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Background. Osteosarcoma (OS) is the most common primary bone malignancy in children and adolescents with a high incidence
and poor prognosis. Activation of the RAS pathway promotes progression and metastasis of osteosarcoma. RAS has been studied
in many different tumors; however, the prognostic value of RAS-associated genes in OS remains unclear. On this basis, we
investigated the RAS-related gene signature and explored the intrinsic biological features of OS. Methods. We obtained RNA
transcriptome sequencing data and clinical information of osteosarcoma patients from the TARGET database. RAS pathway-
related genes were obtained from the KEGG pathway database. Molecular subgroups and risk models were developed using
consensus clustering and least absolute shrinkage and selection operator (LASSO) regression, respectively. ESTIMATE algorithm
and ssGSEA analysis were used to assess the tumor microenvironment and immune penetrance between the two groups. A
comprehensive review of gene ontology (GO) and KEGG analyses revealed inherent biological functional differences between the
two groups. Results. *e consistent clustering showed stratification of osteosarcoma patients into two subtypes based on RAS-
associated genes and provided a robust prediction of prognosis. A risk model further confirmed that RAS-related genes are the
best prognostic indicators for OS patients. GO analysis showed that GDP/GTP binding, focal adhesion, cytoskeletal motor
activity, and cell-matrix junctions were associated with the RAS-related model group. Furthermore, RAS signaling in osteo-
sarcoma based on KEGG analysis was significantly associated with cancer progression, with immune function and tumor
microenvironment particularly affected. Conclusion. We constructed a prognostic model founded on RAS-related gene and
demonstrated its predictive ability. *en, furtherly exploration of the molecular mechanisms and immune characteristics proved
the role of RAS-related gene in the dysregulation in OS.

1. Introduction

Although osteosarcoma (OS) is the most frequent type of
primary bone cancer among pediatric population, it is a rare
type of disease (5.6 cases per million under 15) and accounts
for 2% of childhood cancers [1–3]. Osteosarcoma occurs
predominantly in adolescents, which corresponds with
pubertal development. But another incidence peak occurs in
the elderly and is often related to Paget’s disease [4]. *e
most common site of origin for osteosarcoma has been
reported to be epiphysis [5]. If untreated, osteosarcoma has

a rapid course of disease progression and >90% of patients
died from pulmonary metastases [6].

Standard treatment for osteosarcoma includes surgical
resection and adjuvant chemotherapy, resulting in a long-
term survival rate of 65–70% [7]. However, for patients with
distant metastases at initial presentation, the reported sur-
vival rate varies from only 10% to 40% [8]. Since osteo-
sarcoma is an infrequent and aggressive tumor for which
treatment has remained unchanged for decades, it is chal-
lenging to reduce therapy resistance and improve prognosis
of patients with distant metastases. Hence, there is
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a necessity to assess the genetic features of this disease and
explore novel treatment strategy.

Several genetic alterations have been described in os-
teosarcoma, such as TP53 mutation and RB1 deletions [9],
which are involved in different molecular pathways asso-
ciated with tumor progression. RAS-related proteins ap-
pertain to the family of GTPases, and RAS (HRAS, NRAS,
andKRAS) is regarded as oncogene due to its mutations [10].
Alterations and abnormal activations in the RAS pathway
are frequently linked with multitude biological events, in-
cluding abnormal cell proliferation, developmental disor-
ders, and tumorigenesis. Hyperactive RAS signaling pathway
has emerged as a major tumorigenesis and is relevant with
a high cancer risk in certain tumors [11].

Considering the difficulty of direct targeting of RAS
proteins, indirectly inhibiting one of the RAS pathway
molecules can be used in therapeutic approaches [12].
Currently, targeting RAS upstream molecule such as tyro-
sine kinase receptors, or downstream effectors show treat-
ment efficacy both in vitro and in vivo and deserve further
investigations in osteosarcoma patients [13–16]. Accord-
ingly, discovery of characteristic RAS-related gene signa-
tures in osteosarcoma may be helpful to reflect tumor
heterogeneity and guide individual treatment for patients.

As of now, it is not known how RAS-related gene ex-
pression patterns differ among osteosarcoma patients. In the
present study, we performed bioinformatics and statistical
analyses to identify and validate a RAS-related gene signature
in osteosarcoma. Besides, the biology function and intra-
tumoral immune landscape were depicted comprehensively.

2. Methods

2.1.CollectionofDatasets onOsteosarcoma. Clinical data and
RNA sequencing data regarding osteosarcoma patients were
acquired from the clinical data and RNA-seq data of oste-
osarcoma patients were obtained from the *erapeutic
Research to Generate Effective Treatment (TARGET; https://
ocg.cancer.gov/programs/target) database, which included
a total of 84 samples. RAS pathway-related genes were re-
trieved through the KEGG pathway database (KEGG
pathway: hsa04014 (genome.jp)).

2.2.RecognitionofMolecular SubgroupsandTimeAssessment.
At first, a univariate Cox regression analysis was used to
identify 14 genes associated with the prognosis of osteo-
sarcoma. Based on the expression matrix from the 14 genes,
consensus clustering was performed using the R package
“ConsensusClusterPlus.” *e calculation of stromal score,
immune score, and tumor purity was performed using the
algorithm for estimating stromal and immune cells in
malignant tissues using expression data (ESTIMATE) [17].
*e extent of enrichment of 24 immune infiltrating cells in
tumor samples was assessed using single-sample gene set
enrichment analysis (ssGSEA) [18].

2.3. Identification of Differentially Expressed RAS-Related
Genes. *e Limma package version 3.4.3 in R software
version 4.0.3 was used to identify DEGs by comparing the
mRNA expression of RAS pathway-associated genes be-
tween tumor and normal tissues in the TARGET dataset.
*ose genes with FDR <0.05 and |log2 FC| >0.585 were
selected for further analysis.

2.4. Functional Analyses. *e differentially expressed genes
(DEGs) between both clusters were identified using the R
package “Limma.” *e R package “clusterProfiler” [19] was
used for gene ontology (GO) analysis and Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) analysis to enrich
correlation pathways for visualization in Metascape.

2.5. Establishment of the RAS-Related Gene PrognosticModel.
In order to assess the prognostic value of RAS-associated
genes, we used additional Cox regression analysis to assess
the correlation between each gene and survival status.We set
the P value to a critical value of 0.05 to avoid omission and
identified 14 survival-associated genes for further analysis.
*en, LASSO Cox regression models (R package “glmnet”)
were used to narrow down the candidate genes and build
predictive models.

Finally, five genes and their coefficients were retained, and
the penalty parameter (λ) was set according to the minimum
criterion. After centralizing and normalizing the gene ex-
pression data (using the “scale” function in R), the risk score
was calculated with the following formula: risk score� risk
score� (0.139 ∗ GNG4 index) + (−1.628 ∗ RAB5C index) +
(−0.931 ∗ PRKACB index) + (0.447 ∗ EFNA5 index) +
(0.288 ∗ EFNA1 index). OS patients were divided into low
and high-risk subgroups according to the median risk score,
and the time to OS was compared between the two subgroups
by Kaplan–Meier analysis. *e predictive efficiency of the
model was assessed using the ROC and Martingale residual
method.

2.6. Enrichment Analysis of the Function of DEGs between the
Low and High-Risk Groups. *e patients with OS in the
TCGA cohort were stratified into two subgroups based on
the median risk score. Screening of DEGs between low and
high- risk groups was performed according to specific cri-
teria (|log2FC| ≥1 and FDR<0.05). On the basis of these,
DEGs, GO, and KEGG analyses were performed using the
software package “clusterProfiler.” *e package “gsva” [20]
was used to perform ssGSEA, to calculate the fraction of
infiltrating immune cells, and to assess the activity of
immune-related pathways. *e whole process of data
analysis is depicted in Figure 1.

2.7. Statistical Analysis. For group comparisons, we applied
the Mann–Whitney U test (Shapiro–Wilk test, P< 0.05) for
nonnormally distributed data and Student’s t test for
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normally distributed data. All analyses were performed with
R version 4.0.3 (https://www.r-project.org/).

3. Results

3.1. Consensus Clustering of 14 RAS-Related Prognostic Genes
Identified Two Clusters of Osteosarcoma. A total of 84 os-
teosarcoma patients from TARGETcohort were included in
the analysis. First, we performed prognostic analysis for all
genes, and 784 genes were selected (P< 0.05). Subsequently,
14 of 232 RAS-related genes were related to patient survival
(Figure 2(a)). *en, the consensus clustering approach was
conducted to divide the osteosarcoma patients into sub-
groups based on 14 RAS-related prognostic genes generated
from univariable Cox analysis (Figure 2(a)). *e optimal
clustering stability was identified when K� 2 (Figure 2(b)).
51 patients were clustered into C1 and 42 patients were
clustered into C2. *e expression level of the 14 prognostic
genes in the two subtypes was visualized through the
heatmap (Figure 2(c)), and obvious expression difference
was found betweenC1 andC2. Principal component analysis
confirmed that osteosarcoma patients could be clearly
separated into two clusters based on the 14 RAS-related
prognostic genes (Figure 2(d)). Moreover, patients in the C2
enjoyed better overall survival than patients in the C1
(P � 0.002; Figure 2(e)). *ese results demonstrated that the
14 RAS-related prognostic genes classify the osteosarcoma
patients into two molecular subtypes with different overall
survival. Consensus clustering methods were then per-
formed to classify patients with osteosarcoma into sub-
groups based on the 14 RAS-related prognosis genes

generated by univariate Cox analysis (Figure 2(a)). *e best
cluster stability was determined when K� 2 (Figure 2(b)).
51 patients were categorized into group C1 and 42 patients
were categorized into group C2.*e expression levels of the
14 prognostic genes in the two subtypes were visualized
with a heat map (Figure 2(c)), and a significant expression
difference was found between C1 and C2. Principal com-
ponent analysis confirmed that patients with osteosarcoma
could be clearly divided into two clusters based on the
14 RAS-related prognostic genes (Figure 2(d)). In addition,
patients with C2 had better overall survival than those with
C1 (P � 0.002; Figure 2(e)). *ese results showed that
14 RAS-associated prognostic genes divided osteosarcoma
patients into two molecular subtypes with different overall
survival.

3.2. DEG and Functional Analyses. DEGs were identified
between the two clusters, and functional analysis was per-
formed to explore potential signaling mechanisms. A total of
198 DEGs were identified, of which 239 genes were
downregulated and 126 genes were upregulated in C1
compared to C2 (Figure 3(a)). *e GO enrichment analysis
indicated that DEGs were concentrated in immune-related
and other biological processes, which included focal adhe-
sion, GTP binding, cytoskeletal motor activity, and
cytosolic-matrix junctions (Figure 3(b)).

Furthermore, genes differentially expressed in the two
clusters were identified and subsequently analyzed for their
biological processes using the KEGG pathway to annotate
their functions. *e results showed that C1-enriched
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Figure 2: Identification of RAS-related prognostic genes. (a) Venn diagram showing the 14 intersection RAS-related prognostic genes. (b)
*e optimal number of clusters (K� 2) determined from cumulative distribution function (CDF) curves, and the classification effect is the
best. (c) Heatmap of the expression of 14 RAS-related prognostic genes in the two clusters. (d) PCA confirming that osteosarcoma can be
clearly separated into two clusters based on the expression of 14 RAS-related prognostic genes. (e) Kaplan–Meier curves for survival
prediction of patients in the two clusters.
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pathways are mainly involved in immune response, stromal
properties, and tumorigenesis (Figure 3(c)). Immune-
related pathways included natural killer cell-mediated cy-
totoxicity, cytokine-cytokine receptor interactions, chemo-
kine signaling, and TGF-β signaling. Pathways associated
with stromal features include ECM receptor interactions,
focal adhesion, and cell adhesion molecules. Oncogenic
pathways included Hedgehog signaling, Notch signaling,
MAPK signaling, Wnt signaling, and cancer pathways. *e
above results suggest that RAS signaling is clearly involved in
cancer development, especially by affecting immune-related
functions.

3.3. Development of a Prognostic GeneModel. In total, 84 OS
samples were compared with appropriate patients with
complete survival data for matching. A univariate Cox re-
gression analysis was used as a primary screen for survival-
associated genes. *e 14 genes (CALML3, CALML5, INSR,
RRAS2, EFNA1, GNG4, IGF1R, GNG12, EGFR, EFNA5,

RALB, HGF, PRKACB, and RAB5C) that met the criteria of
P< 0.05 were retained for further analysis, and among them,
7 genes (CALML3, CALML5, INSR, RRAS2, EFNA1, GNG4,
and IGF1R) were associated with increased risk with HRs
>1, while the other 7 genes (GNG12, EGFR, EFNA5, RALB,
HGF, PRKACB, and RAB5C) were protective genes with
HRs <1 (Figure 4(a)).

Five genetic features were constructed based on the
optimal λ values by Cox regression analysis with the least
absolute shrinkage and selection operator (LASSO)
(Figures 4(b) and 4(c)). Risk scores were calculated as fol-
lows: risk score� (0.139 ∗ GNG4 index) + (−1.628 ∗
RAB5C index) + (−0.931 ∗ PRKACB index) + (0.447
∗ EFNA5 index) + (0.288 ∗ EFNA1 index). Based on the
median calculated by the risk score formula, 84 patients were
equally divided into low and high-risk subgroups
(Figure 4(d)). A significant difference in OS time was de-
tected between the low and high-risk groups (P< 0.001,
Figure 4(d)). Using time-dependent receiver operating
characteristic (ROC) analysis to assess the sensitivity and
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specificity of the prognostic model, we found that the area
under the ROC curve (AUC) was 0.772 at 1 year, 0.917 at
2 years, and 0.837 at 3 years of survival (Figure 4(e)).

3.4. IndependentPrognosticValueof theRiskModel. We used
both univariate and multivariate Cox regression analyses to
evaluate whether the risk score derived from the gene profile
model could be used as an independent prognostic factor.
Univariate Cox regression analysis showed that risk score
was an independent predictor of poor survival (HR� 2.7,
95% CI: 1.9–3.8; Figure 5(a)). Multivariate analysis also
showed that risk score was a prognostic factor for OS i
patients after adjusting for other confounders (HR� 3.06,
95% CI: 2.09–4.5; Figure 5(b)). Furthermore, a heat map of
clinical characteristics was generated (Figure 5(c)), which
revealed a different distribution of patients’ age and survival
status between low and high-risk subgroups (P< 0.05).

3.5. Comparison of the Immune Activity between Subgroups.
At first, the level of enrichment of 24 immune features
representing the total immune activity in OS was quantified
by ssGSEA. It was found that the immune cell distribution
was significantly higher in the low-risk group than in the
high-risk group (P< 0.05, Figure 6(a)). In addition, the
ESTIMATE algorithm was performed to assess the time of
both the groups, and the results showed that the low-risk

group had significantly higher stromal score (P< 0.001,
Figure 6(b)), immune score (P � 0.048, Figure 6(c)), ES-
TIMATE score (P< 0.001, Figure 6(d)), and significantly
lower tumor purity compared to the high-risk group
(Figure 6(e)). *ose results indicate that the constructed risk
model has strong potential in predicting the prognosis of
patients with osteosarcoma and is significantly associated
with the time of osteosarcoma.

3.6. Risk-Based Modeling for Functional Analysis. As further
effort to explore differences in gene function and pathways
between subgroups classified according to the risk model, we
extracted DEGs using the R package “Limma” using the
criteria of P< 0.05 and |log2FC| ≥0.585. A total of 19 DEGs
were identified between the low and high-risk groups. Of
these, 13 genes were upregulated in the high-risk group,
while the other 6 genes were downregulated. Gene ontology
(GO) enrichment analysis was then performed based on
these DEGs.*e results indicated that the DEGs upregulated
in the high-risk group was mainly correlated with the
neuron death metabolic process, organization cascade, de-
velopment of ERK1, contraction, smooth muscle healing,
mesenchymal stem, Leydig luteinization, and amino acid
oxidative oxygen (Figure 7(a)), while the DEGs upregulated
in the low-risk group was mainly correlated with GTPase
activity, GTP binding, guanyl nucleotide binding, and
guanyl ribonucleotide binding (Figure 7(b)).
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4. Discussion

Osteosarcoma (OS) arises from malignant mesenchymal
stem cells that generate the osteoid or immature bone [21].
For the past three decades, a combination of surgical re-
section and systemic chemotherapy has been the standard of
care for OS, but little progress has been made since then. As
the understanding of molecular mechanisms and pathways

of OS has advanced, there is evidence that we are on the cusp
of a paradigm shift.

Several large RNA-seq studies have revealed frequent
RAS pathway abnormalities in malignancies, and the biology
of the RAS pathway has been extensively reviewed [11, 22].
In view of that, RAS pathway inhibitors are available in the
clinics for treating diverse cancer [12, 23]. RAN has been
shown to play an important role in tumorigenesis and
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Figure 6: Immune analyses in the two subgroups. (a) Stromal score, (b) immune score, (c) ESTIMATE score, and (d) tumor purity
calculated by the ESTIMATE algorithm. (e) Comparison of the enriching level of 29 immune-related cells evaluated by the ssGSEA
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development through bioinformatic approaches or experi-
ments. For example, Feng and his colleagues analyzed the
development of ovarian cancer in tumors through a series of
bioinformatics and identified validated biomarkers [24, 25].
Nevertheless, a comprehensive analysis of the RAS pathway
in OS is still scarce and the underlying mechanisms are not
fully elucidated. In our study, we attempted to construct
a prognostic model by defining disease subclassifications
based on RAS-related genes. First, we identified two distinct
subtypes based on 14 RAS-associated prognostic genes in the
TARGET osteosarcoma cohort. Compared to patients with
cluster C2, patients with cluster C1 had worse overall sur-
vival. Subsequently, KEGG pathways analysis revealed that
pathways enriched in C1 were mostly associated with
immune-related responses, stromal signatures, and onco-
genesis, indicating that the RAS signaling clusters were
highly correlated with osteosarcoma progression. Further-
more, a 5-gene signature including GNG4, RAB5C,
PRKACB, EFNA5, and EFNA1 was established using LASSO
analysis. *en, the robust predication of this RAS-related
gene prognostic model was proved by ROC analysis. *e
aforementioned results displayed that identification of the
RAS-related genes signature may provide new insight into
treatment and clinical outcome predication.

RAS signaling pathway oncogenesis can be suppressed
directly by targeting upstream and downstream molecules or
RAS proteins directly [26]. *e RAS proteins cycling between
inactive and active states act as molecular switches in cell
growth and differentiation [27]. *e member of RAS su-
perfamily of small GTPases has an essential function in tumor
migration and invasion in osteosarcoma [28]. GO enrichment
analysis demonstrated that the DEGs between RAS-related
clusters were different biological processes, including GTP/
GDP binding, focal adhesion, cytoskeletal motor activity, and
cell-substrate junction. GTP/GDP binding regulates various
cellular responses and is associated with tumor progression
[29]. *us, it may be pharmaceutically targeted in osteo-
sarcoma treatment according to the above analysis.

RAS protein is activated by upstream receptors, such as
members of the epidermal growth factor receptor (EGFR)
family [30–32]. EGFR is a type of receptor tyrosine kinase
(RTK) protein and located on the surface of solid tumors
[33]. In this study, the EGFR expression level of osteosar-
coma samples was verified by immunohistochemical
staining. Currently, clinical trials are being conducted to
examine the effectiveness of tyrosine kinase inhibitors (TKI)
in the advanced osteosarcoma treatment. Multiple TKIs
including sorafenib, regorafenib, and cabozantinib have
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proved activity and efficacy in patients with relapsed or
metastatic osteosarcoma [13, 33, 34].

After activation of RAS proteins, downstream effector
pathways are triggered, including RAS-RAF-MEK-ERK and
RAS-PI3K-AKT-mTOR [35]. Suppression of the ERK sig-
naling pathway inhibits osteosarcoma invasion and promotes
apoptosis in osteosarcoma [36]. *ere is increasing evidence
that components of the PI3K/AKTsignaling pathway are often
overactivated and are importantly associated with pulmonary
metastasis in osteosarcoma [37]. Furthermore, osteosarcoma
cell lines respond to therapeutic inhibition of the PI3K/mTOR
pathway both in vitro and in vivo [38]. *erefore, targeting
RAS downstream effector pathways may have a potential role
in the treatment of osteosarcoma, with several agents showing
promise as antimetastatic agents [39–42].

RAS pathway has not yet been fully understood in terms
of its effect on immune infiltration and TME in osteosarcoma.
Osteosarcoma patients with lung metastases had significantly
increased expression level of exosomal PD-L1 than those with
localized disease, and preclinical studies suggested that os-
teosarcoma may be susceptible to immunotherapy [43, 44].
Besides, it is worth mentioning that macrophages and other
types of immune cells should receive more attention in os-
teosarcoma rather than T cells [45]. In this study, we dis-
covered that the characteristics of the TME and the relative
abundance of 24 immune infiltration cells differed signifi-
cantly between two risk groups. *ose in the RAS low-risk
group had a better prognosis, showing a higher infiltration of
macrophages and CD8+-infiltrating lymphocytes. In addi-
tion, the RAS low-risk group had lower tumor purity but
higher ESTIMATE scores. *ese results suggest that the
established RAS-related osteosarcoma risk model is signifi-
cantly associated with TME and immune infiltration and will
provide new ideas for immunotherapy. *ere are several
limitations in our study. First, the RAS-related prognosis
model based on TARGET database was not validated ex-
ternally due to the scarcity of osteosarcoma data. Second, the
osteosarcoma samples of the risk model were retrospectively
extracted from the public database, and there was existing
inherent case selection bias in this study. Finally, additional
in vitro and in vivo experiments are needed to validate RAS-
associated prognostic genes in osteosarcoma.

5. Conclusion

In conclusion, our comprehensive analysis of the RAS
pathway in osteosarcoma revealed its significant value in
prognosis. Besides, RAS-related gene subtypes were involved
in different molecular pathways related to tumor progres-
sion and immune infiltration. *ese findings spotlight the
important clinical implications of RAS, and further research
is required to investigate the therapeutic value about RAS-
related gene in osteosarcoma.
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