the gut BAs pool (35 out of 42 quantified BAs) was observed in
mice upon HFD feeding within 12 h, and an alteration in gut
microbiota composition occurred at 24 h. Treatment of chow
diet-fed mice with glycine-conjugated cholic acid (GCA) and
taurine-conjugated cholic acid (TCA) increased obesity-related
microbial population and brought about obese phenotype.
Inhibition hepatic BAs synthesis in HFD-fed mice ameliorated
HFD-induced dysregulation of microbial composition (48). In
NASH-HCC mouse model, HFD accelerated the incidence of
liver tumors, which was accompanied with increased the levels of
hepatic BAs, including GCA, TCA, and taurochenodeoxycholate
(TCDCA). The changes in gut microbiota were correlated with
altered levels of BAs in the liver, suggesting that high hepatic
BAs are associated with the dysregulation of gut microbiota and
the development of HCC (49). Compared with those in healthy
controls, fecal total and secondary BAs (LCA and DCA) were
lower while primary BAs (CA and CDCA) were higher in patients
with advanced cirrhosis. Patients with advanced cirrhosis also
exhibited higher levels of Enterobacteriaceae and lower levels
of Lachonospiraceae, Ruminococcaceae, and Blautia. Therefore,
the amounts of primary and secondary BAs are associated with
the population of key gut microbiota during the pathogenesis of
cirrhosis (50). There also is evidence indicating that feeding mice
high-saturated fats (from milk), compared to polyunsaturated

fats or chow diet, resulted in alterations of BAs composition
with increased levels of TCA and changes in gut microbiota
with enhanced the abundance of Bilophila wadsworthia (51). IL-
10−/− mice on chow diet treated with TCA for a week exhibited
higher abundance of Bilophila wadsworthia, which showed the
similar results found in milk fat fed mice (52).

Modulation of Bile Acid Metabolism by Gut
Microbiota
Gut microbiota regulates the metabolism of BA synthesis.
Compared with GF mice, the BA pool (mainly for conjugated
and unconjugated βMCA) in CONV-Rmice was reduced by 71%.
The composition of BAs between CONV-R and GF mice was
quite different in the cecum and colon. In the liver, CONV-R
mice had higher levels of TCA and TαMCA and lower levels
of TβMCA, compared with GF mice. The expression and
activity of CYP7A1, which is a rate-limiting enzyme in BA
synthesis in the liver, were downregulated in CONV-R mice.
Furthermore, in FXR-deficient CONV-R mice, the levels of
CYP7A1 were not decreased in the liver. Treatment of GF mice
with FXR agonist INT-747 reduced the level of hepatic CYP7A1.
These findings suggest that gut microbiota suppresses CYP7A1
expression in the liver in an FXR-dependent manner. Ileum
FGF15 was involved in the regulation of CYP7A1 expression
through FXR signaling. Treatment of CONV-R mice with
antibiotics (bacitracin, neomycin, and streptomycin) suppressed
FGF15 expression in ileum and enhanced the expression of
CYP7A1, thus increasing the levels of primary BAs (TCA and
TβMCA) and decreasing the levels of secondary BAs (DCA
and ωMCA) (53). Besides regulating CYP7A1, gut microbiota
also affects other key enzymes in the alternative pathway of
BA synthesis such as oxysterol 7α-hydroxylase (CYP7B1) and
CYP27A1 (45). In addition, gut microbiota not only regulates BA
synthesis, but also modulates BA conjugation and reabsorption.
Bile acid acyl-CoA-synthetase (BACS), which catalyzes taurine
conjugation in BAs in the liver and apical bile acid transporters
in the ileum, were downregulated in CONV-R mice (53). In
a human study for chronic hepatitis B, the levels of total
and primary BAs (TCDCA, GCDCA, GCA, and TCA) were
upregulated in hepatitis B patients with moderate/advanced
fibrosis, accompanied with downregulation of gut microbiota
(such as Bacteroides and Ruminococcus) responsible for BAs
metabolism (54). Trimethylamine N-oxide (TMAO), which is a
metabolite produced by gut microbiota from choline, stimulated
the expression of CYP7A1 in the liver, increased the serum levels
of BAs and promoted FXR-antagonistic BAs (55).

Altered Composition of Gut Microbiota
During NAFLD
The composition of gut microbiota is altered during NAFLD. For
instance, Lactobacillus species and some phylum Firmicutes such
as Lachnospiraceae, genera, Dorea, Robinsoniella, and Roseburia
were high in obese patients with NAFLD (56). Additionally,
non-obese patients with NAFLD exhibited increased phylum
Bacteroidetes and gram-negative bacteria and decreased
Firmicutes including short-chain fatty acids-producing
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and 7α-dehydroxylating bacteria compared with healthy
controls (57). When dietary choline was deficient, the levels of
Gammaproteobacteria and Erysipelotrichi were correlated with
the changes of fat accumulation in the liver. Gut microbiota
such as Gammaproteobacteria and Erysipelotrichi can serve
as a predictor for choline deficiency-induced fatty liver (58).
Compared with that in NAFLD and healthy controls, higher
abundance of Fusobacteria and Fusobacteriaceae was observed
in NASH patients (59). Gut microbiota is related to advanced
fibrosis in NAFLD. In bothmild/moderate NAFLD and advanced
fibrosis, the abundance of Firmicutes and Bacteroidetes is much
higher. Proteobacteria is higher in advanced fibrosis, while
Firmicutes is higher in mild/moderate NAFLD. Eubacterium
rectale and Bacteroides vulgatu are rich in mild/moderate
NAFLD, while B. vulgatus and Escherichia coli are rich in
advanced fibrosis (60). Different steatosis in NAFLD patients
exhibit differential compositions of gut microbiota. The
abundance of Bacteroidetes is lower and the abundance of C.
coccoides is higher during steatosis with inflammation and/or
fibrosis, compared to simple steatosis (61). The composition of
gut microbiota predicts the severity of NAFLD. Bacteroides is
significantly higher in NASH and is independently associated
with NASH, whereas Ruminococcus is higher in significant
fibrosis (14).

Microbiota Metabolites in the
Pathophysiology of NAFLD
In addition to gut microbiota, microbiota metabolites also
influence the pathophysiology of NAFLD. As it is established,
microbial products derived from fermentation of dietary fiber
and protein can affect liver metabolism and the development
of NAFLD (62). Microbial metabolites are different during the
progression from NAFLD to fibrosis. In advanced fibrosis, 3-
phenylpropanoate, generated from anaerobic bacteria, is the
mostly increased metabolite (63). Further analyses of proteins
and enzymes indicate that the enzymes related to lactate, acetate,
and formate are enhanced in mild/moderate NAFLD whereas
the enzymes associated with butyrate, D-lactate, propionate,
and succinate are increased in advanced fibrosis (60). The
following microbiota metabolites are investigated mostly and
closely related to NAFLD.

Short Chain Fatty Acids
Indigestible carbohydrates are fermented by gut microbiota and
generate short chain fatty acids (SCFAs) such as acetate, butyrate,
and propionate. Pectin, which is one of the soluble dietary
fibers, is reported to prevent NAFLD in HFD-fed mice. Pectin
increases acetic acid and propionic acid, as well as the levels
of Bacteroides, Parabacteroides, Olsenella, and Bifidobacterium
in the gut of HFD-fed mice (64). Gut-derived SCFAs such as
propionate and acetate are metabolized by the liver and alter
hepatic glucose and lipid metabolism (16). Serum metabolomics
reveals that the serum levels of butyric acid and propionic
acid were decreased in patient with NAFLD (65). Also, down-
regulation of SCFA-producing bacteria contributes to increased
energy intake and HFD-induced hepatic steatosis (66). Butyrate
is reported to maintain intestinal mucosal health, including

serving as a fuel source and regulating the immune system
(67). There is evidence suggesting that butyrate ameliorates
HFD-induced NAFLD and NASH via restoring the dysbiosis
of gut microbiota and improving gut barrier (68), activating
peroxisome proliferator-activated receptor alpha (PPARα) in the
liver, suppressing hepatic inflammation and enhancing GLP-
1R expression (69, 70). Moreover, butyrate-producing probiotic
reduces hepatic lipid accumulation and inflammatory responses
and improves hepatic insulin resistance via activating AMP-
activated protein kinase (AMPK), AKT, and the expression of
nuclear factor erythroid 2-related factor 2 (Nrf2) in rats with
NAFLD (71). As supported by the results from a study involving
G protein-coupled receptor 41 (GPR41)-deficient and GF mice,
SCFAs binding to GPR41 may account for the regulation of
gut microbiota, thereby host fat accumulation (72). Another
study indicated that SCFAs acted through downregulating the
expression levels of NLPR3, apoptosis-associated speck like
proteins (ASC), and Caspase-1 to decrease inflammation in a
manner involving G protein-coupled receptor 43 (GPR43) (73).
Also, supplementation of SCFAs reduces hepatic fat deposition
and inflammation by decreasing the activities of fatty acids
synthases, increasing lipid oxidation via activation of AMPK,
and suppressing the expression hepatic inflammatory cytokines
such as interleukin-6 and TNFα (74, 75). SCFAs may also act
through stimulating the release of GLP-1 to bring about beneficial
effects on reducing fat accumulation and increasing insulin
resistance (76).

Ethanol
Gut microbiota dysbiosis increases intestinal ethanol levels,
which is associated with the progression of NAFLD. In patients
with NASH, elevated ethanol-producing bacteria increased blood
ethanol concentrations that are considered to be the reason of
enhanced oxidative stress and inflammation in the liver (77),
through increasing gut permeability, decreasing gut barrier, and
increasing the levels of LPS in the intestine. Similar mechanisms
also lead to increased transportation of endotoxin to the liver
(78). In addition, ethanol has a direct harmful effect on the liver,
leading to steatosis, steatohepatitis, and fibrosis (79). Ethanol
stimulation of hepatic fat accumulation is likely attributable to
increased production of acetate, a substrate for the synthesis
of fatty acids. In ob/ob mice, a model of obesity and NAFLD,
the levels of intestinal bacteria-derived ethanol are increased. In
addition, treatment of ob/ob mice with antibiotics ameliorates
ethanol-induced fat deposition and inflammation in the liver
(78). There are different microbes responsible for ethanol
production responding to different carbohydrates from diet.
Most of ethanol is produced by S. cerevisiae, L. fermentum, and
W. confusa after consumption of glucose, whereas the highest
amount of ethanol is produced by S. cerevisiae and W. confusa
after consumption of fructose. Therefore, inhibition of these
microbes may be a viable strategy to reduce ethanol production
and, thereby preventing NAFLD, NASH, or fibrosis (80).

Bile Acids
Primary BAs are synthesized by the liver whereas secondary
BAs are metabolized by gut microbiota. As such, BAs are also
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considered microbiota metabolites. After its metabolism by
gut microbiota, BAs return to the liver via the enterohepatic
circulation through transporters on ileal enterocytes and
hepatocytes. BAs regulate BA homeostasis, glucose and lipid
metabolism through FXR signaling in hepatocytes, ileal
enterocytes, and colonic L cells. Primary BAs such as CDCA,
CA, T(G)CDCA, and T(G)CA are FXR agonists. In the liver,
FXR activation by BAs inhibits expression of the CYP7A1. In
ileum, FXR activation induces the expression of FGF15/19,
which goes to the liver and also inhibits the expression of
CYP7A1 and suppresses BA synthesis. In colonic L cells, FXR
activation suppresses the synthesis and release of GLP-1 (81).
Some BAs are reported to be FXR antagonists, such as UDCA
(secondary BAs in human) and Tα/βMCA (primary BAs in
mice). Secondary BAs such as LCA and DCA act as signal
molecules to regulate energy homeostasis, insulin signaling,
and inflammation via Takeda G-protein-coupled receptor 5
(TGR5) in colon, adipose tissue, muscle, and bone marrow
(12). A study revealed that TGR5 activation improved glucose
tolerance, increased energy expenditure, and decreased hepatic
steatosis in HFD-induced obese mice (18). Altering BA profiles
via diet, probiotics, medication, or surgery is reported to reverse
obese-related metabolic phenotypes such as NAFLD/NASH
through modifying BA composition. The latter involves
appropriate regulation of hepatic metabolism through FXR and
metabolisms in other tissues through TGR5 (82). For example,
TGR5 activation by secondary BAs (such as LCA and DCA) in
colonic L cells stimulated the synthesis and release of GLP-1,
which inhibited glucose production and fat accumulation in
hepatocytes. In patients with NAFLD, the serum levels of primary
and secondary BAs were high, which were accompanied with
decreased activation of FXR, fibroblast growth factor receptor
4 (FGFR4)-mediated signaling and serum levels of FGF19.
In addition, secondary BAs were increased in the intestine of
patients with NAFLD via enhancing the metabolism of taurine
and glycine (83). In patients with NASH, de novo biosynthesis
of bile acids in the liver was increased compared with that in
healthy controls. Furthermore, increased de novo biosynthesis
of bile acids may be closely associated with gut microbiota
dysbiosis in NASH (84). CA was reported to prevent hepatic
lipid accumulation and VLDL secretion via activation of FXR
to suppress the activity of SREBP-1c and thus downregulate the
expression of lipogenic genes (85). In addition to activation of
FXR, conjugated-BAs were shown to regulate hepatic lipid and
sterol metabolism through activating sphingosine-1 phosphate
receptor 2 (S1PR2) to trigger ERK1/2 signaling pathway, which
directly or indirectly modulates transcription of many genes such
as CYP7A1, SREBP1c, and ApoB-100 (86). S1PR2 activation was
also associated with reducing macrophage infiltration, which
is the characteristic in NASH and fibrosis (87). Of note, BAs
and the gut microbiota closely interact with each other. On
the one side, BAs directly suppress bacteria growth in the gut
through the anti-bacterial effects of BAs. On the other side,
certain intestinal bacterial such as L. monocytogenes encode
bacterial bile salt hydrolase (BSH), which in turn degrades BAs
and helps bacteria to resist BAs (44). Interestingly, up-regulating
BSH in conventionally raised mice reduces weight gain, plasma

cholesterol, and liver triglycerides by regulating the transcription
of genes related to lipid and cholesterol metabolism such as
peroxisome proliferator-activated receptor gamma (PPARγ),
ANGPTL4, and ABCG5/8 (88). Therefore, reducing BAs by
modulating gut microbiota appears to be a viable strategy to
improve NAFLD.

Indole and Indole Derivatives
As a bacterial degradation product of tryptophan, indole
exerts powerful anti-inflammatory effects on immune cells and
enterocytes (89). Subsequently, there are studies that have
explored the effects of several indole derivatives as it relates to
NAFLD. In a mouse model with HFD-induced NAFLD, Choi
et al. examined the effects of indole-3-carbinol (I3C) on NAFLD
phenotypes and attributed the anti-steatotic effect of I3C, at least
in part, to decreased expression of lipogenic genes (15, 89–91).
Similarly, two recent studies have shown that treatment with
indole-3-acetate (I3A) alleviated NAFLD phenotypes inmice (92,
93). At the cellular level, I3A decreased hepatocyte production of
palmitate, which was weakened by inhibition of aryl hydrocarbon
receptor (AhR, a proposed receptor that mediates indole actions)
(92). Moreover, I3A decreased hepatocyte mRNA levels of fatty
acid synthase (FAS) and SREBP1c, a key transcription factor
of lipogenic gene expression (94, 95), implying that I3A has a
suppressive effect on hepatic lipogenesis. Consistent with the
anti-NAFLD effects of indole derivatives, indole, per se, has also
been validated to ameliorate diet-induced NAFLD phenotype in
mice. Specifically, treatment of HFD-fed mice with indole, via
intraperitoneal injection, for 9 weeks caused significant decreases
in HFD-induced insulin resistance, hepatic steatosis, and liver
inflammation (93). The mechanisms underlying the beneficial
effects of indole are attributable to that indole reduced HFD-
induced expression of hepatic lipogenic genes such as SREBP-1,
steraroyl coenzyme decarboxylase 1 (SCD1), PPARγ, acetyl-CoA
carboxylase1 (ACC1), and glycerol-3-phosphate acyltransferase,
mitochondrial (GPAM), decreased the hepatic levels of reactive
oxygen species (ROS) and lipid peroxidation product such as
malonaldehyde, enhanced the activity of superoxide dismutase
(SOD), and reduced hepatic macrophage infiltration, monocyte
chemoattractant protein-1 (MCP1) and TNFα levels (93).

The relevance of indole to human NAFLD has been
recently revealed, for the first time, in the study by Ma et al.
In a cohort of 137 Chinese subjects, the circulating levels of
indole were significantly lower than those in lean subjects
and were reversely correlated with liver fat content (96).
In parallel, the data from mice with diet-induced NAFLD
further reveal that the hepatic levels of indole in HFD-fed
mice were significantly lower than those in control mice.
These two lines of evidence enabled the scientific premise for
examining the effect of indole supplementation on alleviating
NAFLD phenotype. As expected, oral supplementation of
indole caused significant decreases in the severity of HFD-
induced hepatic steatosis and inflammation. While gaining
the mechanistic insights of indole actions, the study by Ma
et al. also reveals that myeloid cell-specific disruption of
PFKFB3, a master regulatory gene of glycolysis, nearly blunted
the effects of indole on decreasing HFD-induced hepatic
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FIGURE 2 | The mechanistic scheme for indole alleviation of NAFLD. During

NAFLD, hepatocytes release fat deposition-associated proinflammatory

mediators and palmitate (hydrolysis product of very low-density lipoproteins),

which act on macrophages to enhance the proinflammatory responses. Active

macrophages release proinflammatory factors such as TNFα and IL-1β and

act, via paracrine manners, to exacerbate the proinflammatory responses and

fat accumulation in hepatocytes. Indole, a microbiota metabolite from

tryptophan (Trp), acts to reduce hepatocyte fat deposition via suppressing the

expression of FAS through a mechanism involving AhR activation. Moreover,

indole reduces the inflammatory responses in both macrophages and

hepatocytes and fat deposition in hepatocytes in a manner involving myeloid

cell PFKFB3. Modified based on Krishnan, S., et al. Cell Reports, 2018. 23(4):

p. 1099-1111 and Zheng et al. Front Med 2015; 9: 173-186.

steatosis and inflammation. PFKFB3 is the gene encoding
inducible 6-phosphofructo-2-kinase (iPFK2) (97), whose
product fructose-2,6-bisphosphate is the most potent activator
of glycolytic enzyme 6-phosphofructo-1-kinase (98–100). In
macrophages differentiated from bone marrow cells, indole
displayed a suppressive effect on LPS-induced proinflammatory
responses in a PFKFB3-dependent manner (Figure 2). Moreover,
hepatocytes co-cultured with PFKFB3-disrupted macrophages
displayed increases in palmitate-induced fat deposition and
LPS-induced proinflammatory responses. Of note, treatment
with indole did not alleviate these responses in hepatocytes
co-cultured with PFKFB3-disrupted macrophages as did it in
hepatocytes co-cultured with control macrophages. Clearly,
indole exerts an anti-NAFLD effect in a manner involving
myeloid cell PFKFB3.

The study by Ma et al. also revealed a number of significant
and interesting findings (96). In particular, mice with HFD-
induced NAFLD revealed altered composition of gut microbiota
relative to that inmice fed a control low-fat diet (LFD).Moreover,
treatment of HFD-fed mice with indole brought about changes
in the composition of gut microbiota in a manner similar to

that in LFD-fed mice. This validates that indole, as a microbiota
metabolite, also alters the composition of gut microbiota.
Another important finding from the pharmacokinetic study
is that indole reached its peak levels in the liver at 6 h post
a single oral dosing of indole. In addition, the levels of
indole were significantly higher than those in the circulation.
Because of this, the liver is considered a primary organ
where indole is metabolized. As such, the liver appears to
be primary target for indole-based therapeutic approaches.
The mechanistic scheme for indole actions is summarized in
Figure 2.

Clearly, the intestine plays an important role in the
pathophysiology of NAFLD. Intestine hormones, intestine
conditions (such as permeability and intercellular tight
junction), gut microbiota composition and balance, and
microbiota metabolites regulate glucose production, lipogenesis,
inflammatory response and insulin resistance in the liver by
directly or indirectly ways. These advances have significantly
improved our understanding of how the crosstalk between
intestine and liver critically regulates the pathogenesis of NAFLD.

Management of NAFLD/NASH via
Modulating Gut Microbiota
As gut microbiota is considered to be a new therapeutic target for
NAFLD/NASH, researchers are recently full of enthusiasm about
looking for compounds to control NAFLD/NASH by altering
gut microbiota. Probiotics are living microorganisms that can
relieve intestinal diseases by restoring normal microbiota and
provide health benefits to the host. A human study revealed
that liver aminotransferases levels were improved in NAFLD
patients treated with 500 million of Lactobacillus bulgaricus
and Streptococcus thermophiles (101). MIYAIRI 588, a butyrate-
producing probiotic from Japan, prevented hepatic steatosis
from developing into liver cancer in a rat NAFLD model
through activating of hepatic adenosine 5′-monophosphate-
activated protein kinase (AMPK), AKT, nuclear factor erythoid
2-related factor 2 (Nrf2) and its targeted antioxidative enzymes
(71). A probiotic mixture called VSL#3, which includes eight
probiotic strains, has been proven to be very effective in
the treatment of NAFLD. In obese children with NAFLD,
supplementation with VSL#3 for 4 months decreased steatosis
and BMI by enhancing the expression and the activity of
GLP-1 (102, 103). Prebiotics, which are special form of
dietary fibers, are fermented by gut microbiota to produce
metabolites that promote the growth of beneficial intestinal
flora. Alpha-galacto-oligosaccharides (alpha-GOS) from legumes
was found to reduce food intake, improve fasting blood
glucose, lower plasma non-esterified fatty acids, low-density
lipoprotein (LDL), and total cholesterol in HFD-fed mice
(104). Some phytochemicals also have prebiotic capacity and
may become therapeutic compounds to prevent or treat
NFALD. For instance, quercetin, which has antioxidant and
anti-inflammatory properties, was reported to reduce hepatic
fat accumulation, inflammation, and insulin resistance by
increasing the population of Akkermansia genus in gut
(105). Synbiotics, which are a combination of probiotics and
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prebiotics, was reported to provide more beneficial effects
in NAFLD. Co-administering Lactobacillus paracasei N1115
and fructooligosaccharides in HFD-induced NAFLD mice
reduced the levels of TNFα, insulin resistance and slowed
the progression of cirrhosis (106). In lean patients with
NAFLD, synbiotic (probiotics: 200 million bacteria of seven
strains; prebiotic: 125mg fructo-oligosaccharide) supplement
significantly ameliorated fasting blood glucose, TG, and most
inflammatory mediators (107).

SCFAs, which are metabolites from fermentation of dietary
fiber by gut microbiota, have been used for preventing liver
steatosis, inflammation, and fibrosis. Other metabolites such
as BAs and indole-like molecules are potential therapeutic
compounds to treat NAFLD/NASH. Antibiotics, such as
neomycin and polymyxin B, can reduce fat accumulation
in the liver by changing the gut microbiota and were
found to be effective, to certain extent, for treating liver
cirrhosis (108). After 90 days of solithromycin treatment,
NASH patients showed reduction in liver steatosis and ALT
levels (109). Gut-derived bacterial products and LPS increase
hepatic inflammation in NAFLD through TLR4 signaling
pathway. Blockage of TLR4 signaling pathway is considered
as a potential therapy to alleviate hepatic inflammation and
fibrosis. JKB-121, which is a TLR4 antagonist, was proved
to reverse LPS-induced inflammation cytokine expressions,
activation and proliferation of hepatic stellate cells, and
collagen expression (110). Fecal microbiota transplantation
(FMT) is an effective treatment for Clostridium difficile
infection. There are some studies also suggesting that FMT
may become a potential therapeutic strategy for NAFLD (111,
112). FMT from lean donors to obese recipients with metabolic
syndrome for 6 weeks improved hepatic and systemic insulin
sensitivity and increased butyrate-producing microbiota in
obese recipients (113). A recent human study revealed that
6 weeks after allogenic FMT, small intestinal permeability in
NAFLD patients was significantly reduced compared with that at
baseline (114).

INTERPLAYS OF CIRCADIAN CLOCK AND
GUT MICROBIOTA DURING NAFLD

There is evidence suggesting that circadian rhythms are related
to gut microbiota, while gut microbiota also affects circadian
rhythms (115). Both circadian and gut microbiota critically
regulatemetabolic homeostasis (116, 117) and are associated with
the development of NAFLD (118, 119).

Circadian Dysregulation and Gut
Microbiota Dysbiosis
While highly relevant to human health, microorganisms in
the human body maintain a dynamic balance in the body.
Also, the circadian rhythm and the intestinal microbes are
closely linked (120). Indeed, gut microbiota itself exhibits diurnal
compositional and functional oscillations (121, 122). More
specifically, environmental factors such as disruption of feeding
time and sleep pattern are shown to impair microbiota diurnal

rhythmicity and causemicrobiota dysbiosis (122, 123). There also
are studies showing that circadian disruption alters microbiota
configuration in gut. For instance, disruption of BMAL1 in mice
abolished the circadian rhythms of fecal microbiota in both sexes,
while changing microbiota composition in a sex-dependent
manner (6). Also, circadian CLOCK mutant mice exhibited
lower evenness and diversity of gut microbiota compared with
wild type mice when fed a chow diet. When mice were fed
an alcohol diet, gut microbiota taxonomic levels in circadian
CLOCK mutant mice were significantly different from those
in wild type mice, indicating that gut microbiota community
structure is altered (10, 124). Moreover, the circadian clock
also alters the function of the gut microbes. As supporting
evidence, the bacterial adhesion oscillation in PER1/2−/−

mice was remarkably disappeared (121). When combined with
high-fat and high-sugar diets, mimicking rhythms disruption
through frequent changes in light and darkness by reversing
the light:dark cycle once weekly significantly changed the
structure of microbial communities (124). Also, the microbe
that impairs gut barrier integrity was increased and the microbe
that improves the intestinal epithelial cell layer was decreased
in mice exposed to constant 24 h light. Compared to that
within normal light-dark cycles conditions, the diversity of
rat’s gut microbiota was significantly different in darkness or
constant lighting conditions. The ratios of bacteria families
such as Lactobacillus, Bacteroides, and Parabacteroides were
altered in darkness or constant lighting conditions (125).
In addition to the alterations of gut microbiota taxon, the
expression of genes related to protective immune function
was reduced whereas the expression of genes associated with
gut inflammation was enhanced after circadian disruption.
Specifically, the upregulated inflammatory genes include those
for lipopolysaccharides (LPS) synthesis and transportation (126,
127).

Psychological factors also are shown to alter gut microbiota.
A study reported that diurnal rhythm disorder caused by
insomnia or a psychological and physiological pressure increased
intestinal permeability and altered microbial composition
(128). Also, in a study involving rhesus monkeys, stress was
created by sound during pregnancy at night, and caused
significant changes in intestinal microorganisms in the pregnant
monkeys at 6 months before birth (129). The alteration of gut
microbiota by stress includes reduced microorganism diversity
and population of certain bacteria, such as Lactobacillus (130).
Circadian rhythm disorder also can lead to the growth of
some special intestinal microorganisms. In the first few days
of sleep deprivation, mice revealed microbial invasion. At 20
days after sleep deprivation, the mice revealed 37 times more
numbers of gram-negative bacteria in cecum relative to the
control group (131). In a study involving human subjects, sleep
deprivation increased Firmicutes in intestine, which usually
found high relative abundance in obese population (132).
The relative populations of Firmicutes, Lachnospiraceae, and
Ruminococcaceae were increased and the relative populations
of Bacteroidetes, Actinobacteria, Lactobacillmmaceae, and
Bifidobacteriaceae were reduced in mice with 4 weeks of sleep
fragmentation (133).
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Involvement of Gut Microbiota Dysbiosis in
Circadian Disruption-Related NAFLD
“Time difference phenomenon” has destructive power and
increases the tendency of illness (122). Microbial dysregulation
caused by circadian rhythm disorder leads to an increased
probability of metabolic diseases such as obesity, insulin
resistance, and NAFLD (134–136). There are studies showing
that germ-free mice did not respond to HFD feeding whereas
normal mice with microbiota became obese when fed with
HFD (7). HFD-feeding altered the oscillations of gut microbiota
composition and function, which were associated with disturbed
host circadian rhythm and led to host metabolic dysregulation
(7). This finding is similar to that observed in the human
after weight loss surgery. The latter revealed that the energy
intake was decreased and the numbers of bacteria were changed
(such as increased levels of Prevotella and Bacteroides and
decreased levels of Firmicutes) after gastric bypass surgery
(137). In addition, chronic sleep restriction is associated with
metabolic diseases including NAFLD. Workers with constant
shift in schedules or individuals with frequent jet-lag exhibit
alterations in gut microbiota, leading to increasing inflammatory
responses and metabolic diseases (138). Mice under the
treatment of inverted dark-light every 2 weeks for 8 weeks,
which mimicked shift work, exhibited significantly increased
intestine permeability and altered community of gut microbiota,
systemic insulin resistance, dyslipidemia, and inflammation
(139). Transplanting microbiota from circadian disrupted (such
as jet-lagged) human to germ-free mice increased weight gain
and blood glucose levels (122), which are associated a significant
increase in the incidence of NAFLD.

In the pathogenesis of NAFLD or the progression to
steatohepatitis, intestinal microbiota composition exhibits
altered circadian oscillation, which enhances the permeability of
intestinal endothelial barrier, leading to intestinal and hepatic
inflammation (122, 140). Moreover, gut microbiota is involved
in the regulation of the expression of circadian clock genes in
the liver. This is significant because hepatic circadian disorder
is associated with hepatic lipid accumulation, inflammation,
and oxidative stress (141). In a study involving mice with
diet-induced obesity and NAFLD, time-restricted feeding
(feeding only for 8 h during dark phase) for HFD-fed mice,
which consumed the same amount calories as that of HFD
ad libitum mice, altered hepatic clock genes that are related
to key enzymes for glucose and lipid metabolism in the liver,
thus decreasing hepatic fat accumulation (142). Mice fed an ad
libitum HFD displayed alterations in gut microbiome, luminal
metabolomics, gut signaling, and hepatic gene expression, which
resulted in metabolic dysregulation such as obesity, impaired
glucose metabolism, insulin resistance, hepatic steatosis,
and inflammation. However, mice with time-restricted HFD
feeding revealed decreased obesogenic microbiota, increased
obesity-protective microbiota, enhanced carbohydrate excretion,
restored gut signaling and hepatic gene expression, which
appeared to protect against obesity and metabolic dysregulation
(136). Circadian disruption (mimicking shift work or jet-lag)
in rats enhances the inflammatory responses when treated with

LPS. In particular, Kupffer cells (KCs) isolated from circadian
disrupted rats exhibited increased TNFα expression in response
to LPS, indicating that liver immune cells are modulated by
circadian rhythms (143). Furthermore, KCs itself showed
circadian oscillation, indicated by the findings that the numbers
of KCs varied during the circadian cycle and that some proteins
in KCs have diurnal rhythmicity. The connection between
immune response proteins of KCs and liver immune proteins
is dominant during the daytime whereas the connection of
metabolic proteins between KCs and liver is dominant during
the nighttime (144). A study in which HFD-fed mice were
under constant light revealed that melatonin ameliorated HFD-
and circadian disruption-induced hepatic fat accumulation and
insulin resistance and restored the gut microbiota. The latter
was evidenced by that melatonin reversed the increased ratio of
Firmicutes to Bacteroidetes (145).

GUT MICROBIOTA REGULATION OF
NAFLD DURING AGING

Gut Microbes in Infants and Young Children
In an infant, the majority of bacterial strains comes from the
mother.While most of the bacteria cannot be colonized for a long
time (146), some intestinal strains always live with the host (146).
It has been previously thought that baby’s intestines are sterile.
Numerous studies have now indicated that Staphylococcal and
Enterococci are present in infant feces, verifying that microbial
colonization has already occurred in the intestines (147).
Compared with normal control, early intestinal microbiota
in cesarean section infants is reduced and associated with T
helper-1 (TH1) response (148). This in turn affects the weight
of childhood; although the underlying mechanisms remain to
be elucidated (149). In addition, premature infants with low
birth weight exhibit altered intestinal microbes and increased
risk of metabolic abnormalities (150). Accordingly, early control
of multiple metabolic diseases, e.g., obesity (151) and diabetes
(152), which both increase the incidence of NAFLD, may be
achievable through breastfeeding. In severely malnourished
children, microbes are lagging behind and cannot maintain
optimal homeostasis, indicating that intestinal microbes play
a role in metabolism (153). Gut microbes interplay with a
variety of factors, including genetics and the environment (154).
Congenital genetic materials can generate a significant impact on
adults (155). Compared with those in normal mice, the numbers
of gut microorganisms in the mice with congenital obesity have
changed significantly (mainly Bactericides and Formicates)
(156), and the alterations are also observed in human (157).
Compared to healthy children, children with NAFLD have
higher levels of Gammaproteobacteria and Prevotella, as well
as higher levels of ethanol (158). In a similar study, the results
indicate that children with NAFLD have higher levels of
Actinobacteria and lower levels of Bacteroidetes compared with
healthy controls. In addition, the levels of Bradyrhizobium,
Anaerococcus, Peptoniphilus, Propionibacterium acnes,
Dorea, and Ruminococcus are increased and the levels of
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FIGURE 3 | Circadian rhythms and gut microbiota in the pathogenesis of NAFLD. Under normal physiological conditions, the central and peripheral clocks operate

synchronously to maintain the normal operation of the body. Feeding time, sleep pattern, and aging cause circadian dysregulation, leading to alterations of microbiota

diurnal rhythmicity, microbiota composition, and thus microbiota dysbiosis. Microbiota dysbiosis impairs gut barrier integrity and increases the gut permeability, which

results in increased release of microbiota products such as endotoxin and microbiota metabolites into circulation. HFD or nutritional stress changes microbiota

composition and circadian oscillation, increasing gut permeability and release of microbiota products. These microbiota products reach the liver and cause hepatic

steatosis and inflammation, which are the features of NAFLD/NASH. Circadian disruption also directly causes dysregulation of liver metabolism, promoting

NAFLD/NASH through increasing hepatic fat accumulation and inflammation.

Oscillospira and Rikenellaceae are reduced in children with
NAFLD (159).

Both gut microbiota and circadian rhythms are linked
to the metabolic homeostasis in infants and children and
influence their health in the future. For instance, early microbial
destruction induces metabolic dysregulation. Cho et al. found
that treatment with antibiotics in early life in mice increased
the levels of GIP, adiposity, and the expression of hepatic
genes, which are involved in lipid metabolic processes. Although
early antibiotics did not change the overall numbers of
microbes, the composition of gut microbiota was altered in
mice with antibiotics in early life, such as increased levels
of Firmicutes (160). Of note, under a chow diet, limited
antibiotics ameliorated hepatic accumulation of fat in early age
in male mice (161). Mechanistically, LPS from gut microbiota
is associated with the development of metabolic syndrome in
children. A study indicates that sleep disruption contributes to
gut bacteria dysbiosis and the increase in LPS levels, leading
to inflammation and metabolic dysregulation (162). Child
snoring disturbs sleeping pattern and is related to metabolic
syndrome, neurocognitive, and behavioral problems. In the
gut of children with snoring, the diversity of microbiota was
reduced and pro-inflammatory bacteria population and the
ratio of Firmicutes to Bacteroidetes were increased (163). Also,
the results from a human study involving 40 children with
NAFLD indicate that the serum levels of FGF21 were inversely

associated with the severity of NAFLD in children at 8:00 am

whereas more severe NAFLD revealed increased FGF21 levels at

noon (164).

Gut Microbes Regulation of NAFLD During
Aging
From colonization in early life, the body maintains the balance
of microbes for decades and toward the end of life. For elders,
their intestinal tract is fragile, their teeth are loose, and there
are other factors affecting the intestinal microbes (165). In an
epidemiological survey (166), the results obtained suggest that
total proteobacteria are increased and stable within a limited
time in people over 65 years old. However, there are some
differences between the studies about whether the diversity of
Bactericides is increased (167). Some studies suggest that the
diversity of Bactericides is increased (167) whereas others showed
the opposite results (168). Also, the gut microbial composition
appears to be different in a sex-dependent way in elders. Obese
male elders have lower levels of Bacteroidetes than obese female
elders (169). Moreover, Clostridium levels are different between
elders and young adults. The production of short chain fatty acids
is reduced in elders, compared with young adults (170).

The circadian rhythm controls deep sleep and duration (171).
In the conventional consciousness, the elders have less deep
sleep (172) and more awakening (173). Through detecting body
temperature and melatonin rhythm (174), the phase of rhythm is
shifted forward (175), the amplitude of rhythm is reduced (176),
and PER2 expression is impaired in elders (177, 178). These
findings have been confirmed by many clinical studies. Indeed,
chronic sleep disorders in old adults are associated withmetabolic
dysregulation. Also, in elders, diet has more effects on age-
related dysbiosis in gut microbiota that affects circadian rhythm
in the host and exacerbates metabolic disorders (7). The circadian
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rhythm gradually deteriorates in life (179), characterized by the
shortening of sleep time, the loss of circadian amplitude (180),
the reduction of neuronal synapses (181), and the increase in
the proportion of silent cells (182). However, the results of
a human study suggest that the risk of NAFLD is increased
slightly in a middle-aged and elderly Chinese population with a
long night time sleep duration (183). Similarly, young and old
mice fed an HFD for 12 weeks revealed increased body weight,
fat accumulation, insulin resistance, and NAFLD activity score
regardless of sex. However, old mice exhibited exacerbation of
NAFLD severity and gut microbiota dysbiosis (184). In elder
people, the numbers of protective anaerobic bacteria are reduced,
gastrointestinal function is declining, and the severity of hepatic
steatosis and inflammation is greater in response to HFD. As
such, the health status of the elders should be taken serious
consideration (185).

CONCLUSION

Nutrition, lifestyle and environment (day and night cycle)
influence metabolism, thereby the health, life quality, and
life span. Individuals who are shift workers, frequently cross-
continental traveler undergoing jet-lag, suffers of sleep disorders,
and/or frequent consumers of high-fat and/or high-sugar
diets have increased risks for metabolic diseases including
NAFLD and NASH. Pathologically, dysregulation of circadian
rhythms, along with dysfunctional composition of gutmicrobiota
contribute to the development and progression of NAFLD,

which has been summarized by this review (Figure 3). There
exist circadian rhythms in intestinal microbes. The changes
in intestinal microbes’ oscillation are manifested by increased
intestinal permeability, microbial composition, and increased
inflammation. Intestinal microbe regulates metabolism via
reprogramming circadian clock, in particular the liver circadian
clocks. Aging and unhealthy diet, as well as dysfunctional
intestinal microbes are factors that bring about rhythm disorders,
leading to hepatic fat accumulation and inflammation. As such,
a healthy diet and a clocklike lifestyle are of the effective ways
to prevent NAFLD and maintain metabolic homeostasis, thereby
keeping individuals healthy.
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