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Abstract
Background Bone marrow-derived mononuclear cells (BM-MNC) consist of a heterogeneous mix of mesenchymal stem cells
(MSC), hematopoietic progenitor cells (HPC), endothelial progenitor cells (EPC), monocytes, lymphocytes and pluripotent stem
cells. Whereas the importance of MSC and EPC has been well documented in bone healing and regeneration studies, the role of
pluripotent stem cells is still poorly understood. In the present study we evaluated if and how Very Small Embryonic Like cells
(VSEL), isolated from rat BM-MNC, contribute to bone healing.
Methods Large bone defects were made in the femurs of 38 Sprague Dawley female rats and treated with β-TCP scaffold
granules seeded with male VSEL; BM-MNC, VSEL-depleted BM-MNC or scaffold alone, and bone healing was evaluated at
8 weeks post-surgery.
Results Bone healing was significantly increased in defects treated with VSEL and BM-MNC, compared to defects treated with
VSEL-depleted BM-MNC. Donor cells were detected in new bone tissue, in all the defects treated with cells, and in fibrous tissue
only in defects treated with VSEL-depleted BM-MNC. The number of CD68+ cells was the highest in the VSEL-depleted group,
whereas the number of TRAP positive cells was the lowest in this group.
Conclusions Based on the results, we can conclude that VSEL play a role in BM-MNC induced bone formation. In our rat femur
defect model, in defects treated with VSEL-depleted BM-MNC, osteoclastogenesis and bone formation were decreased, and
foreign body reaction was increased.
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Introduction

Bone non-unions and large defects, due to trauma, disease,
excision of tumors or congenital defects, are important clinical

problems that represent a major challenge for the patients who
suffer with them, the physicians who treat them and the
healthcare system, responsible for their high costs. Current
treatments such as callus distraction, cortical allografts, and
metallic, polymeric or ceramic implants, enjoy varying de-
grees of success, although, autologous bone grafts are still
considered to be the gold standard treatment. Despite this,
drawbacks such as the need for multiple surgeries, limited
amounts of graft material in overly large defects, and donor-
site morbidity are major problems when autologous bone
grafts are used [1, 2].

Bone Tissue Engineering (BTE) treatments, that use differ-
ent combinations of osteoprogenitor cells, osteoconductive
scaffolds, and growth factors hold great promise for achieving
optimal healing, while at the same time eliminating many
drawbacks associated with conventional treatments. For
BTE applications, bone marrow-derived mononuclear cells
(BM-MNC), one of several constituents contained in autolo-
gous bone grafts, are combined with osteoconductive
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scaffolds and growth factors and have reported encouraging
outcomes in early preclinical animal studies and clinical trials
[3, 4].

BM-MNC consists of a heterogeneous mix of mononu-
clear cells containing mesenchymal stem cells (MSC), he-
matopoietic progenitor cells (HPC), endothelial progenitor
cells (EPC), and pluripotent stem cells [5]. Whereas the
importance of MSC and EPC has been well documented
in several bone healing and regeneration model systems
and experimental protocols, the role of pluripotent stem
cells in these treatments is still poorly understood. Adult
pluripotent stem cells have been described by several
groups, and depending on the group and the isolation
protocol used, have been assigned different names, in-
cluding, spore-like stem cells [6], multipotent adult stem
cells (MASC) [7], multilineage-differentiating stress en-
during (Muse) cells [8], multipotent adult progenitor cells
(MAPC) [9], and very small embryonic-like stem cells
(VSEL) [10, 11]. Regardless of the name used to describe
these cells, they all appear to share certain unique charac-
teristics, i.e. small size, expression of markers associated
with pluripotency, and being present in very low concen-
trations. VSEL have been found in many adult tissues
[12], have been shown to be pluripotent in vivo [13]
and to stimulate new bone formation [13, 14]. The num-
ber of circulating VSEL has been shown to be increased
in patients with severe myocardial and liver damage,
stroke, and bowel inflammation [15–18] leading some to
speculate that they may contribute to regeneration of dam-
aged tissues [19–22].

In the present study we isolated VSEL (small size,
SSEA1+, CD45-) from rat bone marrow and evaluated, if
and how these cells contribute to bone healing. To determine
the role VSEL play in bone healing, we treated large rat femur
defects with different combinations of scaffold, VSEL and
BM-MNC, and measured bone healing at 8 weeks.

Material and Methods

All animal experiments were performed in accordance with
guidelines established by our institutional animal care and
o v e r s i g h t c omm i t t e e ( P r o j e c t No . FU / 11 6 5 ;
Regierungspräsidium, Darmstadt, Germany), according to
German law.

BM-MNC Isolation Bone marrow was flushed from the bone
marrow cavities of tibias and femurs of young (5–6 weeks)
male Sprague Dawley (SD) rats, and the cell suspension was
collected and filtered through a 70 μm strainer (BD
Bioscience). Nucleated cells were obtained following lysis
of red blood cells (RBCs) with 1x BD Pharm Lyse Buffer
(BD Pharmingen), then washed with phosphate buffered sa-
line (DPBS; w/o Ca2+, Mg2+; Life Technologies) and

resuspended in DMEM-based medium (Sigma-Aldrich, St.
Louis, MO) containing 2% fetal bovine serum (FBS)
(Lonza, Basel, Switzerland).

VSEL Cell Isolation from BM-MNC BM-derived VSEL were
isolated from a fraction of nucleated cells isolated from BM-
MNC by immune-labeling with monoclonal antibodies
against CD45 (APC-CD45, Thermo Fischer), and SSEA-1
(FITC-SSEA1, BioLegend) for fluorescence activated cell
sorting (FACS). Staining was performed for 30 min at 4 °C
and bone marrow-derived VSEL were sorted as FSClow/
SSClow/CD45−/SSEA-1+ cells using a BD-Influx Cell Sorter
(Becton, Dickinson and Company, NJ, USA). During the
sorting procedure the FCS/SSC was gated low and special
attention was made to not gate debris and to control the back
gate.

VSEL depletion from BM-MNC BM-MNC were depleted of
VSEL by similar immunostaining and collection of rest cells
(except VSEL) (Fig. 1).

Transportation of Isolated Cells and Cell Seeding onto
Scaffold Granules After isolation, cells were collected in a
sterile tube with DMEM medium and transported from
Szczecin (Poland) to Frankfurt am Main (Germany) at 4 °C
via TNT express overnight courier. Upon arrival in Frankfurt
cell viability was confirmed using trypan blue exclusion meth-
od. 0.5 ml β-TCP granules (Chronos; Synthes, Umkirch,
Germany) (0.7–1.4 mm diameter, 60% porosity, 100–
500 μm pore size) were placed in 6-well plates and soaked
in PBS overnight before cell seeding. 2 × 104 VSEL, 2 × 105

BM-MNC or BM-MNC depleted of VSEL were seeded onto
β-TCP scaffold granules. All cell-seeded and non-seeded
scaffolds were incubated at 37 °C, 5% CO2 in a humidified
incubator one hour prior to being transplanted into the femur
defect, and were transported to the animal facility.

Cell Seeded Scaffold Implantation in Rat Femur Defect Thirty
eight, nine-week-old female SD rats (Janvier Labs, Germany)
were randomly allocated into four groups that received: 1) β-
TCP scaffold + VSEL (n = 7), 2)β-TCP scaffold + BM-MNC
(n = 12) 3) β-TCP scaffold + VSEL-depleted BM-MNC (n =
9), and 4) β-TCP scaffold alone (Controls; n = 10) (Table 1,
Fig. 1). Under general anesthesia (Ketamine, 100 mg/kg and
xylazine hydrochloride, 10 mg/kg, IP), the right hind limbs of
rats were shaved, cleaned with antiseptic fluid and a 3 cm
longitudinal dermal incision was made over the femur. The
superficial fascia was incised and the tensor fascia lata, biceps
femoris, and vastus lateralis muscles were elevated from the
greater trochanter exposing the lateral aspect of the femur. A
six-hole locking titan plate (LCP Compact Hand 1.5 Straight;
DePuy Synthes, Dubendorf, Switzerland) was fixed to the
lateral aspect of the femur with 2 proximal and 2 distal cortical
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screws (DePuy Synthes). Once the plates were fixed in place
to stabilize the bone a 5 mm long defect was created on the
femur shaft beneath the mid-point of the plate using a
0.22 mm gigli wire saw (RISystem, Davos, Switzerland).
After the defects received their respective treatments they
were irrigated with sterile saline, the fascia was re-

approximated and sutured (3–0 Vicryl; Ethicon, Norderstedt,
Germany) and the skin was closed with continuous intrader-
mal sutures (4–0 Prolene; Ethicon).

Histological Assessment of New Bone Formation Bone
healing was assessed by histological measurements of the

Table 1 Experimental groups

Group Treatment No. of cells No. of animals Analysis (8 weeks)

VSEL β-TCP +VSEL 2 × 104 7 Histology, IHC, CISH

BM-MNC β-TCP + BM-MNC 2 × 105 12 Histology, IHC, CISH

VSEL-depleted BM-MNC β-TCP +VSEL-depleted BM-MNC 2 × 105 9 Histology, IHC, CISH

Control β-TCP alone – 10 Histology, IHC, CISH

Fig. 1 Experimental design and
VSEL isolation strategy. a
Experimental design: BM-MNC
were isolated from the femurs of
male SD rats and were either used
to treat defects or further sorted to
obtain VSEL and BM-MNC de-
pleted of VSEL. Isolated VSEL
and BM-MNC were seeded onto
β-TCP scaffold granules and
transplanted into female rat femur
defects. Defects treated with
scaffold material alone served as
controls. b Rat BM-derived
VSELs were isolated from full
population of BM cells stained for
CD45 (APC), and SSEA-1
(FITC). Total nucleated cells
(TNCs) are visualized on dot-plot
showing FSC (forward scatter)
versus SSC (side scatter) signals,
which are related to the size and
granularity/complexity of the cell,
respectively. Single cells from
gate R1 are subsequently ana-
lyzed for SSEA-1 marker expres-
sion. SSEA-1+ events included in
region R3 are further plotted on
dot-plot showing CD45- expres-
sion versus side scattered of these
cells (Region R4). Cells in region
R4 were considered as VSEL and
subsequently isolated using a cell
sorter
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defect, performed at 8 weeks post-surgery. Animals were eu-
thanized using CO2 inhalation and their femurs were dissected
free and examined macro- and microscopically for signs of
infection or tumors. Plates and screws were removed and fe-
murs were fixed in Zinc-Formal-Fixx (Thermo Fischer
Scientific, Waltham, USA) for 24 h, decalcified in 10%
EDTA/TRIS-HCl (pH 7.4) for 14 days, and embedded in par-
affin for subsequent histomorphometric analysis. To assess
healing, tissue sections (5-7 μm) were taken parallel to the
long axis of the femur and stained with Alcian Blue-Orange
G-Hematoxylin-Eosin according to the protocol published in
[23]. Images of the sections were captured using light micros-
copy (Ti-E, Nikon GmbH, Dusseldorf, Germany) and quanti-
tative evaluations were performed using image analysis soft-
ware (NIS-Elements software, Nikon GmbH) as described
before [24], with some modifications. Briefly, the original
bone defect area was determined and measured in μm2 using
the “polygon-area measurement tool” of the image analysis
software. The area of newly formed bone in the original bone
defect a) protruding from the cut bone ends, or b) located in
the center of the defect (on the scaffold granules), were
outlined and measured with the same tool. The dimensions
of each area of newly formed bone (a and b) were then nor-
malized to the size of the original defect area. A minimum of
three slides per animal, and the mean value of 5 animals per
group, were used for subsequent statistical analysis.

Y Chromosome Probe and In Situ Hybridization A
digoxygenin (DIG)-labeled 200-bp probe of rat Y chromo-
some was created using DIG-High Prime DNA Labeling
and Detection Starter Kit I (Sigma-Aldrich, Munich,
Germany) according to the manufacturer’s protocol. Briefly,
genomic DNA, isolated with DNeasy Blood&Tissue Kit
(Qiagen, Hilden, Germany) from male rat tissues was used
as a template to generate a CISH probe. The probe template
(254 bp) was amplified with SRY1 gene-specific primers
(forward TTTATGGTGTGGTCCCGTGG and reverse
GTTGAGGCAACTTCACGCTG; Sigma-Aldr ich,
Germany) and after confirming successful amplification, the
PCR product was purified with a QIAquick PCR purification
kit (Qiagen). 600 ng of purified PCR product was DIG- la-
beled overnight at 37 °C and labeling efficiency was estimated
with dot blot hybridization according to the manufacturer’s
manual. Y-chromosome in situ hybridization was carried out
as follows: Paraffin embedded tissue sections were
deparaffinized and rehydrated in decreasing solutions of eth-
anol. Proteinase K (10 μg/ml; CarlRoth, Karlsruhe, Germany)
was applied for 10 min at room temperature, washed and
endogenous alkaline phosphatase (AP) was deactivated by
incubation of the tissue sections in ice-cold 20% acetic acid
for 20 s. After rinsing in water, the tissue sections were
dehydrated in increasing ethanol solutions (70%, 90%, and
100%) and air-dried. For each 8 sections, 2 μl of DIG-

labeled probe was mixed with 10 μl of hybridization buffer
(50% Formamide, 1 M NaCl, 25 mM EDTA, 50 mM Tris-
HCl, 25 mM NaH2PO4, 25 mM Na2HPO4, 1x Denhardt’s
solution, 10% Dextran sulphate, 20kU/ml Heparin and 10%
SDS, all purchased from Sigma-Aldrich), denaturated for
10 min at 95 °C and immediately cooled on ice. For hybridi-
zation, denaturated probe was mixed with 400 μl of hybridi-
zation buffer and 50 μl of hybridization/probe mix was
pippeted over each section and sealed with silicone
Hybrislip cover glasses (Sigma-Aldrich) and rubber cement
(Marabu GmbH, Tamm, Germany). Tissues were denaturated
for 10 min at 70 °C, cooled on ice and finally incubated at
37 °C overnight in a humidified chamber. Subsequently, cover
glasses were removed and sections were washed twice with 2x
SSC buffer, twice with 0.2xSSC buffer and once with
1xMABT buffer, all at room temperature. After washing, the
sections were blocked (2%BSA in MAB buffer) for 1 h and
incubated with AP-conjugated anti-DIG antibody (1:250 in
blocking solution) for 1 h, all at room temperature. After
washing with MABT buffer and 10 min incubation in pre-
staining buffer (100 mM Tris pH 9.5, 100 mM NaCl,
10 mM MgCl2) sections were covered with 70 μl nitro blue
tetrazolium and 5-bromo-4-chloro-3-indolylphosphate sub-
strate solution. After 3 h the incubated sections were washed
with tap water, background staining was performed with
FastRed (Sigma-Aldrich) solution for 3 min and sections were
mounted with glycerin gelatin (Karl Roth) for microscopy
evaluation. Stained sections were analyzed at high (20x) mag-
nification with a light microscope, for the presence of positive
stained cells.

CD68 Immunohistochemistry Analysis Tissue sections were
deparaffinized, rehydrated and trypsin antigen retrieval was
performed before staining with antibodies. Samples were in-
cubated with mouse anti-rat CD68 primary antibodies (1:100,
MCA341GA; BIO-RAD Laboratories; Feldkirchen,
Germany) at 4 °C overnight. For signal detection, an
EnVision + System-HRP (AEC) kit (Dako, Glostrup,
Denmark) was used. Finally, a counterstain with hematoxylin
was performed. An Isotype identical (IgG1) non-specific
mouse antibody served as a negative control (eBioscience,
San Diego, USA). Three slides per animal were analyzed
using light microscopy (at 10x) (Ti-E, Nikon) and image anal-
ysis software (NIS-Elements 4.4, Nikon). Positive CD68- and
hematoxylin-stained cells were thresholded in the defect area
(ImageJ software, [25]), and for each defect, the area with
CD68-posit ive cel ls was normalized to the total
(hematoxylin-stained) area of cells, to obtain the ratio of
CD68 cells in each defect. The mean value of 5 animals per
group was used for subsequent statistical analysis.

TRAP Staining for Osteoclasts TRAP staining solution was
prepared as follows; 1 ml of Naphtol AS-MX Phosphate
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Substract Mix (2% in 2-Ethoxyethanol; Sigma-Aldrich) was
mixed with 120 mg Fast Red Violet LB Salt in 200 ml of
TRAP basic incubation medium (0,1 M Sodium Acetate;
0,05 M Sodium L-Tatrate dibasic dehydrate; pH = 4,7) all
purchased from Sigma-Aldrich). Tissue sections were
deparaffinized, rehydrated and stained with pre-warmed
(37 °C) TRAP staining solution for 45 min at 37 °C. After
staining tissue slides were washed with distillated water and
mounted with glycerol-based mounting medium (Carl Roth).
For quantification, three 400 × 300 μM regions of interest
(ROI) located at the left, center, and right of the defect were
selected and analyzed at 20x magnification. Positive TRAP-
stained cells were thresholded, and for each ROI the area with
TRAP-positive cells was normalized to the total tissue area to
obtain the ratio of TRAP-positive cells. The mean value of the
3 ROI was calculated for each animal and the values of 3–5
animals, per group were used for subsequent statistical
analysis.

Cytokine Expression Profile Screening for cytokines differen-
tially expressed in VSEL and VSEL-depleted BM-MNC was
performed with rat Cytokine Antibody Array (ab133991,
Abcam, Berlin, Germany) according to the manufacturer’s
instructions. Briefly, 100 μg of each protein lysate were hy-
bridized to the array membrane. A biotin-conjugated second-
ary antibody was used and cytokines were detected by HRP-
conjugated streptavidin. Chemiluminescence was detected
with a ChemiDoc XRS+ System (BioRad) and densitometry
was performed using ImageJ software. Relative levels of ex-
pression were calculated as the average of the sum of signal
integrated density for each marker of interest minus the aver-
age of the sum of the integrated densities of the corresponding
blank control spots. Normalization was performed by defining
one array (BM-MNC) as the reference to which the other
arrays were normalized from the average of the sum of the
signal integrated density belonging to the positive control
spots. The mean value of the technical duplicates was calcu-
lated and used for subsequent statistical analysis. Data are
shown as a fold difference against expression in BM-MNC.
Analysis was repeated twice with two different vials of sorted
cells.

Statistical Analysis For all parameters analyzed, a minimum of
five animals per group were used. For bone formation mea-
surements, CD68+ cells and TRAP+ cells quantification re-
sults are presented as box-plots of the median in the figures,
25%, and 75% quartiles (M (25%q/75%q). Nonparametric
Kruskal–Wallis test andmultiple Conover-Iman test were con-
sequently used, and a Bonferroni-Holm corrected p < 0.05
was used to indicate statistical significance. The cytokine ex-
pression data are presented as mean + SD and significance
level was set at p < 0.05. Statistics were calculated using the
software Bias 10.03 (Epsilon-Verlag, Darmstadt, Germany).

Results

Bone Healing At 8 weeks none of the defects, in any of the
groups were completely healed, i.e. complete bridging of the
defect with bony tissue was not achieved (Fig. 2a). Detailed
histological analysis near the cut ends of the bone in the
VSEL-depleted group revealed large amounts of newly
formed bone originating from the periosteum; however, the
difference compared to the other groups was not significant.
At the same time, the amount of new bone originating from
cell-seeded scaffold granules, in the middle of the defect, was
similar in defects treated with BM-MNC andVSEL alone, and
was significantly lower in those treated with VSEL-depleted
BM-MNC and controls (scaffold alone) (Fig. 2b).

Donor Cell Detection in Defect Tissues To identify donor cells
transplanted from (male) rats, defect tissues were hybridized
with a DIG-labeled probe specific for Y – chromosome SRY1
gene (Fig. 3). No positive staining was detected in control
defects where no donor cells were used for treatment. In all
experimental groups positively stained donor cells were de-
tected in newly formed bone tissue (Fig. 3a, b, d, f). In the
VSEL-depleted defects positively stained donor cells were
also found in fibrous tissue (Fig. 3e).

Immune Reaction To determine if the immune reaction to the
transplanted cell-seeded scaffold granules differed among
groups, tissue sections were stained with anti-CD68 antibody
(Fig. 4). Positively stained cells (monocyte lineages and mac-
rophages) were detected in all groups, however the number
and the morphology of the cells differed among the groups. In
the VSEL group the number of positively stained cells in the
defects was lower than in the other groups (Fig. 4A, E). The
maximum number of CD68 positive cells was detected in the
control (scaffold alone) defects. Detailed analysis revealed
that the morphology of CD68-positive cells, surrounding scaf-
fold in the VSEL-depleted samples, differed from the mor-
phology of CD68+ cells in the other groups. In the VSEL-
depleted group these cells appeared larger in size and
contained more nuclei, whereas in the other groups multinu-
clear cells were smaller in size and had horse-shoe shaped
nuclei (Fig. 4, high magnification).

Osteoclastogenesis Significant differences between groups
were detected, after TRAP staining for osteoclasts (Fig. 5).
The number of TRAP positive cells in the VSEL, BM-MNC
and control groups was significantly higher than in the VSEL-
depleted group, with the maximum numbers observed in the
BM-MNC group. The number of TRAP-positive cells in the
VSEL group was significantly (p < 0.05) lower than in the
BM-MNC and control groups, however it was significantly
(p < 0.05) higher than in the VSEL-depleted group. The ma-
jority of multinucleated giant cells in the VSEL-depleted
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group were TRAP negative (Fig. 5C, c). No significant differ-
ence was detected between the BM-MNC and control groups.

VSEL, BM-MNC and VSEL-Depleted BM-MNC Cytokine
Expression Analysis In order to compare the “immunity “of
the VSEL, BM-MNC and VSEL-depleted BM-MNC, at the
protein level, we performed cytokine expression array on
these cells (Fig. 6). Results showed that whereas expression

of most of the cytokines analyzed was slightly lower in
the VSEL compared to the VSEL-depleted BM-MNC,
expression of granulocyte-macrophage colony-stimulating
factor (GM-CSF), interferon gamma (IFNγ), interleukin 1
alpha (IL-1α), and monocyte chemoattractant protein-1
(MCP-1; CCL2) were significantly (p < 0.05) lower, and
the expression of lipopolysaccharide-inducible CXC che-
mokine (LIX; CXCL5) was significantly (p < 0.05) higher

Fig. 2 Histological sections of femur defects. a Defects stained with
Alcian Blue, Orange-G and Hematoxylin, 8 weeks after defect creation
and treatment with VSEL, BM-MNC, VSEL-depleted BM-MNC, and
controls (scaffold alone). Blue arrows indicate defect margins and green
arrows indicate islands of bone formation seen in defects treated with
BM-MNC and VSEL alone. Defects treated with VSEL-depleted BM-
MNC and controls contained mostly fibrous tissue. (Scale bar = 500 μM;

high resolution image scale bar = 100 μM). bGraph shows the amount of
newly formed bone originating from the bone cut ends/periosteum; c
Graph shows the amount of newly formed bone originating from cell-
seeded scaffold granules. Significantly less new bone formation was de-
tected in defects treated with VSEL-depleted BM-MNC and controls (*,
p < 0.05)
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in VSEL compared to VSEL-depleted BM-MNC (Fig.
6b).

Discussion

In previous experiments we treated rat femur large defects
with different combinations of purified MSC and EPC seeded

onto scaffold material, and observed significantly improved
healing [26–28]. In subsequent experiments using the same
femur defect model we replaced MSC and EPC with BM-
MNC and observed comparable positive bone healing [29].
Considering that the concentration of MSC and EPC is very
low in BM-MNC, we hypothesized that another cell fractions,
besides MSC and EPC, might be involved in the observed
positive healing effect [30]. The presence and osteogenic

Fig. 3 Detection of transplanted
donor cells after an ISH with
digoxigenin-labeled SRY1-
probe in defect tissue, 8 weeks
after defect creation and
treatment. a–h Sections were
hybridized with SRY-1 probe and
counterstained with nuclear Fast
Red solution. The presence of
male cells (dark violet/black nu-
clei) in newly formed bone tissue
was shown in the VSEL (a, b),
BM-MNC (d), and VSEL-
depleted BM-MNC (f) treated
groups. Donor (male) cells were
also detected in fibrous tissue (f)
in VSEL-depleted BM-MNC
treated defects (e). Control sam-
ples, containing only female host
cells, stained negatively (g, h).
(nb- new bone; f- fibrous tissue;
20x magnification, Scale bar =
100 μM)
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[14], hepatogenic [31] and vasculogenic [32] effects of adult
pluripotent stem cells in BM-MNC identified as VSEL have
been demonstrated in in vivo models by others. However, the
role, and even the very existence of these cells is the focus of
heated debate in the scientific literature [33, 34]. The raised
controversy has been carefully addressed [35, 36] and current-
ly more than 25 independent laboratories confirmed presence
of these cells in adult murine, rat and human tissues [37].
Currently developed ex vivo expansion strategies will facili-
tate clinical applications of VSEL [38, 39].

In the present study we evaluated the contribution of
VSEL, isolated from rat BM-MNC, to healing of large bone
defects in our rat femur model. We compared healing of rat
femur defects, treated with VSEL, BM-MNC, and VSEL-
depleted BM-MNC plus β-TCP scaffold, and with scaffold
alone, at 8 weeks after defect creation and treatment. Our
results showed that VSEL contribute significantly to bone
healing. Specifically, a concentration of 2 × 104 VSEL alone
stimulated the same amount of new bone formation, as 2 × 105

of BM-MNC. This result correlates with previous findings

Fig. 4 Immunohistochemistry
analysis of CD68-positive cells
in defect tissue, 8 weeks after
defect creation and treatment.
A–D Representative images of
immunohistochemistry staining
showing the presence of CD 68+
cells in defects treated with VSEL
(A, a); BM-MNC (B, b); VSEL-
depleted BM-MNC (C, c) and
scaffold alone (D, d). Red closed
arrows show multinuclear cells
with horse-shoe shaped nuclei;
red open arrows indicate giant
multinucleated cells.
Superimposed black squares de-
lineate magnified area in the right
panel. A–D 4x, Scale bar =
500 μM; a–d 20x, Scale bar =
100 μM. High magnification of
multinucleated giant cells, Scale
bar = 10 μM. E Ratio of CD68
positive cells in the defect area for
all groups
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reported by Havens et al., who demonstrated that treatment
with comparable numbers of VSEL in a mouse cranial defect
model resulted in significant bone healing [14]. These find-
ings of higher regenerative capacity of less mature (SSEA-1+)

VSEL in comparison to more mature cells (BM-MNC) is also
supported by results fromRichart, et al., who showed a similar
correlation between cell maturity and regenerative capacity in
a critical limb ischemia model, where embryonic stem cell

Fig. 5 Osteoclastogenesis. A–D
Representative sections of defect
tissue stained for the osteoclast
marker, Tartrate Resistant Acid
Phosphatase (TRAP). TRAP -
positive cells (black arrow) are
seen in the VSEL (a), BM-MNC
(b) and control (d) groups,
whereas in the VSEL-depleted
group (c) the majority of multi-
nucleated cells were TRAP-
negative (white triangle); A–D
4x, Scale bar = 500 μM; (a–d)
20x, Scale bar = 100 μM. E
Graph shows quantification of
TRAP positive cells in the differ-
ent groups. The lowest number of
TRAP positive cells was detected
in the VSEL-depleted group.
Different letters on bars indicate
significant (p < 0.05) differences
between groups
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(ESC)-derived SSEA-1+ cells and their progeny were com-
pared [40]. This was reinforced in the present results in which
we showed that by removing VSEL from BM-MNC healing
was significantly decreased, to levels comparable to defects
treated with scaffold alone (controls). The importance of
VSEL for BM-MNC - induced osteogenesis, demonstrated
in this study by depletion of VSEL from BM-MNC, suggests
that VSEL could be involved in other BM-MNC- regenerative
functions, like regeneration of infarcted myocardium [41].
The discrepancy between previous study results, showing that
BM-MNC, but not HSC alone improve cardiac function
[41–44], could be resolved in similar experiments using this
type of depletion strategy. Despite these positive findings, the
amount of healing we observed in the present experiments
was less than in previous experiments. In previous experi-
ments using the same femur defect model, treated with differ-
ent combinations of MSC, EPC and scaffold we observed a
greater degree of bone bridging in the defect at 8 weeks. In
contrast, in the present experiments, we found that none of the
defects, in any of the groups, were fully bridged with newly
formed bone at 8 weeks. This might be explained by the low
number of transplanted cells (2 × 104 VSEL and 2 × 105 BM-
MNCs/depleted BM-MNCs) we used to treat the defects in the
present experiments, compared to previous protocols in which
defects were treated with one hundred times more cells. We
used this low number of VSEL in these experiments to simu-
late the previously cited study by Havens, et al. in which the

same amount of VSEL was found to be sufficient to provide
significant bone healing in their mouse cranial defect model
[14]. In addition, we used this low number of VSEL due to
technical limitations, i.e. since VSEL are found in very low
concentrations it was difficult to harvest large numbers of
cells. To date, it has not been possible to expand rat VSEL
in vitro [45, 46], therefore we could only use the limited num-
ber of cells we were able to harvest from donor rats. Another
possible reason for the less amount of healing observed in
these experiments could have been the time elapsed between
harvesting and transplanting the cells into the femur defect.
Due to logistical constraints the cells were placed in the defect
one day after being isolated. While we did not detect a signif-
icant decrease in cell viability between harvesting and
transplanting the cells, this delay might have affected cell
activity [47, 48]. Finally, in order to identify donor cells in
the defect we used male VSEL in female recipient defects.
Others have described lesser amounts of bone healing in fe-
male models [49].

It is important to note a few potential limitations in this
study. Due to the lack of availability of additional rat VSEL
specific markers, the VSEL sorting strategy in this study was
limited. Therefore the possibility of the presence of minor
contamination with other cell types could not be excluded. If
present, this contamination most likely did not interfere with
the observed VSEL-induced osteogenic effect, however in
future studies it would be important to develop a high-

Fig. 6 Cytokine expression in
VSEL, BM-MNC and VSEL-
depleted BM-MNC. a
Expression of cytokines in VSEL,
BM-MNC and VSEL-depleted
BM-MNC. b Expression of GM-
CSF, IFN-γ, IL-1α and MCP-1
was significantly downregulated
and LIX significantly upregulated
in VSEL compared to VSEL-
depleted BM-MNC. Data repre-
sents fold difference compared to
the BM-MNC cells and is
expressed as the two-dot Mean ±
SD. (*) P < 0.05
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efficiency and high-yield rat VSEL- sorting protocol and re-
produce the present study with a guaranteed completely ho-
mogenous VSEL population.

Using in situ hybridization for the male specific gene,
SRY1, we observed donor (male) cells in newly formed bone
in the defect in all three experimental groups, showing that
transplanted “donor” cells were present and likely played a
role in the observed new bone formation. Since transplanted
stem cells have been difficult to detect in bone samples several
days/weeks after transplantation, it is generally thought that
these cells play an in-direct role in bone healing, through
expression of paracrine molecules [50, 51]. That said, there
are a few studies in which transplanted cells have been detect-
ed in defects at later timepoints [52]. These conflicting obser-
vations between studies could be explained by numerous rea-
sons - ex vivo expansion of cells, initial cell dosage, type of
scaffold, type of host animal, method of transplanted cell de-
tection and others. Interestingly, in our defect tissues, treated
withVSEL-depleted BM-MNC, we foundmale cells, not only
in newly formed bone, but also in newly formed fibrous tissue.
This finding suggests that in addition to playing a role in
osteogenesis, VSEL may also exert paracrine effects on other
cells.

Little is known about if and how VSEL interact with other
cells and influence regeneration. It is well known, that im-
mune and particularly foreign body reactions to transplanted
cells/scaffolds play an important role in healing in bone tissue
engineering treatments. Our measurements of CD68+ and
TRAP+ cells in the defect tissue showed that depleting
VSEL from BM-MNC resulted in a significant change in the
reaction to the transplanted cell-seeded scaffold granules.
Whereas in the other 3 groups the scaffold granules were
surrounded by osteoclasts (CD68+, TRAP+, multinucleated
cells with horse-shoe shaped nuclei), in the VSEL depleted
group scaffold granules were surrounded by foreign body gi-
ant cells (CD68+, TRAP-, multinucleated cells) [53]. It was
recently proposed, that in bone healing, osteoclasts and for-
eign body giant cells may play opposite roles in their reaction
to transplants. Whereas osteoclasts dissolve scaffold granules,
leading to osteointegration and bone formation, giant cells
form fibrous capsules around the transplanted material, thus
preventing it’s integration and bone formation [53]. This could
explain the differences we observed in new bone formation
between the defects treated with, and without VSEL.

It has been shown previously that bone marrow-derived
MSC are able to modulate foreign body reaction and interact
with host immune cells duringMSC-mediated bone formation
[54] by attracting circulating hematopoietic stem cells and
prompting their differentiation into M1 macrophages and os-
teoclasts [55]. A similar mechanism could be hypothesized for
VSEL. However additional studies need to be done in order to
determinewhy removingVSEL fromBM-MNC reduces bone
healing. Our results of cytokine expression analysis in VSEL

and VSEL-depleted BM-MNC provide some hints for an-
swering this question. Increased expression of IL-1α, GM-
CSF andMCP1 cytokines in VSEL-depleted BM-MNC could
be responsible for the observed enhanced foreign body reac-
tion, as these cytokines are known to be involved in pro-
inflammatory gene transcription and fibrosis [56], monocytes
and macrophages attraction [57], foreign body giant cells for-
mation [58] and macrophage-dependent biomaterial fibrosis
[59]. Decreased expression of CXCL5 cytokine in the VSEL-
depleted BM-MNC, and increased expression of IFNγ may
be responsible for the observed reduced new bone formation
[60], as these cytokines have been shown to play an important
role in bone remodeling, wound healing, angiogenesis [61]
and in maintenance of hematopoietic stem cells [62].

Conclusion

Based on the results presented in this study, we can conclude
that VSEL do play a role in BM-MNC induced bone forma-
tion. In our rat femur defect model, in defects treated with
VSEL-depleted BM-MNC, osteoclastogenesis and bone for-
mation were decreased, and foreign body reaction was
increased.
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