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Nutrition has important long-term consequences for health that are not only limited to the individual but can be passed on to
the next generation. It can contribute to the development and progression of chronic diseases thus effecting life span. Caloric
restriction (CR) can extend the average and maximum life span and delay the onset of age-associated changes in many organisms.
CR elicits coordinated and adaptive stress responses at the cellular and whole-organism level by modulating epigenetic mechanisms
(e.g., DNA methylation, posttranslational histone modifications), signaling pathways that regulate cell growth and aging (e.g.,
TOR, AMPK, p53, and FOXO), and cell-to-cell signaling molecules (e.g., adiponectin). The overall effect of these adaptive
stress responses is an increased resistance to subsequent stress, thus delaying age-related changes and promoting longevity. In
human, CR could delay many diseases associated with aging including cancer, diabetes, atherosclerosis, cardiovascular disease, and
neurodegenerative diseases. As an alternative to CR, several CR mimetics have been tested on animals and humans. At present, the
most promising alternatives to the use of CR in humans seem to be exercise, alone or in combination with reduced calorie intake,
and the use of plant-derived polyphenol resveratrol as a food supplement.

1. Introduction

Nutrition has important long-term consequences for health.
It is one of the lifestyle factors that contribute to the develop-
ment and progression of chronic diseases including cardio-
vascular diseases, diabetes, and cancer [1]. The prevention
or management of chronic diseases is a global priority since
they account for more than half of the deaths worldwide
[2]. The effects of nutrition on heath are not limited to the
individual but can be passed on to the next generation. This
observation has been confirmed by epidemiological studies
and animal experiments. Epidemiologic observations linked
smaller size or low weight at birth or during infancy to
increased rates of coronary heart rate disease, type 2 diabetes
mellitus, or adiposity in adult life [3–7]. In an animal model,
for example, prenatal undernutrition reduced the offspring’s
life span [8] or lead to inadequate development of nephrons
that increased the development of chronic kidney disease in
later life [9].

2. Epigenetic Modifications by Dietary Factors

The effects of nutrition on the body are also mediated by epi-
genetic mechanisms [1]. The three known, closely interacting

mechanisms are DNA methylation, histone modification,
and noncoding microRNAs (miRNAs) as reviewed by McKay
and Mathers [1]. Nutritional factors may induce epigenetic
changes via three pathways: (a) a direct influence on gene
expression, (b) activation of nuclear receptors by ligands,
and (c) modification of membrane receptor signaling cas-
cades [10]. Therefore, epigenetic mechanisms provide the
organism with a robust, and time-responsive system for
adapting gene expression that is (a) tissue-type specific, (b)
appropriate for the developmental state of the organism,
and (c) responsive to signals from the external and internal
environment [1].

2.1. DNA Methylation by Diet. DNA methylation is tissue
specific and is regulated by the enzyme DNA methyl-
transferase (DNMT) that modifies a cytosine base at the
CpG dinucleotide residue with a methyl group to form 5-
methylcytosine [11]. Examples of processes that are con-
trolled by DNA methylation are X chromosome inactivation,
imprinting, and silencing of germline-specific genes, car-
cinogenesis, and long-term memory formation [12]. Tradi-
tionally, DNA methylation was associated with suppression
of gene expression. Thus, DNA methylation either physically
impedes the binding of transcriptional proteins to the gene,

mailto:samo.ribaric@mf.uni-lj.si


2 Oxidative Medicine and Cellular Longevity

or the methylated DNA binds to proteins known as
methyl-CpG-binding domain proteins that recruit addi-
tional proteins to the locus—such as histone deacetylases—
that modify histones into compact, inactive chromatin as
reviewed in [13, 14]. However, in some patients with cancer,
both global DNA-hypomethylation and localized DNA-
hypermethylation are present [15, 16].

Dietary constituents that are known to modulate DNA
methylation are, for example, folate, vitamin B12, sele-
nium, green tee polyphenols (e.g., epigallocatechin-3-gallate
(EGCG), epicatechin, ganistein), and bioflavonoids (quer-
cetin, fisetin and myricetin). Folate and vitamin B12 pro-
mote global DNA-methylation, whereas selenium, green
tee polyphenols, and bioflavonoids reduce global DNA-
methylation as reviewed in Davis et al. [17]. However,
the local effect of these constituents on DNA methylation
can differ from their global one. For example, long-term
selenium consumption increases exon-specific DNA methy-
lation of the p53 gene in rat liver and colon mucosa [18].

2.2. Histone Modification by Diet. Eukaryotic cell nuclei
contain alkaline proteins (due to highly positively charged
N-terminus with many lysine and arginine residues) called
histones, that package and order the DNA into structural
units called nucleosomes. Histones act as spools around
which DNA winds and play a role in gene regulation, since
genes that are active are less bound to histones; inactive
genes are highly associated with histones [19]. The histones
N-terminus (i.e., the histone tail) or the side chains at the
globular histone core are the sites of epigenetic modifications
[20].

Posttranslational modification of histones is significantly
more diverse then DNA methylation. Some of the best under-
stood histone modifications are methylation, acetylation,
phosphorylation, ribosylation, ubiquitination, sumoylation,
or biotinylation [20]. Examples of enzymes involved in
posttranslational modification of histones are histone acetly-
transferases (HATs), methyltransferases (HMTs), deacety-
lases (HDACs), and demethylases (HDMs). The effects of
diet on histone posttranslational modification were recently
reviewed by Link et al. [21]. For example, polyphenols from
garlic or cinnamon inhibit HDAC; green tea polyphenols and
copper inhibit HAT; EGCG inhibits HMT.

Histone methylation can modulate DNA methylation
patterns, and DNA methylation might serve as a template for
some histone modifications after DNA replication [20, 22].
It has been suggested that these interactions could be accom-
plished via direct interactions between histone and DNA
methyltransferases [20, 22]. Such DNA-histone interactions
could also be initiated or modulated by diet.

2.3. miRNA Modification by Diet. miRNAs are a family of
approximately 22-nucleotides long noncoding RNAs in
eukaryotic cells. miRNAs are posttranscriptional regulators
and bind to complementary sequences on target messen-
ger RNA transcripts (mRNAs) leading to posttranscrip-
tional gene silencing due to mRNA translational repres-
sion or increased RNA degradation. However, miRNAs can
also cause histone modification and DNA methylation of

promoter sites thus regulating the expression of target genes
by an alternative pathway. [23, 24]. The human genome
encodes over 1000 miRNAs, which target more than 50% of
mammalian genes in many human cell types [25–30]. Thus,
miRNAs influence the expression of many transcription
factors, receptors and transporters [31]. Recent evidence
from experiments in human and in animal models suggests
that nutrition (e.g., the consumption of fat, protein, alcohol
or vitamin E) effects the expression of many miRNA [32].

Polyphenols (e.g., anthocyanin, curcumin and querce-
tin,) at nutritional doses modulate the expression of liver
miRNA in mice in vivo [33]. Dietary modulation of miRNA
expression could contribute to the cancer protective effects of
genistein, curcumin, retinoic acid, or fish oil. Genistein (an
isoflavone) inhibits uveal melanoma cell growth in a time
and dose-related manner by inhibiting the of miRNA-27a
expression [34]. Curcumin treatment upregulates miRNA-22
and downregulated miRNA-199a in a pancreatic cancer cell
line [35] and also upregulates the expression of miRNA-15a
and miRNA-16 in breast cancer cells [36]. Patients with acute
promyelocytic leukemia that were successfully treated with
chemotherapy and all-trans-retinoic acid had a downregula-
tion of miRNA-181b and an upregulation of several miRNAs
[37]. miRNA-10a downregulation, induced by treatment
with retinoic acid, prevented pancreatic cancer metastasis
in xenotransplantation experiments in zebrafish embryos
[38]. Fish oil reduced the number of differentially expressed
miRNAs in experimental animals and may be useful in
prevention of colon carcinoma [39]. Indol-3-carbinol down-
regulated the expression of several miRNAs (i.e., miRNAs
-21, -31, -130a, -146b and -377) in mice with induced mouse
lung tumors [40]. Inadequate nutrition can also modulate
miRNA expression. For example, dietary deficiency of folate
was associated with significant overexpression of miRNA
-222 in human with low folate intake [41]. Also, rats
on a folate-methionine-choline deficient diet developed
hepatocellular carcinoma with concurrent overexpression of
miRNAs -17 to -92, -21, -23, -130, and -190 [42].

2.4. TOR Signaling Pathway and Nutrition. TOR (target of
Rapamycin) is a protein kinase that functions as a central
controller of cell growth and aging as reviewed elsewhere
[43, 44]. Inactivation of the TOR signaling pathway promotes
autophagy and prolongs life span [45]. Its function was
first characterized in yeast but was also identified in other
eukaryotes including mammals (hence mammalian TOR or
mTOR). In vivo, mTOR exists in two multiprotein com-
plexes, the mTORC1 and mTORC2. The mTORC1 functions
as a nutrient-energy-redox sensor and modulates protein
synthesis. Therefore, the upstream factors that stimulate the
activity of this complex are insulin and other growth factors,
amino acids (e.g., leucine), and stress (temperature change,
caffeine, oxidative stress). Caffeine, hypoxia, and DNA
damage inhibit mTORC1 activity. The upstream regulators
of TORC1 activity are the AGC family of kinases (e.g., PKA;
PKG and PKC) that are activated by phosphorylation [46].
In mammals, mTORC1 targets are S6 K1 and the eukary-
otic initiation factor (4E-BP1) [47–52]. mTORC1-mediated
phosphorylation of S6 K1 promotes protein synthesis and
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4E-BP1 phosphorylation promotes localization of ribosomes
to the cap structure of mRNAs. The phosphorylating activity
of mTORC1 is regulated through its association with the
RAPTOR (regulatory-associated protein of mTOR) protein
[53, 54]. High nutrient or ATP levels activate mTORC1
by phosphorylating and thus inhibiting the TSC1-TSC2
complex as reviewed by Loewith and Hall [43]. This complex
is a GTPase activating protein that modifies a second GTPase
RHEB into a GTP bound state. RHEB, in the GTP bound
state, directly binds and activates mTORC1 thus allowing
mTORC1 to phosphorylate downstream targets [55]. Low
cellular energy (high AMP levels) or low nutrient levels, in
association with the tumor suppressor kinase LBK1, activate
AMPK and an activated AMPK phosphorylates both TSC2
and RAPTOR thus inhibiting mTORC1 activity by two
pathways [56]. In yeast, TORC1 promotes protein synthesis,
ribosome biogenesis, regulates the relationship between cell
cycle and cell size, promotes cell growth by inhibiting stress
responses, stimulates autophagy, and regulates the signaling
of mitochondrial dysfunction to the nucleus via the negative
regulator of RTG1-dependent transcription [43, 44]. At the
organ and whole body levels, the TORC1/S6 K1 signaling
pathway regulates glucose homeostasis, insulin sensitivity,
adipocyte metabolism, body mass and energy balance, tissue
and organ size, learning, memory formation, and aging
[57]. For example, the S6 K1 modulates the differentiation of
mesenchymal stem cells into adipocytes. Overstimulation of
the mTORC1/S6 K1 signaling pathway by excessive quantities
of leucine in infant milk formulas could be the cause of
increased adipogenesis and early childhood obesity [58].

The best understood functions of mTORC2 are the con-
trol of cell cycle-dependent polarization of actin cytoskele-
ton, endocytosis, and sphingolipid biosynthesis [43, 59, 60].
The upstream regulators of mTORC2 are insulin and IGF1
[44, 61]. The ribosome maturation factor Nip7 is required
for mTORC2 kinase activity in yeast and mammalian cells
[44, 61] and the substrates of mTORC2 are the AGC family
of kinases including AKT, SGK1, and PKC [44, 62]. For
example, mTORC2 promotes cell survival via AKT [63, 64]
and also regulates hepatic glucose and lipid metabolism via
insulin induced AKT signaling [62].

Although the signaling pathways of TORC1 and TORC2
are to some extent distinct they have a cooperative function
to coordinate growth, mitosis, and cell size control. For
example, TORC2 activates TORC1 via the AKT signaling
pathway. TORC1 activation stimulates anabolic cellular
pathways and TORC1 inhibition stimulates catabolic cellular
pathways [65]. As a general rule, the sensitivity of the TORC1
and TORC2 signaling pathways could be not only cell-tissue
specific but also TORC isoform dependent. For example, the
activity of mTORC2 depends on the type of mammalian
stress-activated protein kinase interacting protein (mSin1)
isoform that constitutes this multiprotein-complex [66].

3. Nutrition and Aging

The possibility that mammalian life span could be signifi-
cantly extended by diet modification was demonstrated in
a rodent study published by McCay and coworkers. in 1935

[67]. Rats, as opposed to primates, have the ability to grow
their entire life. One of the objects of this study was to
determine the effect of retarding growth on the total length
of life of rats of both sexes. Growth was retarded by limiting
the intake of diet to the quantity necessary for maintaining
the rats at fixed levels of body weights at the time of weaning
or 2 weeks after weaning. At the same time, care was taken to
provide adequate levels of all other diet constituents. Animals
of both sexes, subject to diet restriction, had a prolonged total
lenght of life. However, the effect of diet restriction on life
span was more pronounced in male than in female rats [67].
In summary, this seminal experiment suggests that life span
can be extended by diet restriction without malnutrition as
opposed to diet restriction with malnutrition that can have
an opposite effect as discussed elsewhere [1].

The standard protocol for studying the positive effects
of a limited food intake is the use of caloric restriction,
or calorie restriction (CR) diet that does not lead to
malnutrition (due to lack of vitamins, minerals or essential
biomolecules). CR means limiting calorie intake by 10–
30% compared to the base line unrestricted intake for the
studied life form and has been shown to improve health at all
ages and also to slow the aging process in many eukaryotes
[68]. The relevance of CR life span prolonging effects for
primates was explored in a 20-year longitudinal adult-onset
CR study in rhesus monkeys. The animals’ baseline intake
of calories was reduced progressively by 10% per month to
a final 30% reduction that was maintained for the duration
of the experiment. The effect of CR, compared to control,
was evaluated by comparing the delay in mortality and the
onset of some age-associated conditions most prevalent in
humans (e.g., diabetes, cancer, cardiovascular disease, and
brain atrophy). The conclusions of the study were that
CR lowered the incidence of aging-related deaths (50% in
control fed animals versus 20% in CR-fed animals) and
also lowered the incidence of diabetes, cancer, cardiovascular
disease, and brain atrophy [68].

4. Caloric Restriction Effects in Humans

The fundamental assumption, that caloric restriction can
extend the average and maximum life span and delay the
onset of age-associated changes, has been proven in many
organisms from yeast, worms, and flies to mammals [69–
71]. In higher mammals, CR delays many diseases associ-
ated with aging including cancer, diabetes, atherosclerosis,
cardiovascular disease, and neurodegenerative diseases [68,
72–74]. The incidence of these diseases increases with age
and they contribute significantly to mortality. Therefore, CR
could increase life span by increasing the body’s general
state of health and providing a nonspecific, resistance to
chronic diseases and metabolic derangements [68, 72–74].
However, the ultimate question, how does CR effect the
human body, was studied in a limited number of experiments
[73–93]. The study of CR effects on human longevity faces
ethical and logistical challenges since the average life span is
close to 80 years for the population in developed countries.
Therefore, human studies are focused on measuring the
CR-related changes that could slow the aging process and
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the progression of chronic diseases thus increasing life span.
The most convincing evidence that CR could have a positive
effect in humans was provided by experiments by Fontana
and coworkers, by the Comprehensive Assessment of Long-
Term Effects of Reducing Calorie Intake (CALERIE Phase
1), and by data obtained on the members of the Caloric
Restriction Society (as discussed below).

Fontana and coworkers evaluated the effect of a 6-year
long CR diet on risk factors for atherosclerosis in adult male
and female adults (age range 35–82 years) and compared
them to age-matched healthy individuals on typical Ameri-
can diets (control group). The total serum cholesterol level
and low-density lipoprotein (LDL) cholesterol levels, the
ratio of total cholesterol to high-density lipoprotein choles-
terol (HDL), triglycerides, fasting glucose, fasting insulin, C-
reactive protein (CRP), platelet-derived growth factor AB,
and systolic and diastolic blood pressures were all markedly
lower in the CR group. The HDL cholesterol was higher
after CR. Medical records of individuals in the CR group
indicated that, before they began CR, they had serum lipid-
lipoprotein and blood pressure levels in the expected range
for individuals on typical American diets, and similar to
those of the comparison group. The conclusion of the study
was that long-term CR can reduce the risk factors for
atherosclerosis [74].

The effect of fat loss induced by either (a) a long-term
20% CR or (b) a 20% increased energy expenditure (IEE)
by exercise on coronary heart disease (CHD) risk factors
was evaluated in a one-year randomized, controlled trial on
48 nonobese male and female subjects. The CR or exercise
induced reductions in body fat were quantitatively similar
and were accompanied by similar reductions in most of the
major CHD risk factors, including plasma LDL-cholesterol,
total cholesterol/HDL ratio, and CRP concentrations. The
authors concluded that long-term CR or IEE of the same
magnitude lead to substantial and similar improvements
in the major risk factors for CHD in normal-weight and
overweight middle-aged adults [83].

The effects of a 1-year, 20% CR regime or 20% IEE
by exercise, on the oxidative damage of DNA and RNA,
was evaluated by white blood cell and urine analyses in
normal-to-overweight adults. Both interventions signifi-
cantly reduced oxidative damage to both DNA and RNA in
white blood cells compared to baseline. However, urinary
levels of DNA and RNA oxidation products did not differ
from baseline values following either 1-year intervention
program. The conclusion of the study was that either CR
or IEE by exercise reduce systemic oxidative stress which
is reflected in a decreased DNA or RNA oxidative damage
[85].

CALERIE is a research program initiated by the National
Institute on aging that involves three research centers. The
Phase 1 of CALERIE included three pilot studies to deter-
mine whether long-term (6–12 months) effects of 20–25%
CR in free-living, nonobese humans could be investigated
and to evaluate the adaptive responses to CR. The con-
clusions of this randomized, controlled, clinical trial were
that CR subjects had a lower body weight, a decreased

whole body and visceral fat, a reduced activity energy expen-
diture, improved fasting insulin levels, improvements in
cardiovascular disease markers (LDL, total cholesterol to
HDL ratio, and CRP), and no change in bone density com-
pared to controls [76, 77, 83, 86, 92]. The objective of the
ongoing CALERIE Phase 2 is to test if 2 years sustained 25%
CR of ad libitum energy intake, results in beneficial effects
that would be similar to those observed in animal studies
[91].

Members of the Caloric Restriction Society (CRS) restrict
food intake with the expectation that this would delay the
disease processes responsible for secondary aging and to slow
the primary aging process. Compared to age-matched indi-
viduals eating typical American diets, CRS members (average
age 50 ± 10 yr) had a lower body mass index, a reduced body
fat, significantly lower values for total serum cholesterol, LDL
cholesterol, total cholesterol/LDL, and higher HDL choles-
terol. Also fasting plasma insulin and glucose values were
significantly lower than in the age-matched control group.
Left ventricular diastolic function in CRS members was
similar to that of about 16 years younger individuals. Chronic
inflammation was reduced by CR and this was reflected in
significantly lower levels of plasma CRP and tumor necrosis
factor alpha (TNFα) [74, 78, 84].

Aging is associated with a progressive reduction in heart-
rate-variability (HRV)—a measure of declining autonomic
function—and also a worse health outcome. The effect of a
30% CR on heart autonomic function was assessed by 24-
hour monitoring of HRV in adults on self-imposed CR for
3 to 15 years and compared with an age-matched control
eating a Western diet. The CR group had a significantly
lower heart rate and significantly higher values for HRV.
Also, HRV in the CR individuals was comparable to
published norms for healthy individuals 20 years younger.
The authors suggest that CR reset the balance between the
sympathetic/parasympathetic modulation of heart frequency
in favor of the parasympathetic drive thus increasing the
circadian variability of heart rate [93].

5. Cellular Mechanisms of Caloric Restriction

Most age-related changes in gene expression are less then two
folds and are tissue specific [94]. Yet despite tissue-specific
differences in the effect of age on gene transcription, the rate
of aging across tissues appears to be coordinated, suggesting
a role for systemic factors in coordinating the aging process
at a whole body level [95]. The most common age-related
changes include increased expression of genes involved in
inflammation and immune responses, and reduced expres-
sion of genes involved in mitochondrial (MTH) energy
metabolism and CR prevents the majority of these age-
associated changes in gene expression [96, 97]. CR is sug-
gested to counteract the age-associated changes by modu-
lating the mTOR signaling pathway, IGF1/insulin signaling,
adiponectin expression, DNA methylation, and histone
acetylation and deacetylation.

5.1. Adiponectin Secretion in Caloric Restriction. A consistent
change during CR is a reduction in body fat (i.e., a reduction
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in white adipose tissue). White adipose tissue is not only a
storage site for lipids but has an important role in blood
glucose homeostasis, immune, and inflammatory responses
that are mediated by adipocyte-derived, cell-to-cell, signaling
molecules adipokines (e.g., adiponectin) [98, 99]. Therefore,
adipose tissue could be an important factor for aging and
CR-related metabolic changes.

The secretion of adiponectin is increased by reduced cal-
orie intake (e.g., CR) and reduced by both insulin and IGF1
that decrease its synthesis. Cross-sectional studies demon-
strate a consistent inverse relationship between plasma insu-
lin and adiponectin concentrations. An increase in adipocyte
size will also reduce the secretion of adiponectin [100].
Adiponectin promotes fatty acid oxidation in adipose tis-
sue and reduces lipid accumulation in other peripheral
tissues [101]; CR is associated with increased levels of ad-
iponectin [102]. In humans, this hormone suppresses
metabolic derangements that may lead to type 2 dia-
betes, obesity, atherosclerosis, or metabolic syndrome [103–
105]. Adiponectin regulates mitochondrial energy produc-
tion via AMPK. AMPK has many functions, it up-regulates
cellular uptake of glucose, β-oxidation of fatty acids, expres-
sion of glucose transporter 4 (GLUT4), and mitochondrial
energy production. The enzyme has an “energy-sensing
capability” and responds to fluctuations in the intracellular
AMP/ATP ratio. For example, adiponectin treatment of
human myotubes leads to an AMPK-dependent increase in
MTH biogenesis and reduces reactive oxygen species (ROS)
production [106]. AMPK regulates MTH energy produc-
tion by activating peroxisome proliferator-activated receptor
gamma coactivator 1-alpha (PGC1-α) directly, or through
the endothelial nitric oxide synthase (eNOS) and NAD-
dependent-deacetylase sirtuin1 (i.e., SIRT1 or silent mating
type information regulation 2 homolog 1) signaling pathway.
Increased AMPK activity during CR has also a cardiopro-
tective effect, which is abolished in transgenic adiponectin
antisense mice or in mice treated with an AMPK inhibitor
[102]. Increased AMPK activity also stimulates eNOS activity
thus reducing the chances of cerebral ischemic injury
[107]. Additional cardioprotective effects that are mediated
by increased secretion of adiponectin during CR are (a)
inhibition of TNFα release and (b) inhibition of synthesis
of adhesion molecules in endothelial cells. The latter sup-
presses the attachment of monocytes to the endothelial cells
and delays the progression of atherosclerosis. Adiponectin
modulated inflammatory responses are due to inhibiting
the secretion of TNFα (a cytokine involved in systemic
inflammation) from monocyte/macrophages and foam cells
[108–110]; this may explain the reduced plasma concentra-
tion of inflammatory protein CRP in humans subjected to
CR.

5.2. Insulin/IGF1 Signaling in Caloric Restriction. Insulin re-
sistance is a well-known age-related metabolic change in
mammals that can be reversed by CR [94]. CR has been
reported to reduce IGF1 blood levels in mice but not in
humans [111, 112]. Insulin and IGF1 inhibit FOXOs (an O
subclass of the forkhead family of transcription factors) by

a signaling pathway that includes insulin receptor sub-
strate proteins (IRS), 3-phosphoinositide-dependent pro-
tein kinase-1 (PDPK1), and phosphatidylinositol 3-kinase
(PTDINS-3 K), thus translocating FOXOs from the nucleus.
FOXOs regulate the rate of aging in response to dietary cues
and the disregulation of this pathway in mammals is
associated with obesity and insulin resistance [113]. In a cell-
type-specific manner, mammalian FOXO factors control
various cellular functions including apoptosis, cell cycle,
differentiation, and the expression of genes involved in DNA
repair and oxidative stress resistance. These functions are
assumed to be the basis for FOXO’s ability to control life
span [114]. The actions of insulin/IGF1 signaling pathway on
FOXO1a are mimicked by black tea polyphenols [113] and
polymorphisms in the FOXO3a gene were associated with
longevity in humans [115]. CR stimulates SIRT1-mediated
deacetylation of the FOXO3a, preventing nuclear FOXO3a
activity and inhibiting Rho-associated protein kinase-1
expression thus activating nonamyloidogenic α-secretase
processing of APP and lowering Aβ generation. This
reduced Aβ generation is associated with the prevention of
Alzheimer’s disease type amyloid neuropathology and spatial
memory deterioration in a mouse model [114]. The positive
effect of CR on the insulin/IGF1 signaling pathway was also
associated with a reduction in ROS production in MTH
[116].

5.3. mTOR Signaling Pathway in Caloric Restriction. The reg-
ulation of life span by the mTOR signaling pathway is not
completely understood. However, recent experimental work
implies that it plays an important role in the cell’s aging
process [44]. Inhibition of mTOR with rapamycin expands
maximal and median life span in mice. This effect was
observed even when the treatment was initiated late in life,
corresponding roughly to an age of 60 years in humans
[44, 117]. The above mentioned, rapamycin-mediated life
extension was not associated with change in disease patterns
or causes of death suggesting that rapamycin increases life
span by slowing-down age-related tissue and organ degen-
eration [44, 117]. mTORC1 inhibition could prevent tissue
degeneration and extend life span by improving stem cell
function. For example, reducing mTORC1 signaling with
rapamycin restores hematopoietic stem cells self-renewal and
hematopoietic function, improves immunity, and increases
life span in mice [118]. S6 K1 and 4E-BP1 were suggested as
effectors of the mTORC1 signaling pathway that regulates the
aging process. As reviewed in Kapahi et al., reduced S6 K1
activity increases life span in various species including in
mice [119] and overexpression of 4E-BP1 extends life span
under rich nutrient conditions by enhancing mitochondrial
activity in flies [120].

mTORC1 could also influence life span through mech-
anisms that are not associated with modulation of protein
synthesis; for example, stimulation of autophagy, as a conse-
quence of mTORC1 inhibition, could promote longevity by
stimulating degradation of aberrant proteins and damaged
organelles that are accumulating over time and impairing
cellular homeostasis [44]. An example how disregulation of
mTORC1 activity can affect life span is seen in the liver
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of old mice with impaired fasting-induced ketogenesis and
increased mTORC1 activity [121]. This impaired ketoge-
nesis limits the supply of available energy substrates to
the peripheral tissues thus reducing the organism’s chances
of survival during food deprivation.

The age-related decline in MTH function is counteracted
by CR that increases the transcription of nuclear-encoded
genes involved in the electron transport system [69]. The
effects of CR on MTH could also be mediated by the
mTOR signaling pathway since mTOR is necessary for the
maintenance of mitochondrial oxidative function [122].
Two, S6 K1 and 4E-BP1 independent, mTOR/MTH signaling
pathways have been suggested: the TORC1-YY1-PGC-1α
complex [122] demonstrated in a mouse model or the
TORC1-regulated complex of BCL-XL and VDAC1 located
at the mitochondrial outer membrane in a T-cell leukemic
cell model [123].

5.4. DNA Methylation in Caloric Restriction. The aging pro-
cess is associated with a progressively reduced cell home-
ostasis and altered gene expression [124]. Aging causes a
significant change in the distribution of 5-methylcytosine
(the product of DNA methylation) across the genome and
a decrease in global genome DNA methylation [124–130].
However, the promoter regions of some specific genes tend
to switch from unmethylated to methylated status, leading
to gene silencing (e.g., promoters of tumor or aging-related
genes, such as RUNX3 and TIG1 [129, 131]). In summary,
the aging process is associated with globally decreased but
locally increased DNA methylation [132]. CR is assumed
to delay the aging process by reversing aging-related DNA
methylation changes thus increasing genomic stability [133,
134]. For example, CR increased the methylation level of
proto-oncogene RAS in a rat model when compared to ad
libitum fed animals [135]. A hypermethylated gene promoter
is often recognized by transcriptional repressor complexes,
thus leading to silencing the expression of these oncogenes,
which contributes to the cancer prevention effects of CR
[132]. In an in vitro human cell model of CR, the E2F-
1 binding site in the promoter of the p16INK4α gene (a
tumor suppressor and aging-associated gene) was hyper-
methylated. This DNA hypermethylation blocked access of
E2F-1 (an active transcription factor of p16INK4α) to the
p16INK4α promoter, resulting in p16INK4α downregulation,
thus contributing to the CR induced life span extension
[136].

Obesity is an important metabolic disorder in humans
that is closely associated with recognized causes of acceler-
ated aging and increased mortality such as diabetes, hyper-
tension or cancer [137]. Therefore, the antiageing effects of
CR should have an impact on the progression of obe-
sity and are used in clinical weight control interventions
[138]. The practice of CR by obese humans revealed that
hypocaloric diets cause DNA methylation changes in specific
loci ATP10A, WT1, and TNF-α, which could be used as early
indicators of a response to CR [139–141]. Further CR studies
in humans are necessary to characterize the pool of DNA
methylation-controlled candidate genes that could be closely
correlated with metabolic pathways [132].

5.5. Posttranslational Modification of Histones in Caloric Re-

striction

5.5.1. Histone Acetylation/Deacetylation. Histone modifica-
tions are associated with gene activation or gene repres-
sion. The combination of modifications within histone
tails directly changes nucleosomes configuration switching
chromatin to either a compacted (tight-close) or a relaxed
configuration (loose-open) [142]. Therefore, histone mod-
ifications determine the (tight-close: loose-open) ratio of
chromatin and thus the degree of gene activity within a
certain DNA region. For example, a deacetylated histone
lysine residue has the positive charge, which attracts the
negatively charged DNA strands producing a compact chro-
matin state that is associated with transcriptional repression.
Alternatively, histone acetylation removes the positive charge
and results in an open chromatin structure, which promotes
gene transcription [132]. HDAC activity is increased during
CR, therefore, global deacetylation may be a protective
mechanism against nutrition stress and may influence the
aging processes [136]. For example, enhanced activity of
HDAC1 on the promoter regions of the p16INK4α and human
telomerase reverse transcriptase (hTERT) genes, the former
a tumor suppressor in many human cancers and the latter
a key regulator of telomerase activity modified by aging
regulation, leads to beneficial expression changes of these
two genes and contributes to longevity under CR conditions
[136, 143, 144].

Several HDAC families have been identified, including
class III NAD+-dependent HDACs like Sirtuin1. Sirtuin1
(SIRT1 in mammals), and its orthologs in other species (e.g.,
Sirtuin2 in yeast) are important for aging regulation and CR-
related lifespan extension [145–149]. The enzymatic activity
of SIRT1 depends on NAD+/NADH ratio, a key indicator
for oxygen consumption, thus suggesting that this protein
is responsive to the metabolic state of cells. The role of
SIRT1 in mediating CR and lifespan extension is supported
by several animal models, human subjects, and in vitro CR
cellular systems [136, 145, 146, 148–154]. CR induces SIRT1
expression in several tissues of mice or rats [146]. SIRT1 is
assumed to mediate CR-induced metabolic alterations and
subsequent aging retardation by (a) increasing stress resis-
tance by negative regulation of p53 and FOXO [155–159] and
(b) by initiating a series of endocrine responses, including
inhibition of adipogenesis and insulin secretion in pancreatic
β cells by regulation of key metabolism-associated genes such
as peroxisome proliferator-activated receptor G coactivator
1α (PGC-1α) [160, 161]. Although SIRT1 is classified as an
HDAC, it also deacetylates nonhistone substrates [146, 152]
including key transcription factors (e.g., FOXO), regulatory
proteins (e.g., p53, p16INK4α), and DNA repair proteins (e.g.,
Ku70) that are involved in lifespan extension by CR. For
example, downregulation of p53 by SIRT1 deacetylation may
affect lifespan by inhibiting cellular apoptosis and replicative
senescence processes [155–157, 162–164]. FOXO protein can
be directly deacetylated by SIRT1 at lysine residues and its
expression is reduced, thereby repressing FOXO-mediated
apoptosis [158, 159]. The DNA repair protein, Ku70, can
become deacetylated by SIRT1, allowing it to inactivate
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the proapoptotic factor BAX, thus inhibiting apoptosis [165,
166]. p16INK4α is a cyclin-dependent kinase inhibitor, an
important tumor suppressor protein and a potential aging
biomarker since it is significantly accumulated during the
aging processes [167–171]. CR-activated SIRT1 can directly
bind to the p16INK4α promoter and decrease its expression
through a deacetylation effect, which contributes to delaying
the aging process and to life span extension in human cells
in vitro [153]. As stated previously, SIRT1 also regulates the
expression of genes that are involved in metabolic pathways.
PGC-1α is a key regulator of gluconeogenesis and fatty
acid oxidation [160, 161] and is upregulated during CR
by SIRT1-mediated deacetylation, which increases its ability
to coactivate HNF4α, a transcription factor that promotes
the expression of gluconeogenic genes and represses genes
involved in glycolysis [147, 152]. In summary, SIRT1 plays
an important role in the cross-talk between epigenetic and
genetic pathways [132].

5.5.2. Histone Methylation. In contrast to histone acetyla-
tion, associated with open chromatin status and subsequent
gene activation, differentially methylated forms of histones
show unique association patterns with specific proteins that
recognize these markers and thus lead to gene silencing or
activation [132]. Histone lysine residues can be mono-, di-
or, tri-methylated, leading to either activation or repression
depending upon the particular lysine residue that is modified
[172, 173]. For example, CR elicited histone methylation
modifications such as di- or tri-methylated histone H3 at
lysine residue 3 or 4 regulate expression of key aging-related
genes, p16INK4α and hTERT, thereby contributing to CR-
induced lifespan extension of human cells [136, 153].

5.6. miRNA Expression in Caloric Restriction. miRNA expres-
sion patterns change with age; some miRNAs are downregu-
lated and some are upregulated. Expression profile analysis
of 800 miRNAs in human peripheral blood mononuclear
cells revealed that the majority of miRNAs decreased in
quantity including miRNAs involved in cancer development
[174]. Since human tumors are often associated with a
general downregulation of miRNAs, the reported age-related
global decrease in miRNA could increase the frequency of
cellular transformation and tumor genesis thus reducing life
span. The decrease of these latter miRNAs with advanced
age was also associated with an increased expression of
target proteins phosphatidylinositol 3-kinase, stem cell factor
receptor (c-KIT) and histone H2A [174]. Animal studies also
support the role of miRNAs in aging. For example compared
to wild-type controls, C. elegans mutants with deletion of
miRNA-239 have a significantly prolonged lifespan and C.
elegans mutants with deletions of miRNA-71, miRNA-238,
and miRNA-246 have a significantly reduced lifespan [175].
The longevity of Ames dwarf mouse—attributed to their
increased insulin sensitivity, increased stress resistance and
reduced tumor frequency as a result of reduced IGF-1
activity—was associated with liver miRNA-27a suppression
of regulatory proteins ornithine decarboxylase and spermi-
dine synthase that occurred sooner in postnatal life that in
wild-type mice [176].

CR changes miRNA expression profile. In mouse breast
tissue, of animals restricted to 70% of normal diet for 6
months, CR increased the expression of miR-203 that targets
caveolin-1 and p63 important factors affecting growth
and invasive potential of cancer cells [177]. The authors
concluded that CR could reduce the incidence, progression
and metastasis of breast cancer thus contributing to an
increased life span [177]. The brain of CR mice—after an
8-month reduction of calories to 60% of normal ad libitum
intake—shows a decreased expression of miRNA-181a,
miRNA-30e, and miRNA-34a with a concomitant increase
in BCL2 expression and a concomitant decrease in BAX
expression with reduced activities of Caspases 9 and -3.
Decreased activities of Caspases 9 and 3 are associated with a
reduced rate of apoptosis [178]. BAX and Caspase 3 activity
is increased in Alzheimer’s and Parkinson’s disease; therefore,
the progress of these common neurodegenerative diseases
could be delayed by CR thus prolonging life span [179–183].

6. Mimetics of Caloric Restriction

Since long-term CR is necessary to produce beneficial effects
on health and longevity observed in experimental condi-
tions, alternatives have been investigated that could produce
the positive effects of CR without food restriction. An
ideal calorie restriction mimetic (CRM) should (a) elicit
metabolic, hormonal and physiological effects similar to CR,
(b) not require a significant reduction in long-term food
intake, (c) activate stress response pathways similar to CR
and (d) extend life span and reduce or delay the onset of age-
related diseases [184]. To speedup the search for a candidate
CRM the National Institute on Aging established the Inter-
ventions Testing Program as a multi-institutional program
to test substances predicted to “extend lifespan and delay
disease and dysfunction” [185–189].

6.1. Caloric Restriction Combined with Exercise. Male rats are
the favorite animal model to study whether exercise in com-
bination with CR (i.e., CE) potentiates the health-promoting
benefits caused by CR alone, because these animals do not
increase their caloric intake to compensate for their exercise-
induced caloric expenditure [180]. Some studies concluded
that CE does not have health-promoting benefits beyond
those elicited by CR [111, 190–192]; there was no significant
change in oxidative stress levels or pro-inflammatory protein
levels in exercised animals fed an 80% CR diet [191, 192] and
no effect on the animal’s maximal life span [190]. On the
other hand, CE reduced CRP levels to a greater extent than
CR by itself [193] and reduced the chances of developing
both myocardial necrosis and myocardial ischemia [194,
195].

Several human CE studies investigated the effect of a
25% total caloric reduction with 12.5% coming from exercise
induced expenditure and another 12.5% coming from CR.
The majority of them found no significant difference
between CR and CE in respect to fasting insulin levels, DNA
damage, muscle mitochondrial gene expression, triglyceride
levels, and liver lipid content [76, 196–198]. The exceptions
are two studies that reported a further reduction in both
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diastolic blood pressure and LDL cholesterol when CR
with exercise was compared to CR alone [198, 199]. Also,
CE has been shown to increase bone mineral density at
the femoral neck and reduce sTNFR1, an inflammatory
biomarker, in overweight postmenopausal women [200].
The main advantage of combining CR with exercise over CR
alone is that it may be easier for an individual to comply with
a CE regimen where the total energy (i.e., caloric reduction)
is divided between exercise-induced expenditure and calorie
restriction [201].

6.2. Dietary Restriction. Dietary restriction (DR) refers to the
modification of the quantity ratio between protein, fat, and
carbohydrates with or without reducing the total intake of
calories. Neither carbohydrate restriction nor lipid restric-
tion are effective alternatives to CR and both failed to
decrease reactive oxygen species production or oxidative
DNA damage [202–208]. In an animal model, protein DR
seems to be an alternative to CR. Protein DR was reported
to increase the maximum lifespan in rodents by 20% [206].
The life-extending benefits of protein DR were attributed to
a methionine restriction in diet [209–215]. For example, a
40% methionine restriction has been reported to decrease
both mitochondrial reactive oxygen species generation and
oxidative damage in mitochondrial DNA [216, 217]. Evi-
dence that supports the link between methionine restriction
and increased life span includes (a) inverse relationship
between methionine content and maximum life span in
mammals [218], (b) methionine supplementation increases
LDL cholesterol oxidation [219] and (c) increased methio-
nine intake increases plasma homocysteine concentrations,
thus increasing the risk of cardiovascular disease and mor-
tality [219]. Also, it has been demonstrated that a 40%
restriction of all dietary amino acids except methionine
failed to reduce both mitochondrial reactive oxygen species
generation and oxidative damage in mitochondrial DNA
[220]. In summary, animal experiments suggest that about
half of the life extension effect of CR can be attributed
to methionine restriction [206]. Therefore, further work in
humans is justifiable since methionine DR is feasible and
tolerable [221].

6.3. Alternate Day Fasting. Alternate day fasting (ADF)
alternates 24-hour periods of ad libitum intake with partial
or complete restriction of calorie intake. Therefore, ADF
does not necessarily reduce overall caloric consumption
or bodyweight, since subjects may compensate for the
reduced caloric intake during fasting periods by overeating
in the ad libitum intake period [222, 223]. ADF extended
lifespan in animal trials [223–225]. Some authors attributed
the increased life span during ADF to the concomitant
increase in brain-derived neurotrophic factor [215]. ADF
also attenuated or prevented the development of age-related
disease processes, including cardiovascular disease, kidney
disease, cancers, and diabetes [222, 223, 225–230]. Human
trials have established the feasibility of ADF in humans [231].
The preliminary results of ADF-human trials [231–233]
cannot be compared to CR-human trials since the ADF-trial
periods ware relatively short (from a few days to 20 weeks)

compared to the CR-trial periods (6 months to 6 years)
[74, 83, 85]. However, even during such brief trial periods,
some potentially beneficial effects were noted: a decrease in
fasting insulin with no difference in fasting glucose [231] and
an improved bronchial responsiveness to medication [233].
It has been reported that peripheral blood mononuclear cells
of normal weight middle-age male and female subjects on
a 2-month long ADF responded with a reduced capability
to produce cytokines upon stimulation [234]. To date, there
are no reports in regard to changes in biomarkers specific to
blood lipids and oxidative stress in ADF subjects.

6.4. Resveratrol. Resveratrol (RSV), a plant-derived polyphe-
nol in the skins of red grapes, is the most studied caloric
restriction mimetic. RSV is reported to activate Sir2 (SIRT1
homolog) [235], thus mimicking the benefits of CR—
without restricting calorie intake—such as increasing lifes-
pan in yeast, worms, flies, and fish [235–238]. Recently, the
assumption that activation of Sir2 by direct binding with
RSV is responsible for extended lifespan has been chal-
lenged in experiments in multiple organisms [239–248]. For
example, RSV is known to produce a wide array of effects
in mammalian cells, including activation of AMP-activated
protein kinase (AMPK) that is involved in some of the
same pathways as SIRT1 and directly phosphorylates PGC-
1α. [249, 250]. SIRT1 can activate the kinase upstream of
AMPK, but this pathway does not appear to be necessary for
AMPK stimulation by RSV [251]. Recently, it was reported
that SIRT1 is essential for moderate doses of resveratrol to
stimulate AMPK and improve mitochondrial function in
vitro and in vivo [252].

Although the mechanism of RSV-mediated CR-like
effects are not fully understood, it appears that RSV treat-
ment produces a transcriptional response similar to CR
[253], and in the presence of a high-fat diet, both health
and longevity benefits have been reported with RSV use
in a mouse model [249]. The beneficial effects of RSV use
in obese mice were increased insulin sensitivity, improved
motor coordination, and decreased incidence of cataracts
[253, 254]. There was no significant life span increase in adult
mice when RSV was added to a normal diet [254, 255]. This
finding implies that RSV is not a true CRM [256]. A one-
year treatment with RSV increased resting metabolic rate
and total daily energy expenditure in nonhuman primate
with any adverse health effects, implying that long-term use
of RSV is effective and safe [257, 258]. CR, in the same
animal model and experimental protocol, reduced total daily
energy expenditure but did not change resting metabolic rate
[258].

There have been only a few studies on RSV effects in
humans, however the results are encouraging. The use of
0.1 mM RVS in cultures of human mesenchymal stem cells
promotes cell regeneration by inhibiting cellular senescence;
at higher concentrations (5 mM or more) RSV inhibits cell
regeneration by increasing senescence rate, cell doubling
time, and S-phase cell cycle arrest [259]. In human peri-
toneal mesothelial cells RSV delays replicative senescence by
mobilization of antioxidative and DNA repair mechanisms
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as measured by increased expression of proliferating cell
nuclear antigen, augmented fraction of cells in the S phase
of the cell cycle, increased number of divisions, diminished
expression and activity of senescence-associated β-galactos-
idase, upregulated biogenesis of mitochondria, increased
activity of superoxide dismutase and reduced DNA damage
[260]. RSV and other polyphenols have low bioavailability in
humans. However, RSV and its metabolites do accumulate
within human cells in vivo in a tissue-specific and dose-
dependent manner [261]. A six-week supplementation
regime with RSV suppressed the binding of nuclear factor
kappa B (NF-κB), decreased ROS generation, and decreased
the levels of TNFα and interleukin-6 (IL-6) in mononuclear
cells. The plasma levels of TNFα and CRP were significantly
reduced as well. There were no significant changes in fasting
plasma concentrations of cholesterol (total, LDL and HDL),
triglycerides, or leptin in RSV-treated group compared to the
control group of healthy individuals receiving placebo [262].
A high-fat, high-carbohydrate diet induces inflammation
and oxidative stress [263]. Healthy humans on a high-
fat, high-carbohydrate meal, taking a single-dose supple-
ment of RSV and other grape polyphenols, had a signifi-
cantly increased messenger RNA (mRNA) expression of the
NAD(P)H dehydrogenase [quinone] 1 and glutathione S-
transferase-p1 genes—implying a strong anti-oxidant effect.
The single-dose RSV supplement also attenuated the meal-
induced increase of plasma endotoxin and lipoprotein bind-
ing protein concentrations and attenuated the expression of
p47phox, TLR-4, CD14, SOCS-3, IL-1β, and KEAP-1 [264].
Therefore, RSV reduces the oxidative and inflammatory
responses of a high-fat, high-carbohydrate meal, and it
may reduce the risk of atherosclerosis and diabetes [261].
Preliminary results suggest that RSV also improves the
glucose tolerance and insulin sensitivity [265]. The improved
insulin sensitivity was attributed to decreased oxidative stress
[265].

The causal association between red wine and grape juice
consumption and the reduction of risk factors for cardio-
vascular disease (reduced blood flow, increased oxidative
stress and inflammation) is well known [266–269]. RSV
upregulates eNOS, thus promoting nitric oxide mediated
vasodilatation and increased blood flow [270–272]. Also,
RSV attenuates hemostasis-related activation of human
platelets [273]. Increased arterial blood flow, after a single
bolus of RSV, was measured in the brain and arm [274, 275].
However, increased brain blood flow after RSV treatment was
not associated with an enhanced cognitive function [274].

Improved insulin resistance, arterial blood flow, and
decreased oxidative stress and inflammation are associated
with short-term use of RSV but there are no human data
on the long-term health benefits [261]. In summary, further
research is needed to clarify the biochemical pathways of
RSV mediated effects and to establish its long-term effects
in humans [276].

6.5. Rapamycin. Rapamycin (RAP) is an antibiotic and
inhibitor of TOR (target of rapamycin) signaling in cells,
with known immunosuppressive and antiproliferative effects

[277]. TOR is a mediator of nutrient signaling in cells and
is proposed to play a role in aging and the CR response (see
Section 6.3). When RAP was administered to mice at about
20 months of age there was a significant, about 10% increase
in mean life span extension in male and female mice. Since
there were no significant changes in the organ pathology
in the RAP feed mice, compared to control, the authors
suggested that the longevity benefits of RAP could be at least
partially mediated by biochemical pathways independent
of the CR response [117]. The existence of multiple, RAP
activated life-extension biochemical pathways were also
suggested in flies. RAP feed adult drosophila had an increased
life span. The suggested mechanism for this RAP increased
longevity was by the TORC1 branch of the TOR pathway,
with alterations to autophagy and translation. However,
RAP could increase life span of weak insulin/IGF1 signaling
pathway mutants and of flies with life span maximized by
CR, suggesting additional mechanisms for life span extension
[278]. Lifelong administration of rapamycin, administrated
intermittently 2 weeks per month, extended lifespan in nor-
mal inbred female mice. Significantly, rapamycin inhibited
age-related weight gain, decreased aging rate, increased life
span and delayed spontaneous cancer [279]. Adult mice
treated with rapamycin, starting at 2 months of age, perform
significantly better on a task measuring spatial learning and
memory compared to age-matched mice on the control diet.
However, rapamycin did not improve cognition in adult
mice with pre-existing, age-dependent learning and memory
deficits. The rapamycin-mediated improvement in learning
and memory was associated with a decrease in IL-1β levels
and an increase in NMDA signaling. [280]. Since rapamycin
is used as an immunosuppressive, its relevance for longevity
in humans has yet to be established [117].

7. Diet and the Aging Population

An important demographic tendency in the developed world
is a progressive increase in the percentage of the population
over 65 years of age and a simultaneous decline in the
percentage of the working age population. The health impli-
cations of these trends are a shift from acute to chronic and
age related illnesses (e.g., Alzheimer’s disease, osteoporosis,
cardiovascular diseases, and cancer), increasing heath costs
and an increasing economic burden to the society and to
the individual [281–283]. Therefore, any dietary intervention
that has the potential of delaying the progression of chronic
and age-related illnesses could have a significant impact not
only on the individual’s quality of life but also on the society’s
ability to deal with the health and economic implications of
an aging population. There is a body of data suggesting that
CR significantly reduces the rate of age-related changes in
humans [73–93]. However, there is no data that CR promotes
longevity in humans. Studies of people with exceptional
longevity suggest that a family history of longevity and of a
low prevalence of age-related diseases enables a significantly
prolonged life span even when the subjects were obese,
smoked or did not exercise regularly. Therefore, exceptional
longevity in humans could be more dependent on genetics
than lifestyle [284–286].
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8. Conclusions

Caloric restriction or calorie restriction mimetics elicit coor-
dinated adaptive stress responses at the cellular and whole-
organism level by modulating the signaling pathways of
adiponectin, insulin/IGF1, AMPK, mTOR, FOXO, p53, and
sirtuins [287]. Sirtuins could play an important role in the
cross-talk between epigenetic and genetic pathways [132].
The activation of these adaptive stress responses may pre-
vent the initiation of apoptosis by the intrinsic pathway
[288]. Furthermore, it may stimulate autophagy to provide
substrates for energy production and for the anabolic
processes involved in cellular regeneration and synthesis of
antioxidants and heat-shock proteins [287]. A large body
of experimental evidence proves that the overall effect of
these adaptive stress responses is an increased resistance to
subsequent stress, thus delaying age related changes and
promoting longevity. Therefore, CR, alone or in combination
with caloric restriction mimetics, could improve the quality
of life of the aging population.

Abbreviations

4E-BP1: Eukaryotic translation initiation factor
4E binding protein 1

ADF: Alternate day fasting
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CALERIE: Comprehensive Assessment of

Long-Term Effects of Reducing Calorie
Intake
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HAT(s): Histone acetlytransferase(s)
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HMT(s): Histone methyltransferase(s)
HNF4α: Hepatocyte nuclear factor 4α
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IGF1: Insulin-like growth factor 1 also
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IL-1β: Human interleukin 1β
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Kit or CD117
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KEAP-1: Kelch-like ECH-associated protein 1
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activates AMPK
LDL: Low-density lipoprotein
miRNA(s): microRNA(s)
mRNA: Messenger RNA
mSin1: Mammalian stress-activated protein

kinase-interacting protein
MTH: Mitochondrion, mitochondrial
mTOR: Mammalian target of rapamycin
mTORC1: Mammalian target of rapamycin

complex 1
mTORC2: Mammalian target of rapamycin

complex 2
NAD+ : Nicotinamide adenine dinucleotide
NADH: NADH dehydrogenase
NF-κB: nuclear factor kappa B
NIP7: 60S ribosome subunit biogenesis
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NMDA: N-Methyl-D-aspartic acid or N-Meth-
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p16INK4a: Gene encoding the tumor suppressor
protein cyclin-dependent kinase
inhibitor 2A or CDKN2A or multiple
tumor suppressor 1 (MTS-1)

PDPK1: 3-phosphoinositide-dependent protein
kinase-1

PGC1-α: Peroxisome proliferator-activated
receptor G co-activator 1α

p53: Tumor suppressor protein p53 also
known as tumor protein 53

p47phox: Subunit of NADPH oxidase, that has to
be phosphorilated for the activation of
NADPH oxidase

PKA: Protein kinase A
PKC: Protein kinase C
PKG: Protein kinase G, or cGMP-dependent

protein kinase
PtdIns-3K: Phosphatidylinositol 3-kinase
RAP: Rapamycin
RAPTOR: Regulatory-associated protein of mTOR
RHEB: RAS homolog enriched in brain

protein, binds GTP
RNA: Ribonucleic acid
ROS: Reactive oxygen species
RSV: Resveratrol
RAS: Protein superfamily of small GTPases
RTG1: Retrograde regulation protein 1
RUNX3: Gene encoding runt-related

transcription factor 3
S6 K1: Ribosomal protein S6 kinase β-1
SGK1: Serum-and glucocorticoid-regulated

kinase; a serine/threonine protein
kinase

SIRT1: NAD-dependent-deacetylase sirtuin1
also known as silent mating type
information regulation 2 homolog 1

SOCS-3: Suppressor of cytokine signaling 3
sTNRF1: Soluble tumor necrosis factor receptor 1
TLR-4: Toll-like receptor 4
TNFα: Tumor necrosis factor α
TOR: Target of rapamycin
TSC1: Tuberous sclerosis protein 1 also known

as hamartin
TSC2: Tuberous sclerosis protein 2 also known

as tuberin
VDAC1: Voltage-dependent anion-selective

channel protein 1
TIG1: Tazarotene-induced gene-1
WT1: Gene encoding Wilms tumor protein
YY1: Transcriptional repressor protein YY1.
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