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Objective. EEG has great potential as a cost-effective screening tool for Alzheimer’s disease (AD). However, the specificity of EEG is
not yet sufficient to be used in clinical practice. In an earlier study, we presented preliminary results suggesting improved specificity
of EEG to early stages of Alzheimer’s disease. The key to this improvement is a new method for extracting sparse oscillatory
events from EEG signals in the time-frequency domain. Here we provide a more detailed analysis, demonstrating improved EEG
specificity for clinical screening of MCI (mild cognitive impairment) patients. Methods. EEG data was recorded of MCI patients
and age-matched control subjects, in rest condition with eyes closed. EEG frequency bands of interest were θ (3.5–7.5 Hz), α1 (7.5–
9.5 Hz), α2 (9.5–12.5 Hz), and β (12.5–25 Hz). The EEG signals were transformed in the time-frequency domain using complex
Morlet wavelets; the resulting time-frequency maps are represented by sparse bump models. Results. Enhanced EEG power in the
θ range is more easily detected through sparse bump modeling; this phenomenon explains the improved EEG specificity obtained
in our previous studies. Conclusions. Sparse bump modeling yields informative features in EEG signal. These features increase the
specificity of EEG for diagnosing AD.

1. Introduction

AD is the most common neurodegenerative disorder; one
of its earliest signs is progressive memory loss. Since the
number of individuals with AD is expected to increase
considerably in the near future [1, 2] (see also Figure 1),
reliable treatment and diagnosis of AD are critical. Many
approaches to treatment are currently being investigated
[3, 4]. A clinical diagnosis accuracy of approximately 85%
of detection rate is commonly achieved, by a procedure
of exclusion after structural or functional imaging tests—
including quantitative electroencephalography (QEEG), lab-
oratory, and psychometric tests [5].

QEEG recordings of subjects in resting condition and
with eyes closed are conventionally used in daily clinical rou-
tine as a diagnostic tool for AD [6–8]. The main advantage
of QEEG is its low cost and its mobility. Several studies

have demonstrated that QEEG is useful for investigating
Alzheimer’s disease (AD) [7, 9–15]. Topographical EEG
power changes are believed to reflect early signs of cortical
atrophy and/or compensatory cortical reorganization during
the early stages of the disease [16]. More specifically, it
is commonly believed that AD induces enhanced mean
power of slow rhythms (0.5–8 Hz) and loss of fast (8–
30 Hz) rhythms [6, 9, 11, 17, 18]. In the EEG of healthy
subjects, recorded in resting condition with closed eyes,
alpha rhythms are usually mostly distributed in the occip-
ital area; in AD patients, the alpha rhythms increasingly
relocate towards anterior areas as the disease progresses
[9, 19, 20].

More precisely, these effects have been shown to correlate
with severity of AD expressed by mini mental state evaluation
(MMSE, [15]) and, more recently, with clinical dementia
rating scale (CDR, [13]).
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Figure 1: Projection of the prevalence of AD and dementia in the
near future. Illustration based on demographic estimates of Hebert
et al. [1] (projection of AD prevalence in USA) and Wimo et al. [2]
(projection of AD prevalence worldwide).

Early stages of AD have been associated with an increase
of theta activity and/or a decrease of alpha activity. In more
severe stages of AD, an increase in both theta and delta
activities has been observed, together with activity decrease
in both alpha and beta frequency bands, in addition to a
reduction in peak alpha frequency [5, 13].

Since EEG could be used as a cost-effective screening
tool for early detection and diagnosis of the Mild Cognitive
Impairment (MCI) stage (see Figure 2), it may change the
objectives of treatment: if AD could be reliably diagnosed in
an early stage, medical treatments would, instead of being
palliative, become curative: they may be used to delay or,
hopefully, even bring the disease progress to a halt. However,
EEG is not yet considered as a reliable diagnostic tool,
because of its lack of specificity [21].

Our long-term research objective is to develop signal
processing methods that improve EEG specificity for diag-
nosing AD; we wish to discover EEG signal features that not
only significantly differ in AD patients, but also allow us
to reliably separate AD patients and control subjects. This
approach is valuable for clinical purposes (as diagnostic tool
for AD), and it also more fundamentally contributes to a
better understanding of brain dynamics of MCI patients. In
this paper, we focus on time-frequency representations of
EEG signals, which will enable us to extract EEG features that
improve the specificity of EEG for diagnosing AD.

2. Methods

Most often clinical EEG of AD patients is analyzed either
in time domain or in the frequency domain (Fourier power
analysis). However, those standard approaches entirely
ignore the fact that EEG is mainly a nonstationary signal, that
is, the statistics of brain rhythms evolve in time. Both signal
domains, that is, time domain and frequency domain, may be
exploited simultaneously: instead of studying either time or
frequency separately, we extract time-frequency information
(Figure 3). This is possible through time-frequency represen-
tations, such as windowed Fourier transforms, or the more
recently proposed wavelet time-frequency representations
(WTFRs). However, WTFRs describe signals by means of
thousands of coefficients. The information is distributed over
those many coefficients and as a result, the coefficients can-
not be used directly as signal features; therefore, additional
processing is required before discriminative analysis can be
carried out. In our previous work [22], we extracted signal
features from time-frequency maps by means of sparse bump
models; those models consist of time-frequency patterns
(“bumps”) of high magnitude, lasting nearly 4 time periods
centered at a specific frequency. Those patterns are likely
to be representative of transient local synchronization of
neuronal assemblies, conveying key information on higher-
order cognitive and sensory processing. The bump modeling
approach allows us to capture oscillatory events in EEG
on a trial-by-trial basis, which in turn may be considered
as reliable characteristic signatures in Local Field Potentials
(LFP) and EEG signals [23, 24]. We hypothesize that those
signatures contain significant EEG information about brain
disorders such as AD.

Computations were performed using Matlab 7.0 (The
MathWorks, Inc.). Statistical analysis was performed using
Sigmastat 3.5 (Systat software, Inc.). Wavelet analysis and
time-frequency sparsification were performed using the
ButIf Toolbox [22, 24, 25].

2.1. Subjects. Patients who complained of only memory
impairment were recruited from the outpatient memory
clinics of the National Center Hospital for Mental, Nervous,
and Muscular Disorders, and the National Center of Neurol-
ogy and Psychiatry between 1998 and 2000. They underwent
thorough neuropsychological testing that revealed quanti-
fied, objective evidence of memory impairment with no
apparent loss in general cognitive, behavioral, or functional
status. In the course of the clinical study, EEG was recorded
in rest condition with closed eyes (under vigilance control),
by 21 Ag/AgCl electrodes (disks of diameter 8 mm), arranged
according to the 10–20 international system. The experiment
was conducted with the understanding and the consent of
the human subject. The responsible Ethical Committee has
approved the experiments.

EEG was recorded with Biotop 6R12 (NEC San-ei, Tokyo,
Japan) at a sampling rate of 200 Hz with analog bandpass
filtering in the frequency range of 0.5–25 Hz; the signals
were then digitally filtered with a high pass filter above 4 Hz
by a third-order Butterworth filter. The subjects comprised
two study groups; the first group consists of 25 subjects
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Figure 2: EEG may be used as a screening tool for early-stage AD, since EEG recording technology is inexpensive and available in most
hospitals. At an early stage of AD, presymptomatic interventions (curative treatments) may be investigated. However, EEG is not yet a
reliable diagnostic tool: the specificity of EEG needs to be improved.
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Figure 3: Possible approaches to study EEG brain dynamics. From the time-domain EEG signals, spectral information, in frequency or time-
frequency domain (including EEG time-frequency patterns), may be extracted. Afterwards, the spatial information is taken into account,
through QEEG or synchrony measures.
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who complained of memory problems. At the time of the
EEG recordings, these subjects were diagnosed with mild
cognitive impairment (MCI). Later on, they all developed
mild AD. The average mini mental state exam (MMSE) score
in the MCI group was 26 (SD of 1.8).

The other group consists of 56 age-matched healthy sub-
jects who had no memory or other cognitive impairments.
The average MMSE of this control group was 28.5 (SD of
1.6). The ages of the two groups were 71.9 ± 10.2 and 71.7 ±
8.3, respectively.

The EEG data was investigated by an EEG expert for
artifacts, and sufficiently clean EEG segments of 20 s were
selected (on each of the 21 channels). Subject with less than
20 s artifact-clean data were rejected, reducing their number
to 22 and 38, respectively. There was no significant difference
in age data between the two groups in the subset. We used
here this database with 22 patients in the early stage of
Alzheimer’s disease (mild cognitive impairment or MCI) and
38 control subjects. This EEG data have been analyzed in
previous studies [14, 22, 26–28].

2.2. Time-Frequency Spectral Analysis. Wavelet time-fre-
quency maps are computed using complex Morlet wavelets.
The (continuous) wavelet transform W of a time series x is
obtained as

W(k, s) �
∑

l

x(l)ψ∗
(
l − k
s

)
, (1)

where ψ(k) is the (complex) “mother”′ wavelet, s is a scaling
factor, and ∗ stands for complex conjugate. In this paper, we
use the complex Morlet wavelet:

ψ(k) = A · exp

(
−k2

2σ2
t

)
· exp

(
2iπ f0k

)
, (2)

where σ2
t and f0 jointly determine the number of oscillations

in the wavelet. The complex Morlet wavelet family defined
by 2π f0k = 7 results in the optimal resolution in time and
frequency; it has also proven to be well suited for EEG signals
[29–34] (see also [35] for review).

As a benchmark for the approach based on sparse time-
frequency bump models (see below), we computed statistics
directly from the WTFR. In particular, we computed WTFR
relative power in four different frequency bands, that is, θ
(3.5–7.5 Hz), α1 (7.5–9.5 Hz), α2 (9.5–12.5 Hz), and β (12.5–
25 Hz). We controlled the discriminative power of those 4
measures, by computing their classification error using linear
discriminant analysis (LDA).

2.3. Sparsification. Next we extract oscillatory events
(“bumps”) from the time-frequency maps (Figure 4).
Those oscillatory events are generally believed to be due
to local synchrony of neural populations in the vicinity of
the recording electrode [35]. We extract oscillatory bursts
(“bumps”) by sparse bump modeling [23–25, 28, 36]. More
specifically, we used the ButIf toolbox, developed in earlier
work (Figure 4, [25, 36]). We now describe this procedure in
more detail.

WTFR

z-scored WTFR

Bump model

Figure 4: from wavelet time-frequency representation (WTFR) to
a sparse time-frequency bump model.

Frequency-dependent z-score normalization [37, 38] was
applied to each trial:

z
(
f , t
) = W

(
f , t
)− μf
σ f

, (3)

where μf and σ f are the mean and standard deviation,
respectively, of the wavelet map W. The resulting z-score
maps z(f,t) are approximated by bump models zbump,
which are sequences of basis functions b (“bumps”) with
parameters θk (for more details about bump modeling, see
[23] ):

z
(
f , t
) ≈ zbump(θ) =

Nb∑

k=1

b(θk), (4)

with θ = (θ1, θ2,. . ., θNb). This decomposition represents the
most salient oscillatory events in the z-scored map z(f,t).
As pointed out earlier, we hypothesize that those events are
characteristic for EEG dynamics and are therefore relevant
for diagnosing AD. We used half ellipsoid basis functions
b, and the parameters θk are vectors of five parameters:
position in time and frequency, width in time and frequency,
and amplitude. We computed the number of bumps in
four different frequency bands, that is, θ (3.5–7.5 Hz), α1

(7.5–9.5 Hz), α2 (9.5–12.5 Hz), and β (12.5–25 Hz). We
conducted linear discriminant analysis (LDA), using the
number of bumps in those 4 frequency bands as input
features for the classification.

3. Results

In an earlier preliminary study, we observed that bump
modeling leads to improved classification results (80–93%
classification using leave-one-out classification, see[22] ),
compared to approaches based on WTFR directly, without
bump modeling (70% classification). We report here results
of a more detailed study, which considers 4 separate fre-
quency bands; so far, we had only considered the frequency
band 4–25 Hz [22]. We found significant differences in the
theta and beta ranges (Mann-Whitney test, P < .01). We
compared the WTFR relative power in all four frequency
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Figure 5: Boxplot comparison of the time-frequency activity between the time-frequency representation and its sparse bump representation.
The center line is the median, the box represents the interquartile range, whiskers represent nonoutlier observations, and cross indicates
outliers. ∗ and ∗∗ indicate significant (P < .01) and very significant (P < .001) differences. (The relative power appears larger than in lower
ranges. This is due to the topography of the wavelet maps (because we used steps of 1 Hz instead of using logarithmic scales). If we resize
those values taking into account the size of the ranges, we obtain the same P values and classification results, with a lower power in the beta
range as compared to low frequency ranges.)

Table 1: LDA results, for WTFR and Bump amplitude. LOO = Leave-one-out validation error (classification error). SEN = sensitivity. SPE =
specificity. In both cases, the best discriminating frequency range is in the theta range. Classification, sensitivity, and specificity are improved
by bump modeling.

θ (3.5–7.5 Hz) α1 (7.5–9.5 Hz) α2 (9.5–12.5 Hz) β (12.5–25 Hz)

WTFR
LOO = 33.3% LOO = 46.7% LOO = 81.7% LOO = 48.3%

SEN = 50.0% SEN = 27.3% SEN = 18.2% SEN = 59.1%

SPE = 76.3% SPE = 68.4% SPE = 18.4% SPE = 47.4%

Bumps
LOO = 21.7% LOO = 76.7% LOO = 51.7% LOO = 41.7%

SEN = 72.3% SEN = 18.2% SEN = 40.9% SEN = 68.2%

SPE = 81.6% SPE = 26.3% SPE = 52.6% SPE = 52.6%

ranges, before and after bump processing (Figure 5). The
difference in theta range was enhanced by bump modeling
(P = 10−4 instead of .08), while the beta range difference
was reduced but remained significant. The improvement of
classification observed in [22] is therefore mostly attributed
to enhanced separation of EEG activity in the theta range.

Classification results (Table 1) also improved in the theta
(33.3 errors to 21.7%) and beta (48.3 errors to 41.7%) ranges,
with a notable increase of specificity in the theta range (76.3
to 81.6%).

4. Discussion

This paper investigates EEG features for diagnosis AD at
an early stage. We observed that bump modeling enhances
the statistical differences in EEG activity in the theta range
between healthy subjects and MCI patients. This observation
may explain the improved classification results by bump

modeling, reported in [22]. This effect is also consistent with
the existing literature on Alzheimer’s disease: low frequency
activity (0.5–8 Hz) is generally stronger for patients with
AD, while the amplitude of higher frequencies (8–30 Hz) is
generally decreased in AD patients [6, 9, 11, 17, 18]. An
increase of the theta range activity in the early stages of
AD has often been demonstrated [5, 13], and this effect
was indeed already visible using Fourier spectral analysis or
WTFR, without bump modeling. However, bump modeling
amplifies this effect, at least for the EEG data set at hand.

Oscillatory neuronal networks, as a model for brain
dynamics, provide a unique interdisciplinary platform to
study neurocognitive dynamics [39]. The analysis of EEG
data, though of high relevance in cognitive research, poses
a number of technical challenges as EEG signals are clearly
stochastic and highly nonstationary [40]. The structural
organization and associated functional role of EEG oscil-
lations are still far from being completely understood. In
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this paper, we investigated the specificity of EEG oscillatory
bursts as neural correlates of early-stage Alzheimer’s disease.
When one computes the average of WTFR power, the struc-
ture of the time-frequency map is not accounted for. Whereas
most studies focus such averaged EEG responses in time
or frequency, this study considers oscillatory events in the
time-frequency domain, without relying on EEG averages.
The bumps are modelled on single trials, and once this
structural information is extracted, we computed averages
over electrodes (therefore not losing the burst/background
separation). If this grand average is performed on the time
frequency maps (without extracting the bump), we actually
loose information (classification error increases; P values
increase). We observed using our single trial models that EEG
organized oscillatory events contain stronger discriminative
signatures of the early stage of Alzheimer’s disease than
averaged spectral EEG statistics, which also explains our
previously obtained classification results [22]. Our results
suggest that the effect of enhanced low-frequency activity
in AD patients may be primarily due to changes in time-
frequency burst properties.

We speculate that those slow-wave oscillatory events
may be caused by subcortical damage, induced in the early
stage of Alzheimer’s disease [41, 42]. Background activity
in EEG is mostly attributed to cortical neural events; on
the other hand, the oscillatory bursts, generated by locally
synchronous neural populations, could be related to inter-
area connections, including subcortical areas. Indeed, low-
frequency synchrony is probably representative of subcortical
connectivity [43]. Our results would then attribute the
increase of slow wave activity as a probable correlate of
subcortical damage induced in the early stage of Alzheimer’s
disease.

As we have shown recently [24], organized oscillatory
bursts in EEG time-frequency activity seem to play a specific
functional role in steady state visual evoked potentials,
distinct from the more stationary ongoing EEG activity
(activity not organized in bursts, representing 70–80% of
the signal). We here provide additional evidence that EEG
events carry significant information, as they can be used to
distinguish normal subjects from MCI patients. This obser-
vation is consistent with the interpretation of time-frequency
oscillatory events as signatures of locally synchronous neural
populations. As a consequence, both background EEG
and oscillatory EEG bursts may be highly relevant for
understanding and diagnosing brain disorders, including
Alzheimer’s disease. We could not study the delta band with
portions of 20 seconds only: bump modeling has limits in the
lower frequency ranges [36]; we would have needed larger
windows (≈1 m 20 s duration). The gamma band could not
be studied, the data being low-passed filtered below the
gamma range. Furthermore, to study reliably gamma range
power, special care should be taken to prevent electromyo-
graphic artifacts from polluting EEG signals (such as record-
ing EMG sensors), which could not be done at the recording
site. However, we insist here that studies of EEG spectrum in
the gamma range are seldom led for brain disorders and may
provide valuable information. Finally, one should keep in
mind that the parameters of bump modeling should be cho-

sen appropriately; otherwise one would model background
activity instead of oscillatory bursts (the results presented
here are robust to reasonable variations of these parameters).

5. Conclusion

This paper investigates EEG features for diagnosis AD at
an early stage. We observed that bump modeling enhances
the statistical differences in EEG activity in the theta range
between healthy subjects and MCI patients, with a maximal
specificity reached in the theta range (passing from 76.3%
with WTFR to 81.6% using bumps). This observation
may explain the improved classification results by bump
modeling, reported in [22]. Our results suggest that the effect
of enhanced low-frequency activity in AD patients may be
primarily due to changes in time-frequency burst properties.
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of hippocampal atrophy and focal low-frequency magnetic
activity in Alzheimer disease: volumetric MR imaging-
magnetoencephalographic study,” American Journal of Neuro-
radiology, vol. 24, no. 3, pp. 481–487, 2003.

[43] P. J. Uhlhaas and W. Singer, “Neural synchrony in brain
disorders: relevance for cognitive dysfunctions and pathophys-
iology,” Neuron, vol. 52, no. 1, pp. 155–168, 2006.

http://www.bsp.brain.riken.jp/$\sim \protect \kern +.1667em\relax \protect \kern -.1667em\relax $fvialatte/bumptoolbox/download.html
http://www.bsp.brain.riken.jp/$\sim \protect \kern +.1667em\relax \protect \kern -.1667em\relax $fvialatte/bumptoolbox/download.html

	Introduction
	Methods
	Subjects
	Time-Frequency Spectral Analysis
	Sparsification

	Results
	Discussion
	Conclusion
	References

