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Detecting early signs of cognitive decline is crucial for early detection and treatment

of Alzheimer’s Disease. Most of the current screening tools for Alzheimer’s Disease

represent a significant burden, requiring invasive procedures, or intensive and costly

clinical testing. Recent findings have highlighted changes to speech and language

patterns that occur in Alzheimer’s Disease, and may be detectable prior to diagnosis.

Automated tools to assess speech have been developed that can be used on a

smartphone or tablet, from one’s home, in under 10min. In this study, we present the

results of a study of older adults who completed a digital speech assessment task

over a 6-month period. Participants were grouped according to those who scored

above (N = 18) or below (N = 18) the recommended threshold for detecting cognitive

impairment on the Montreal Cognitive Assessment (MoCA) and those with diagnoses of

mild cognitive impairment (MCI) or early Alzheimer’s Disease (AD) (N = 14). Older adults

who scored above the MoCA threshold had better performance on speech composites

reflecting language coherence, information richness, syntactic complexity, and word

finding abilities. Those with MCI and AD showed more rapid decline in the coherence

of language from baseline to 6-month follow-up, suggesting that this score may be

useful both for detecting cognitive decline and monitoring change over time. This study

demonstrates that automated speech assessments have potential as sensitive tools to

detect early signs of cognitive impairment and monitor progression over time.
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INTRODUCTION

There is a clear and pressing need for sensitive tools to aid in the detection and monitoring of
mild cognitive impairment (MCI) and Alzheimer’s disease (AD) (1–5). Given the prevalence of
Alzheimer’s disease and the aging populations inmany countries (6), it will be essential to have tools
to help identify the presence of cognitive impairment relating to MCI and AD that can be deployed
frequently, and at scale. This need will only increase as effective interventions are developed,
requiring the ability to identify patients early in order to facilitate prevention or treatment of disease
(7). With recent shifts toward telemedicine and increased digital literacy of the aging population,
digital health tools are ideally poised to meet the needs for novel solutions. Digital assessments that
can be accessed on a smartphone or tablet, completed from home and periodically repeated, would
vastly improve the accessibility of AD screening compared to current clinical standards that require
clinical visits, extensive neuropsychological testing or invasive procedures.
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Speech is a promising modality for digital assessments
of cognitive abilities. Producing speech samples is a highly
ecologically valid task, instrumental to daily functioning and
requiring little instruction. The pervasiveness of high-quality
microphones in smart devices makes the recording of speech
samples straightforward, not requiring additional equipment or
sensors. Advances in signal processing and natural language
processing have enabled objective analysis of speech samples for
both their acoustic properties and linguistic content, providing
a window into motor, linguistic and cognitive abilities. Most
importantly, previous research has extensively shown that speech
patterns are affected in MCI and AD, demonstrating the clinical
relevance of speech for detecting cognitive impairment and
dementia (8–12).

Much of the previous work studying speech patterns
in AD using automated speech analysis has focused on
multivariate classification models to differentiate those with
AD or MCI from healthy controls based on their speech
(9–11). These models generally achieve high accuracy (80–
90%) demonstrating that there are robust differences between
clinical groups based on speech characteristics (13–20). While
classification models are well-suited to potentially aid with
disease diagnosis or screening, they can be challenging to
interpret based on their multivariate nature which may
make it difficult to determine which aspects of speech and
language contribute to the classification. Furthermore, such
models are not ideal for longitudinal tracking to determine
if symptoms are worsening over time or improving with
treatment. A smaller set of studies have examined longitudinal
changes in speech patterns, suggesting that notable changes
to linguistic features may occur as an early sign of incipient
AD, but mostly rely on manual coding or subjective ratings
of speech, and are limited to small or specialized samples
(21–25). One recent study of a large community-based
cohort found promising results indicating that linguistic
characteristics such as repetition and errors can predict later
AD diagnosis, but focused on written text analysis instead of
speech (26).

In the present study, we collected longitudinal speech
assessments from a community-recruited sample of older
adults and individuals with MCI and early AD recruited
at a clinical site. Speech was recorded using a tablet-based
digital speech assessment including a range of structured and
unstructured speech tasks. We analyzed speech characteristics
reflecting different domains of speech and language abilities,
to obtain interpretable measures of speech and language
function suitable for repeated testing. We tested how these
measures differed between groups and related to other
measures of cognitive function to assess their potential as
indicators of cognitive impairment relating to MCI and AD.
Finally, we compared longitudinal performance based on
6-month follow-up assessments to determine how digital
speech assessments can be used to track changes over time.
Together, the results from this study serve as a proof-of-
concept of how digital speech assessments can be used as
quick, naturalistic, remote assessments of language abilities and
cognitive status.

METHODS

Participants
Participants were recruited from the community and at clinical
sites to participate in a longitudinal speech assessment study.
For community participants, eligibility criteria included being
between the ages of 50 and 95, being a fluent speaker
of English, and having no diagnosis of dementia, memory
impairment, recent concussion or traumatic brain injury, or
uncorrected hearing or visual impairment. Participants recruited
at clinical sites had diagnoses of MCI or AD confirmed
by the principal investigator at the site (27, 28). Eligibility
criteria were otherwise the same as the normative sample,
with the additional exclusion criteria of global scores >1 on
the Clinical Dementia Rating (CDR) scale or a concurrent
diagnosis of: depression, anxiety, schizophrenia, bipolar disorder,
or alcohol/substance use disorders. All participants provided
informed consent to participate in the study, and the study
protocols were approved by an independent research ethics
institutional review board (Advarra).

Study Procedure
Participants completed three study visits, at Baseline, and 1-
and 6-month follow ups. At each visit, participants completed
a standardized speech assessment on an iPad, facilitated by a
trained administrator. In addition to the speech assessment,
at Baseline and 6-month visits, participants completed
neuropsychological assessments, including the Montreal
Cognitive Assessment [MoCA; (29)] and the Alzheimer’s
Disease Assessment Scale–Cognitive Subscale [ADAS-Cog;
(30)]. The MCI/AD group additionally completed other
neuropsychological assessments, including the Symbol Digit
Modalities Test [SDMT; (31)], the Hopkins Verbal Learning Test
[HVLT; (32)], Judgement of Line Orientation test [JLO; (33)],
Digit Span forward and backward (34), and Trails A and B (35).

Speech Assessment
TheWinterlight Assessment (WLA) was developed to record and
analyze speech via a smartphone/tablet app, and has been used
in previous normative studies and clinical trials (36–38). The
WLA consists of a series of speech tasks, in which participants
are prompted to produce speech and are recorded through the
device’s microphone. The speech tasks included in the WLA
are based on standard neuropsychological speech and language
assessments. In the present study, the WLA included six speech
tasks, and took an average of 5–10min to complete.

Speech tasks included picture description, paragraph reading
and recall, letter and semantic fluency, and object naming. For
the present paper, we focus on the picture description task, which
most closely approximates spontaneous speech and has been
commonly used in previous research on MCI and AD (39–42).
In the task, the instruction, “Please tell me everything you see in
this picture” is presented visually and auditorily and then a static
line drawing of a scene is displayed on the screen (Figure 1).
Participants describe the image in their own words, with no time
limit, and are recorded. Tasks of this type have been shown to be
good proxies for spontaneous discourse and are used in standard
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FIGURE 1 | Schematic of the picture description task, part of the Winterlight Assessment (WLA).

aphasia assessments (41, 43). The WLA includes six unique and
proprietary images developed to match the Cookie Theft picture
[from the Boston Diagnostic Aphasia Examination, Goodglass
et al. (44)] in lexico-syntactic complexity and the amount of
information units. At each assessment, participants completed
two picture description tasks, and performance was averaged
across the two.

Data Analysis
Speech Analysis
Speech recordings were analyzed using the Winterlight Labs
speech analysis platform. The speech recordings made by
the participant were transcribed, and linguistic and acoustic
variables were extracted through automated speech analysis.
The generation of annotations such as speaker segmentation,
transcription, and utterance segmentation was performed by
trained raters using a secure, cloud-based web application.
Any recordings that didn’t contain participant speech or
that had major audio quality issues were removed from
analyses. Data processing and feature extraction were performed
using the Winterlight Labs pipeline (www.winterlightlabs.com)
using Python-based standard acoustic and language processing
libraries and proprietary custom code. Over 500 speech variables
were computed based on each speech recording and its
accompanying transcript. Speech variables were either directly
computed from the sound file or annotated transcript using
standard, open-source signal processing or NLP algorithms [e.g.,
spaCy and the Stanford parser; (45, 46)], or using custom code
to calculate novel variables (e.g., calculating the number of
correct information units described by comparing the words in
a transcript with a list of items contained in the picture). The
set of speech variables reflects the acoustic (e.g., properties of

the sound wave, speech rate, number of pauses), lexical (e.g.,
rates and types of words used, and their characteristics such as
frequency and imageability, which reflect how commonly words
are used and how easy they are to picture, respectively), semantic
(relating to the meaning of the words, e.g., semantic relatedness
of subsequent utterances, semantic relatedness of utterances to
the items in the picture) and syntactic (relating to the grammar of
the sentences, e.g., syntactic complexity, use of different syntactic
constructions) aspects of each speech sample.

In order to reduce the number of variables and cluster
related variables together, we created eight aggregate
scores reflecting different aspects of speech and language
abilities. Variables were selected and aggregated based on
the domains of language that have been reported to be
affected in MCI/AD in previous literature (14, 25, 47–52).
Note that while acoustic features have been reported to differ
in MCI/AD (14, 18), the clinical interpretability of these
features is not as straightforward and many classification
models do not report on which features contribute to model
performance, so they were not included in the aggregates
scores in this study. In order to form the aggregate scores,
each variable was standardized based on a normative sample
to convert it to a unit-free standard score, and given a
positive or negative weighting based on whether higher
scores represent better or worse language abilities, and
averaged together. The eight aggregate scores are described
below, and lists of all component variables are included in
Supplementary Material:

Discourse mappingmeasures the repetitiveness or circularity
of speech, with higher scores indicating less repetitive speech.
Component variables include cosine distance metrics and graph
theoretical metrics of discourse.
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Global coherence measures how related the words produced
are to the key items in the picture, with higher scores
indicating higher coherence to the themes in the picture.
Component variables include cosine distance metrics comparing
the semantic similarity of utterances with the key words for each
picture stimulus.

Information units measure how informative and detailed
the picture description is, with higher scores indicating greater
detail richness. Component variables include scores for how
many of each detail type is mentioned, coded based on each
picture stimulus.

Lexical richness measures the complexity and diversity
of words used, with higher scores indicating a richer, more
complex vocabulary. Component variables include the rates
of different word types, the characteristics of words used
(frequency, familiarity, age of acquisition) and measures of
vocabulary richness.

Local coherence measures how related successive utterances
are to one another, with higher scores indicating that utterances
are more related to one another. Component variables include
cosine distance metrics comparing the semantic similarity of
subsequent utterances.

Sentimentmeasures whether more positive or negative words
are used, with higher scores indicating speech with more positive
valence. Component variables include average valence scores for
nouns, verbs, and all word types.

Syntactic complexity measures the complexity of syntactic
structures used, with higher scores indicating more complex
syntax. Component variables include the measures of the length
of phrases, the complexity of clauses, and the rates of different
syntactic structures.

Word finding difficulty measures the fluidity and fluency of
speech, with higher scores indicating more signs of slowed or
hesitant speech. Component variables include the rate of speech,
duration of words and number, and duration of filled (e.g., um,
uh) and unfilled pauses.

Statistical Analysis
Statistical analysis was performed using R software and packages
including lme4, lmerTest, and tidyverse (53–56). Linear mixed
models with random intercepts were used to test for significant
effects of group and the interaction between group and
visit on the speech aggregate scores, while controlling for
demographic variables.

RESULTS

Participant Demographics
Seventy-five participants completed a speech assessment at
baseline, 1- and 6-month longitudinal follow-up visit. For the
purposes of this study, we compared participants in three groups:
those that scored ≥26 points on the MoCA (29) at both baseline
and 6-month assessments (High MoCA), those that scored <26
points on the MoCA at both assessments (Low MoCA), and
those with MCI or AD diagnoses (MCI/AD). Sample size and
demographics of each group are shown in Table 1. A chi-squared
test showed no difference in the ratio of males to females across

TABLE 1 | Baseline demographic information and clinical scores for each of the

study groups.

High MoCA

(n = 18)

Low MoCA

(n = 18)

MCI/AD

(n = 14)

Sex (M/F) 7 M/11 F 4 M/14 F 7 M/7 F

Mean age (SD) 66.2 (11.8) 79.3 (11.5) 76.1 (5.2)

Mean years of education (SD) 15.3 (3.5) 14.1 (2.2) 16.6 (3.3)

Mean MoCA score (SD) 27.5 (1.2) 21.2 (3.2) 19.6 (3.9)

Mean ADAS-Cog score (SD; n) 4.5 (3.3;

n = 14)

11.4 (3.9;

n = 7)

13.6 (6.0;

n = 14)

groups (χ2
= 2.74, p= 0.25). ANOVAs testing the effect of group

showed that MoCA scores [F(2,46) = 33.89, p < 0.001] and mean
age [F(2, 47) = 7.85, p = 0.001] differed across groups, while the
mean number of years of education did not differ significantly
[F(2, 47) = 2.56, p = 0.09]. ADAS-Cog data was not available for
all participants, but there was a group difference in total scores
[F(2, 32) = 14.15, p < 0.001] in the subset of participants with
scores available. Mean values and standard deviations for each
group are listed in Table 1. We included factors of sex, age, and
years of education in subsequent analyses to control for variation
based on demographic factors.

Speech Differences Based on Cognitive
Status
To determine if speech aggregate scores were sensitive to
differences between groups, we first tested the effect of group
(High MoCA, Low MoCA, MCI/AD) on each aggregate score,
controlling for visit (baseline, 6-months), sex, age, and years
of education. Four of the eight aggregate scores had significant
group differences: Word finding difficulty [F(2, 44) = 10.03, p <

0.001], Information units [F(2, 44) = 8.10, p < 0.001], Global
coherence [F(2, 44) = 4.11, p = 0.02], and Syntactic complexity
[F(2, 44) = 6.38, p= 0.004] (Figure 2). Follow-up pairwise testing
using least square mean differences demonstrated significant
differences between the High MoCA group and the MCI/AD
group on all four scores (p’s< 0.01), and between theHighMoCA
group and Low MoCA group on Word finding difficulty (p <

0.001), Information units (p = 0.008), and Syntactic complexity
(p= 0.008), but not Global coherence (p= 0.23).

Combining groups and using Spearman partial correlations to
test for continuous associations between baseline MoCA scores
and baseline speech scores, we found that Word finding difficulty
[r(49) = −0.61, p < 0.001] and Information units [r(49) =

0.47, p = 0.001] had moderate correlations with MoCA scores
(Figure 3). The associations between MoCA scores and Global
coherence [r(49) = 0.20, p= 0.18] and Syntactic complexity [r(49)
= 0.27, p = 0.07] were positive but did not reach significance.
Baseline MoCA scores were also significantly correlated with the
change in Information units from baseline to 6-months [r(49) =
0.39, p = 0.007], illustrating that those with lower MoCA scores
at baseline had larger decreases in the informativeness of their
descriptions over time.
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FIGURE 2 | Scores on speech aggregates that showed significant differences between groups. (A) Word-finding difficulty scores, reflecting increased pauses, and

slower speech, were highest in the MCI/AD group and lowest in the High MoCA group. (B) Information units scores, reflecting how much content was accurately

described in the pictures, were highest in the High MoCA group and lowest in the MCI/AD group. (C) Global coherence scores, reflecting the semantic relatedness of

descriptions to the key words in the picture, were highest in the High MoCA group and had the greatest decline over 6-months in the MCI/AD group. (D) Syntactic

complexity scores, reflecting the complexity of the sentences used, were highest in the High MoCA group.

Change in Speech and Clinical Scores
From Baseline to 6-Months Follow Up
For the aggregate scores that differed between groups, we next
tested whether these scores showed differential rates of change
between baseline and 6-month visits by testing for a group
by visit interaction, again controlling for age, sex, and years
of education. Global coherence was the only score to show a
significant interaction [F(2, 47) = 4.05, p = 0.02], reflecting a
greater rate of decline in the MCI/AD group over 6-months than
the High MoCA group (p= 0.007, Figure 2C).

As a comparison, we also examined the rates of change from
baseline to 6-months in clinical scores. MoCA scores did not
have a significant effect of visit [F(1, 47) = 0.001, p = 0.97] or
interaction between group and visit [F(2, 44) = 0.59, p = 0.56].
ADAS-Cog scores also did not have significant effects of visit
[F(1,32) = 2.23, p = 0.15], or a group by visit interaction [F(2, 29)
= 2.48, p = 0.10]. The MCI/AD group completed additional
clinical measures, so visits were compared in this group only
using linear models testing for the effect of visit, controlling
for age, sex, and years of education. None of the scores on
standard neuropsychological tests (SDMT, HVLT, JLO, digit
span, Trails A and B) had significant change from baseline to
6-months (all p’s > 0.10).

Test-Retest Reliability of Speech Scores
Finally, we tested the Pearson correlation between baseline and
1-month visits to determine the test-retest reliability of the
aggregate scores over the 1-month period, in which we would
expect little to no clinical change. Word finding difficulty [r(46) =
0.83, p < 0.001] and Information units [r(46) = 0.69, p < 0.001]
had the highest associations between scores at baseline and 1-
month, while Global coherence [r(46) = 0.38, p = 0.007] and
Syntactic complexity [r(46) = 0.53, p < 0.001] had moderate, but
still significant, correlations between the first two visits.

DISCUSSION

This proof-of-concept study showed that a digital speech
assessment can be used to derive measures of linguistic abilities
which are sensitive to early signs of cognitive impairment in older
adults. Four language scores, relating to word-finding difficulty,
syntactic complexity, information content, and coherence, were
sensitive to detect differences between cognitively healthy older
adults and those with MCI or early AD. All scores but the
coherence score were additionally able to detect significant
differences between community-recruited older adults with high
vs. low scores on a widely used cognitive screening measure,
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FIGURE 3 | Correlations between the baseline speech aggregates scores and baseline MoCA scores, including participants in all three groups. Word-finding difficulty

(A) and Information units (B) had significant correlations with baseline MoCA scores, indicating that those with higher MoCA scores demonstrated less word-finding

difficulty and increased accurate information content in their descriptions. Global coherence (C) and Syntactic complexity (D) were not significantly correlated with

baseline MoCA scores.

indicating that these linguistic differences may reflect early
cognitive changes that occur prior to a clinical diagnosis.
The word-finding difficulty and information content scores
were significantly correlated with MoCA scores, and had the
highest test-retest reliability between baseline and 1-month
testing sessions.

These findings are consistent with previous work suggesting
that both the pacing and content of speech is affected in MCI and
AD, and extends those findings to suggest that these differences
may be detectable even prior to diagnosis. Several previous
studies have reported that speech is slower and contains more
pausing in MCI and AD (14, 47, 48, 51), consistent with the
finding that the word finding difficulty score, which relates
to speech rate and pauses, differed between groups. Content
changes, resulting in less informative and coherent speech, are
some of the most widely reported changes to occur in MCI

and AD (14, 25, 42, 47, 49, 51, 57). The information unit and
global coherence scores in the present study replicate these
findings and add to the literature suggesting that reductions in
linguistic content may be sensitive and early markers of cognitive
impairment. The finding that syntactic complexity also differed
between groups is consistent with some previous reports, which
report shorter and simpler sentences in MCI and AD (14, 25, 47).
While several previous studies have reported lexical changes in
AD, often relating to increased pronoun use and use of more
frequent words (14, 19, 25, 47), the lexical richness score did not
have detectable differences between groups in the present study.
It is difficult to make conclusions based on a null result, but this
may suggest that the lexical richness score needs refining to detect
vocabulary changes in MCI and AD.

When language scores were compared at 6-month follow-up,
the global coherence score had a significant interaction between
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visit and group, demonstrating greater decline in the MCI/AD
group compared to the High MoCA score group. Interestingly,
combined with the group comparisons above, this suggests that
the coherence of language may be affected later in the course of
disease, but that in those with MCI or early AD, this measure
declines more rapidly. Thus, this measure may be well-suited
to sensitive measurement of change over time in those with
MCI and AD. Notably, none of the neuropsychological tests,
including the MoCA and the ADAS-Cog, showed significant
change in the MCI/AD group over the same time period,
further suggesting that the global coherence score may represent
increased sensitivity over traditional clinical measures. This
finding has potential implications for longitudinal measurement
of symptoms, but requires replication in a larger sample and over
a longer time period. The information unit score also showed
trends of greater decline in the low MoCA and MCI/AD groups,
whichmay be significant in larger samples or longer time periods.

This study demonstrates the utility of digital speech
assessments for detecting and tracking cognitive impairment
relating to MCI and AD. The picture description task, which
was the focus of this paper, typically takes <5min to administer
and approximates spontaneous, natural speech. While the speech
data in this study was collected in-person, speech has the
potential to be collected remotely, and doesn’t require the
involvement of a clinician or any invasive medical procedures.
Anecdotally, participants have reported enjoying this task and
that it doesn’t feel like they are taking a test, owing to
its open-ended nature. Linguistic scores, automatically and
objectively computed based on this task, demonstrated utility in
differentiating participants based on diagnosis or the outcome
of a commonly used cognitive screening tool. Longitudinally,
these scores may have increased sensitivity to track disease
progression compared to current clinical tools (58). Another
advantage compared to classification models of speech in AD is
that the scores generated in the present study are interpretable,
reflecting different domains of the fluency, structure, and
content of language. These scores provide more insight into
the types of language changes that occur in MCI and AD, and
how they may be differentially suited for early detection or
longitudinal monitoring.

Limitations of this study include that the aggregate scores
focused on linguistic features and did not include an acoustic
feature aggregate. While previous studies have reported that
acoustic features differ in AD (14, 18), the focus of this study was
on linguistic features, since they are more clinically interpretable
and in previous work have been shown to be sufficient for
detection ofMCI and AD (13, 19). Additionally, the samples were
small, and the longitudinal follow up was limited to 6-months.
Most clinical measures are able to detect progression of MCI and
AD in periods of 1 year or longer (59), so the design of this study

may have limited our ability to explore the longitudinal sensitivity
of speech assessments. Future work is required to further explore
the longitudinal profiles of language symptoms in MCI and AD.
In addition, in this study we did not have access to other gold
standard biomarkers of MCI and AD, including genetic markers,
amyloid and tau concentrations or neuroimaging. In future work,
comparing language patterns to these more established disease
biomarkers will help further validate the disease-relevance of
speech-based measures.
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