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Abstract

Despite Nipah virus outbreaks having high mortality rates (>70% in Southeast Asia), there

are no licensed drugs against it. In this study, we have considered all 9 Nipah proteins as

potential therapeutic targets and computationally identified 4 putative peptide inhibitors

(against G, F and M proteins) and 146 small molecule inhibitors (against F, G, M, N, and P

proteins). The computations include extensive homology/ab initio modeling, peptide design

and small molecule docking. An important contribution of this study is the increased struc-

tural characterization of Nipah proteins by approximately 90% of what is deposited in the

PDB. In addition, we have carried out molecular dynamics simulations on all the designed

protein-peptide complexes and on 13 of the top shortlisted small molecule ligands to check

for stability and to estimate binding strengths. Details, including atomic coordinates of all the

proteins and their ligand bound complexes, can be accessed at http://cospi.iiserpune.ac.in/

Nipah. Our strategy was to tackle the development of therapeutics on a proteome wide

scale and the lead compounds identified could be attractive starting points for drug develop-

ment. To counter the threat of drug resistance, we have analysed the sequences of the viral

strains from different outbreaks, to check whether they would be sensitive to the binding of

the proposed inhibitors.

Author summary

Nipah virus infections have killed 72–86% of the infected individuals in Bangladesh and

India. The infections are spread via bodily secretions of bats, pigs and other infected indi-

viduals. Even though, the disease was first detected in the human population in 1998,

there are no approved drugs/vaccines against it. In this study, we have tried to model the

3D structures of the Nipah virus proteins. We have then used these models to design/pre-

dict inhibitory molecules that would bind them and prevent their function. We have also

analysed the different strains of the virus to identify conservation patterns of amino acids

in the proteins, which in turn informs us about the potential target sites for the drugs. The

designed/docked compounds, as well as the protein models, are freely accessible for exper-

imental validation and hypothesis testing.
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Introduction

The May 2018 outbreak of the Nipah Virus (NiV) in Kerala, India, claimed the lives of 21 of

the 23 infected people [1,2]. This zoonotic pathogen was first detected to infect humans in an

outbreak in Malaysia in 1998 [3]. Since then, the mortality rate, especially in the Indian sub-

continent has been high with Bangladesh and India reporting 72% and 86% fatalities respec-

tively [4–6]. Though the overall number of fatalities linked with each outbreak has never been

more than 105, NiV poses a deadly threat and could potentially become pandemic [7–9]. Con-

sidering its high mortality and transmission rates, NiV features in the WHO R&D Blueprint

list of epidemic threats that need immediate R&D action [4]. In the light of this, the Coalition

for Epidemic Preparedness Innovations (CEPI) has extended US$ 25 million support to Pro-

fectus BioSciences Inc. and Emergent BioSolutions Inc. for the development of vaccines

against NiV in 2018 [10]. NiV is currently classified as a Biosafety Level 4 (BSL-4) pathogen

[11] with no licensed drugs or vaccines. Ribavirin and 4-Azidocytidine have been investigated

as putative therapeutics against Paramyxoviruses[12,13]. However, the efficacy of ribavirin

against NiV is unclear [14]. During the 1998–1999 Malaysian outbreak, it showed a 36%

reduction in mortality compared to the control group [12]. The control group, however, con-

sisted of patients who were admitted prior to the availability of ribavirin and hence did not

necessarily follow the same treatment regimen which could have contributed to higher mortal-

ity. It was also administered to patients during the Kerala outbreak and as post-exposure pro-

phylaxis to medical professionals. None of the medical personnel who were administered

prophylactic ribavirin acquired the disease. The only two survivors were given ribavirin,

although it is not clear how many others also received it as 6 fatalities had been reported before

confirmation of disease etiology [1,14]. While ribavirin efficacy in vivo is uncertain, 4-azidocy-

tidine trials against Hepatitis C Virus and Dengue Virus were halted due to low efficacy and

extreme toxicity [15–17]. The drug favipiravir [18] protects against lethal doses of NiV in ham-

ster models and is in Phase II of clinical trials (for influenza, which like NiV is a member of the

Paramyxoviridae family). However, in vitro studies have shown the emergence of resistance to

this drug among members of the influenza family [19]. A monoclonal antibody, m102.4 [20]

acts against the G protein of the virus has been shown to be effective on animal models but

human trials are yet to be conducted, though preliminary indications appear promising [21].

In principle, structure based rational design of therapeutics and drugs could help combat the

disease and also address the concerns of drug resistance.

The NiV genome encodes six structural proteins viz. Glycoprotein (G), Fusion protein (F),

Matrix protein (M), Nucleoprotein (N), RNA-directed RNA polymerase (L), Phosphoprotein

(P) and three non-structural proteins named W, C and V [22]. The G protein helps in viral

attachment to host cell ephrin receptors and the F protein mediates viral fusion [23–25]. The P

protein binds to the N protein and maintains it in a soluble form and increases its specificity

towards viral RNA instead of non-specific cellular RNA. The N-P protein complex binds the

viral RNA forming the nucleocapsid [26]. This nucleocapsid coated viral RNA acts as a tem-

plate for viral polymerase L to replicate itself and the host machinery is then utilized to trans-

late its proteins [27]. After replication, the M protein homodimerizes and the dimers form

arrays at the plasma membrane. These dimer-dimer interactions induce a curvature in the

membrane that enables budding/release of new viral particles [28,29]. The non-structural pro-

teins W, V, and C act against interferon signalling to escape the host immune response [30].

All these proteins are potential targets for rational drug design. Some studies in the recent past

have targeted epitopes of these viral proteins [31,32]. However, to the best of our knowledge,

the whole proteome modeling of NiV for drug discovery has not been attempted.
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In this study, we have used the experimentally determined structures of the NiV proteins

and built models for the remaining proteins in trying to find putative lead compounds against

the virus. Four proteins (F, G, N and P proteins) have structural data available in the Protein

Data Bank (PDB) [33] with varying degrees of structural coverage (Table 1). Using homology

based methods, we have extended the structural coverage of these proteins and built models

for four of the remaining proteins using either homology modeling or threading/ab initio
methods. We designed peptide inhibitors targeting interacting sites on G protein-human

ephrin-B2 receptor, F protein trimer and M protein dimer. Binding stability of inhibitory pep-

tides was assessed with molecular dynamics (MD) simulations. In addition, to quantifying the

binding affinities, binding free energies of the designed peptide inhibitors to their respective

targets were also evaluated, based on conformations from MD simulations. We have predicted

putative drug like molecules using molecular docking that could bind to NiV proteins. The sta-

bility of a few of our top docked protein-inhibitor complexes was evaluated based on MD sim-

ulations and binding free energy calculations. Our proposed inhibitors should potentially bind

to viral proteins and hinder their function thereby preventing viral life-cycle progression.

Finally, we have compared the proteomes of Malaysian, Bangladesh and Indian NiV isolates

for sequence variations and mapped them onto their protein structures. This enables us to

delineate the consequences (if any) of sequential variation among strains on the efficacy of

proposed drugs.

Methods

Protein structure modeling

At the time of modeling, the sequence of the Indian strain was not available and so all the

modeling was carried out using the Malaysian strain (AY029768.1) [34]. From our experience,

using one strain over another would only minimally affect the computed models (Refer to the

result section on sequence variation in NiV isolates for details). Monomeric structures of the

proteins were built using the homology modeling pipeline ModPipe-2.2.0 [35,36] and their

multimeric complexes were built using MODELLER v9.17 [37,38]. The templates for homol-

ogy modeling were identified using both sequence-sequence and profile-sequence search

methods. Profile-sequence search methods improve the identification of distant homologs that

have sequence identity lower than 30%. The sequence profiles of the target proteins were gen-

erated using PSI-BLAST [36] against the UniRef90 database [39] with three iterations and an

e-value threshold of 0.001. Models were built with dynamic Coulomb (electrostatic) restraints

and were subjected to the ‘very slow’ mode of refinement with two rounds of optimization.

The quality of the generated models was assessed using the Modpipe quality score, GA341,

Discrete Optimized Protein Energy (DOPE) and Normalized DOPE scores [40]. Protein struc-

ture models were considered for further analyses only if they had a Normalized DOPE score

less than or equal to zero.

Protein domains/regions that could not be reliably modeled by MODELLER (either greater

than zero Normalized DOPE score or with less than 50% structural coverage) were rebuilt

using meta-threading and ab initio methods on the I-TASSER web server [41]. Models built

using I-TASSER were assessed with Normalized DOPE scores along with their C-scores, pre-

dicted TM scores and RMSD scores provided by the webserver [41].

Prediction of putative small molecules that can bind to NiV proteins

Docking was used to identify putative small molecules that can potentially bind and inhibit the

activities of the NiV proteins. In this exercise, NiV proteins (G, N, F, P and M proteins) that

had crystal structures or models built from templates with high identity (>90%) and high
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coverage (> 80%) were used as targets for ligand screening. The screening library consisted of

a 70% non-redundant set of 22,685 ligands constructed from ~13 million clean drug like mole-

cules of the ZINC database [42,43]. The 70% library was chosen as a practical measure to

ensure wide coverage. Further, we envisage that during experimental trials all structurally simi-

lar small molecules to our predicted hits would be tested. The binding pockets for docking on

the targets were predicted using the DEPTH server [44,45]. The parameters of DEPTH

included a minimum number of neighbourhood waters set to 4 and the probability threshold

for binding site of 0.8. Evolutionary information was also included by the server in binding

site predictions [45]. The druggability of the binding pocket was predicted using PockDrug

[46] and CavityPlus [47], but no consensus prediction could be obtained (S8 Table). Hence the

druggability of the pocket was not taken into consideration during docking. Docking was per-

formed using Autodock4 [48], and DOCK6.8 [49,50]. The target proteins were prepared for

docking by Autodock4, by adding missing polar hydrogen atoms and Gasteiger charges. The

ligand docking site, marked by affinity grids were generated using the Autogrid module of

Autodock. The centre of the grid, number of grid points in X, Y, and Z directions and separa-

tion of grid points were chosen based on the predicted binding pockets using the ADT viewer

from MGL tools [48]. The number of Genetic Algorithm runs was set to 20. The final energies

reported by Autodock4 were used for evaluation and selection of the putative leads. The target

proteins were prepared for docking by DOCK6.8 using Dock Prep tool [49] from Chimera

[51]. Missing hydrogen atoms were added to the target proteins using Chimera. Charges on

atoms of the protein were determined using AMBER. Molecular surface of the target was gen-

erated using the DMS tool from Chimera. The sphgen program from DOCK6.8 was used to

generate spheres from the molecular surface. The cluster of spheres were selected according to

the binding sites predicted by DEPTH. The grid box and grid were created by showbox and

Table 1. List of NiV proteins with their lengths, PDB codes of crystal structures along with their resolution in parenthesis, coverage of crystal structures, coverage

of models, additional coverage obtained by the models and the overall sequence coverage. In cases where models have increased the coverage over existing crystal

structures, the original coverage is in parentheses.

Sr. no. Protein Length X-ray structures (Resolution) X-ray coverage Model coverage Additional coverage % Overall coverage

1 Pre-fusion F protein 546 5EVM (3.4Å), 1WP7 (2.2Å), 3N27 (1.8 Å) 27–482 27–482 0 84

Post-fusion F protein - - 72–418 347 64

2 G protein 602 2VSM (1.8 Å),

2VWD (2.25 Å),

3D11 (2.3 Å),

3D12 (3.0 Å)

176–602 98–597 79 84 (71)

3 N protein 532 4CO6 (1.7 Ā̈) 32–371 39–414 44 72 (64)

4 P protein 709 4CO6 (1.7 Å),

4GJW (3.0 Å),

4N5B (2.2 Å),

6EB8 (2.5 Å),

6EB9 (1.9 Å)

1–38 655–709 55 37 (29)

471–578

5 M protein 352 - - 45–352 308 88

6 L protein 2244 - - 1814–2024 210 9

7 V protein 456 - - 1–38 297 65

87–243

313–414

8 W protein 450 - - 1–38 266 59

87–243

321–391

9 C protein 166 - - - - -

https://doi.org/10.1371/journal.pntd.0007419.t001
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grid programs respectively. Flexible ligand docking was performed using DOCK6.8. The final

energies reported by DOCK6.8 were used for evaluation and selection of the putative leads.

Assessing the stability of inhibitory peptides and small molecules against

the NiV proteins

One peptide inhibitor was computationally designed against each of the F and M proteins

while 2 inhibitors were designed against the G protein. Additionally, 13 small molecules were

predicted with high confidence to bind different NiV proteins. Details of the procedures for

modeling/predicting peptide/small molecule inhibitors are stated in the results section. MD

simulations were carried out in triplicates for all four predicted protein-peptide inhibitor com-

plexes. The simulations were carried out using GROMACS [52,53] with the Amber99SB-ILDN

force field [54]. Parameters for the small molecules were generated using Antechamber

[55,56]. The Amber99SB-ILDN force field has been used for the MD simulations of protein-

peptide and protein-ligand complexes extensively [57–61]. In an earlier study, we used the

same force field to study various protein-ligand interactions and validated one such purported

complex experimentally [62]. In the cases where the small molecule ligand dissociated from

the binding site, we re-simulated the system using the CHARMM27 force field [63], another

popularly used molecular mechanics package. We did the second simulation to ascertain that

binding was indeed weak. Parameters for the small molecules in the CHARMM27 simulations

were generated using SwissParam [64].

A water box whose sides were at a minimum distance of 1.2 nm from any protein atom was

used for solvating each of the systems (S15 Table). Sodium or chloride counter ions were

added to achieve charge neutrality (S15 Table). Electrostatic interactions were treated using

the particle mesh Ewald sum method [65] and LINCS [66] was used to constrain hydrogen

bond lengths. A time step of 2 fs was used for the integration. The whole system was mini-

mized for 5000 steps or till the maximum force was less than 1000 kJ/mol/nm. The system was

then heated to 300K in an NVT ensemble simulation for 100 ps using a Berendsen thermostat

[67]. The pressure was stabilized in an NPT ensemble simulation for 100 ps using a Berendsen

barostat. The systems were simulated (NPT) for a maximum of 100 ns (for protein-peptide

inhibitor complexes) or for 50 ns (for protein-small molecule inhibitor complexes) where pres-

sure was regulated using the Parrinello-Rahman barostat [68]. Structures were stored after

every 10ps. The temperature, potential energy and kinetic energy were monitored during the

simulation to check for anomalies.

Free energy of binding of the putative peptide inhibitors/small molecules provides an

important quantitative description of its efficacy. In this study, the extensive MD simulations

of protein-inhibitor complexes were post-processed to obtain binding free energy estimates

using the molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) approach

[69,70]. The MM/PBSA method employs an implicit solvation model to estimate the free

energy of binding by evaluating ensemble averaged classical interaction energies (MM) and

continuum solvation free energies (PBSA) of the protein-ligand complex conformations from

the MD trajectories. Snapshots of protein-peptide complexes were obtained at every 100 ps

from the last 50 ns of the MD trajectories, thus totalling 500 snapshots. The last 50 ns of pro-

tein-peptide inhibitors were selected for MM/PBSA treatment to ensure sampling of equilib-

rium conformations for appropriate MM/PBSA energy evaluations (S2–S5 Figs for the RMSD

and the distance between the centre of peptide and protein). The MM/PBSA calculations of

the protein-small molecule inhibitors were calculated based on the last 40 ns trajectory with

snapshots obtained after every 1000 ps, totalling to 40 snapshots. The MD snapshots were

energy minimized for 2000 steps before evaluation of interaction and solvation free energies.

Predicting and designing therapeutics against the Nipah virus
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The protein and solvent were modeled with dielectric constants of ε = 2 and ε = 80, respec-

tively. APBS suite [71] and GMXPBSA [72] were used for implicit solvent calculations. In this

study, we attempted to calculate the entropic estimate of binding using the interaction entropy

formalism [73]. However, converged entropic values with reasonable error estimates for pro-

tein-peptide trajectories could not be obtained, which is often the case when evaluating entro-

pic contributions from molecular simulations. We, therefore, neglected entropic contributions

to the binding free energies, as estimated entropy change upon binding is often negligible and

can be ignored for relative binding free energies calculations [74,75]. The enthalpies of binding

obtained from MM/PBSA calculations are reported as binding energies for the protein-peptide

complexes.

Mapping strain variants onto structure

Protein sequences of 15 different NiV isolates, 7 from Malaysia (AY029768.1,A J564621.1,

AJ627196.1, AY029767.1, AJ564622.1, AJ564623.1, AF212302.2) [34], 3 from Bangladesh

(AY988601.1, JN808857.1, AY988601.1) [76] and 5 from India (MH523641.1, MH523642.1,

MH396625.1, MH523640.1, FJ513078.1) [77] were retrieved from their translated genomes

deposited in the NCBI nucleotide database [78] and were used to identify sequence variations

in proteins. We also verified that the translated protein sequences of the Malaysian strain

matched with those of the protein sequences deposited in SwissProt [79]. Multiple sequence

alignments of the sequences obtained from the 15 isolates were performed with MUSCLE [80].

Positions with amino acid variations were mapped onto the structures. Amino acid variations

within 5Å at inhibitor binding sites were identified.

Results

Structural coverage of the NiV proteome

Homology modeling the Nipah proteome. In this study, we first focused on characteriz-

ing the structures of the NiV proteins. Partial structures for 4 (F, G, N and P protein) of the 9

NiV proteins are available in the PDB (Table 1). Computationally, we attempted to extend the

structural coverage of these 4 proteins and to build models for the remaining 5 proteins using

homology modeling (with MODELLER), ab initio modeling and threading (with I-TASSER).

Model accuracies were carefully scrutinized before attempting to design/predict inhibitors

against all possible proteins in the proteome. In this section, we only present the results of

homology modeling as all models built using I-TASSER resulted in structures that were not

favourably assessed (Normalized DOPE > 0) (S1 Table)

Multiple models were constructed for each of the proteins using all available templates. All

proteins, except C, had at least one model with a normalized DOPE score of less than or equal

to zero. All models built for proteins with existing X-ray structure conferred additional

sequence coverage except for the F protein (Table 1). The structural coverage of the N, P and

G proteins increased by 8–13% after modeling (Table 1). Overall, we increased the structural

coverage of the NiV proteome by 90%, from ~23% (1364 residues) to ~43% (2623 residues).

Modeling the post-fusion F protein. For NiV to enter a host’s cell, its G protein binds the

host ephrin receptor and the F protein is instrumental in fusing the viral envelope with the

host cell membrane [24]. The F protein undergoes a conformational change from the pre-

fusion to the post-fusion state triggered by the binding of the G protein to the ephrin receptor.

These conformational changes are characteristic of class I viral fusion proteins [24,81–85]. The

structure of only the pre-fusion state of the NiV F protein has been determined experimentally

(PDB id: 5EVM). We modeled the post-fusion state using the structure of the human Parain-

fluenza Virus 3 (PDB id: 1ZTM) as a template since it is also a class I fusion protein. Though
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the NiV and human parainfluenza virus fusion proteins are only 26.4% identical in sequence,

their pre-fusion conformations take on similar folds with a structure overlap of 67% and an

RMSD of 0.2 nm (as calculated using CLICK [86]). The rationale for modeling the post-fusion

state of NiV using the Parainfluenza virus template is further corroborated by reports in litera-

ture of the common mode of conformational change in post-fusion states of class I viral fusion

proteins [24,87–91] despite their low sequence identity (S1 Fig) leading to the formation of a

6-helix bundle. The target-template alignment was done using CLUSTALW-1.7, and the

model was constructed using MODELLER v9.17. It has previously been shown that Hendra

virus (HeV) and NiV infection can be inhibited by peptides derived from the heptad repeat

regions of the human Parainfluenza Virus 3 [92]. This occurs as a result of the inhibition of 6

helix bundle formation, due to interactions between the native heptad repeat regions of NiV/

Hev and peptide heptad repeats derived from Parainfluenza virus 3. The interaction of the

heptad repeats of the human Parainfluenza Virus 3 with those of NiV/HeV along with their

sequence conservation (S1 Fig) could be suggestive of similarities in the post-fusion structure

of these viruses, supporting our choice of template for modeling the post-fusion conformation

of the F protein.

Modeling the M protein dimer. The M protein in NiV is crucial in initiating the budding

of the virus. This protein homodimerizes before homo-oligomerizing and forming the viral

matrix [29]. A monomer of M protein was modeled using the HeV M protein (PDB id: 6BK6)

which had a sequence identity of 94% (refer to Methods Section on protein structure modeling

for details). Utilizing this monomeric structure and the crystal structure (PDB id: 4G1G) of a

dimer of another Paramyxovirus, the Newcastle Disease Virus as templates, a homology model

of M protein dimer was built. The target-template (Newcastle virus as template) sequence

identity was 19%, going up to 27% at the interface (29 identical residues out of 70). The model

was energy minimized with GROMACS using the Amber99SB-ILDN force field [54] and eval-

uated using our empirical knowledge based scoring scheme, PIZSA [93]. PIZSA has been

benchmarked previously for its efficacy in identifying true binding interfaces [93,94]. The

dimer had a PIZSA Z score of 1.69, well above the binding threshold of 1.50 (for the distance

threshold of 4 Å). We also attempted to build several host-pathogen protein complexes but

none of the models were evaluated favourably by FoldX [95]/PIZSA (S1 Text).

Design and stability of protein peptide inhibitor complexes

Peptide inhibitor of the post fusion F protein. Protein F contains two helical domains

identified as HRA and HRB. The HRA domain forms coiled-coil trimer that associates with

three helices of the HRB domain to form a 6-helix coiled-coil bundle (sometimes referred to as

6HB) [96] (Fig 1), which is essential for its fusion with the host membrane. One strategy to

inhibit the formation of this 6-helix bundle hexamer (which in turn would prevent the fusion

of the host and viral membranes), is to design a peptide that would competitively bind to HRA

domains, preventing its binding to the HRB helices. The 6-helix bundle forming regions of

HRA and HRB, have heptad repeat sequence pattern [97] of a-b-c-d-e-f-g, such that hydropho-

bic amino acids occupy positions a/d and charged amino acids occupy e/g positions (Fig 1A

and 1B). An amino acid sequence of the inhibitor (IKKSKSYISKAQELL) was designed to

mimic the HRB domain (LQQSKDYIKEAQRLL) such that all hydrophobic amino acids

occupy a/d heptad positions (Fig 1C and 1D). Further, the inhibitor sequence was designed to

ensure that the atomic density in the core was optimized, similar to that observed in other

coiled-coil proteins. Effectively, this meant changing the N terminal Leu in HRB to Ile in the

inhibitor. Other amino acid replacements were done to ensure salt bridging between the inhib-

itor and the HRA domain (Fig 1D). Amino acids at non a/d heptad positions of the inhibitor
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that are not involved in interactions with the HRA domains were replaced by Lys. This is to

introduce interactions between these Lys residues of the inhibitor with the Glu residues of the

HRA domain (Fig 1D). Lys was chosen in preference to Arg as Lys has 4 aliphatic carbons in

its side chain, which is one more than in Arg. An extra carbon atom at the e/g heptad position

enhances the stability of the hydrophobic core formed by the a/d positions. All other positions

without any interacting partner on the HRA domain were replaced by Ser, to increase solvent

interactions. The thirteenth residue of the inhibitor was changed from Arg to Glu to increase

interactions with Lys on the HRA domain. The heptad repeat guided alignment of the inhibi-

tor and 6-helix bundle domain of the HRB was used to structurally model the inhibitor using

MODELLER v9.17.

Peptide inhibitor of the M protein dimer. The binding sites on a monomer of M protein

were detected with DEPTH [45] using default parameters. The predicted binding site that

overlapped with the interface of the M protein dimer was used to target the dimerization pro-

cess. The residues (RRTAGSTEK) of one monomer that interact with the predicted binding

site of the other monomer at the dimer interface were modified by manual intervention. The

last two amino acids (Glu-Lys) of the dimer interface sequence were modified to Ile-Asn such

that they make specific interactions with the M protein. A 2 ns simulation with the unmodified

sequence showed high fluctuations due to bulky charged groups at the C terminus. The C ter-

minal Lys of the peptide is in close proximity to Arg 197 on the M protein that leads to charge

Fig 1. A) Heptad repeat representation of the 6-HB domain formed by HRA (purple circles) and HRB domain (yellow circles). Helices are represented as circles. Amino

acid heptad repeat positions are labelled with letters a through to g with hydrophobic amino acids occupying a and d positions. B) Heptad repeat assignment of HRA and

HRB domain helices along with the designed inhibitor. Inhibitor heptad positions were assigned identical to the HRB domain. The hydrophobic core of residues in the a

and d positions are marked with *. C) Heptad repeat representation of HRA (purple circles) domain and bound inhibitor (pink circles) replacing HRB domain. D) Salt

bridges (green dotted lines) and interactions (grey bar) between the residues of the inhibitor and the HRA domain.

https://doi.org/10.1371/journal.pntd.0007419.g001
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repulsion causing instability of the unmodified construct. Hence Lys was modified to Asn to

reduce the size and repulsive forces. The penultimate residue, Glu was modified to Ile to

improve hydrophobic contacts with its neighbours on the M protein. The modified peptide

RRTAGSTIN was used as a putative M protein dimerization inhibitor for further analysis. Pre-

vention of M protein dimerization could potentially prevent the virus from budding out of

cells.

Peptide inhibitors of the G protein-ephrin interaction. The NiV infection is initiated by

the binding of the G protein to the ephrin receptors on the host cell [98] (PDB id: 2VSM).

Inhibiting this protein-protein interaction could prevent viral entry. In this study, we have

tested the feasibility of using 2 peptides to inhibit the G protein–ephrin interaction. One pep-

tide (FSPNLW) is the part of the ephrin-B2 receptor that interacts with the G protein [99]. The

other peptide (LAPHPSQ) is a part of a monoclonal antibody, m102.3, that binds [21] to both

NiV and HeV. A crystal structure of the antibody bound to HeVs G protein (PDB id: 6CMG)

was used as a template (79% target-template sequence identity) to construct the antibody-NiV

G protein complex. 3D structural models of the speculated G protein—peptide interactions

were also constructed using MODELLER v9.17.

Computational prediction of the stability of the protein-inhibitor complexes. Three

independent MD simulations of 100 ns each were performed to assess the stability of each of

the four protein-peptide complexes. The peptide inhibitors designed against F and M proteins

bind a hydrophilic pocket while the binding interactions of the G protein to its inhibitor are

predominantly hydrophobic. For each of the trajectories, the total potential energy, the dis-

tance between the centre of the protein and the peptide, RMSD and RMSF of the peptide after

superimposition of protein were analysed and found to be consistent across independent runs

(S2–S5 Figs and S2–S7 Tables). The F and M-peptide complexes are stabilized by hydrogen

bonds. A few of them (3 and 2 hydrogen bonds in F and M complexes respectively) (S3 and S5

Tables) are retained on average in over 50% of the trajectories. Hydrogen bond analysis was

not done for the G protein–peptide inhibitor complexes since their binding is mediated mainly

by hydrophobic interactions and there were no stable hydrogen bonds. The protein-peptide

complex was stable during the simulations as can be inferred by the peptide RMSDs, peptide

RMSFs and the distances between the protein and peptide. The distance of the centre of the

protein to that of the peptide fluctuated with a standard deviation of 0.03–0.09 nm (S2, S4, S6

and S7 Tables and S2–S5 Figs) around the average distance. While these measures are all indic-

ative of tight binding, we used the trajectories to determine the binding energy of association

using the MM/PBSA protocol. The inhibitors of the F and M proteins bind tightly (~110 kJ/

mol) to their targets (S2, S4 and S6 and S7 Tables). However, in case of G protein inhibitors,

the inhibitors FSPNLW and LAPHPSQ bind the G protein with ~-100 and ~-60 kJ/mol,

respectively, suggesting that ephrin-B2 receptor based design binds 40 kJ/mol stronger. This

trend is also reflected in the RMSD/RMSF values (S4 and S5 Figs).

Prediction of putative small molecules that can bind to NiV proteins

The crystal structures of the G, N, P and F proteins were used in docking studies to find plausi-

ble small molecule inhibitors. A homology model of the M protein was also included in the

docking exercise as it was based on a template with high (94%) sequence identity and coverage

(88%). We were conservative with the docking approach and did not use our models of the

structures of the W and V proteins in this exercise. Even though V and W proteins share a

large portion of their sequence with P (N-terminal 407 amino acids), there was no crystal

structure of P corresponding to the identical regions of V and W proteins (except residue no

1–38, which is too small a stretch for binding site prediction). The V and W protein models
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cover ~60% of the whole protein length (297 and 266 residues of a total length of 456 and 450

for V and W respectively) in discontiguous fragments, sometimes with target-template

sequence identities of ~30%. (http://cospi.iiserpune.ac.in/Nipah/).

First, we predicted the plausible binding pockets on each of the proteins using the DEPTH

server, that we had earlier benchmarked for binding site prediction accuracy [45]. A total of 12

binding pockets were predicted in G (2), N (4), P (2), F (1) and M (3) proteins (S8 Table). Two

of the predicted binding pockets, one on the M protein and another on the G protein, are on

the dimer interface and host protein (ephrin receptor) binding interface respectively. As men-

tioned in Methods section previously, these sites are important drug targets. All 12 binding

sites were used to screen 22685 drug like molecules from the 70% non-redundant ZINC data-

base of clean drug like molecules using two different docking tools, DOCK6.8 and Autodock4.

The docking tools provide a docking energy score that was used to select possible high affinity

binders. In the absence of an objective measure or threshold to determine strong binders, we

chose the top 150 best scoring ligands for each of the pockets from both the docking tools. We

then compared the two lists for common molecules. 146 molecules were identified by both

Dock6.8 and Autodock4 for G (9), N (56), P (45), F (10) and M [46] proteins (S9 Table). The

grid scores for the predicted complexes range between -71 to -32 units for DOCK6.8. The cor-

responding Autodock4 binding free energies range between -14 kcal/mol to -6 kcal/mol (S9

Table).

To corroborate our predictions, we measured the RMSD between the same ligand [in the

common list] as docked by the two different tools (top 5 poses predicted by Autodock4 were

compared to the top pose predicted by DOCK6.8), after superimposing the proteins. This mea-

sure is referred to as RMSD_lig. 15 unique drug like molecules had an RMSD_lig less than

0.15 nm between their docked poses.

In addition to conformational similarity, we also assessed the similarities in ligand-protein

interactions, primarily hydrogen bonding (S10 Table). Further, the hydrogen bonding interac-

tions were ~50% conserved in 9 of these complexes (with RMSD_lig < 0.15 nm). In a few

instances, though the hydrogen bonding was not precisely the same, visual inspection of the

complexes suggests that these bonds could be formed with small conformational changes.

Interestingly, a known drug (ZINC04829362), an antiasthmatic and antipsoriatic among

other uses [100], binds to a pocket of the N protein with RMSD_lig of 0.085 nm. Another drug

(ZINC12362922) used in the treatment of depression and Parkinson’s disease [101] also binds

the N protein with RMSD_lig < 0.15 nm.

10 drug-like molecules docked to N (5), P (4) and M (1) had an RMSD_lig of less than 0.15

nm between their docked poses and were in the top 100 scoring models as predicted by both

the docking tools (S9 Fig). The molecule with the best RMSD_lig (0.074 nm) from our screen-

ing, ZINC94258558 (Fig 2A), binds the N protein (S9 Table). There are however 3 molecules

(S9 Table) that are of interest despite their relatively large RMSD_lig values. The molecule

ZINC91252717 is predicted as the best binder to the P protein by Autodock4 (binding energy

of -14 kcal/mol) and the second best binder by DOCK6.8 (grid score of -71) (Fig 2B). These

scores were among the best achieved during this docking exercise. We selected ZINC00814199

that was docked onto the M protein and was similar to ZINC01725633, which in turn formed

14 and 8 hydrogen bonds with Autodock4 and Dock6.8 respectively. ZINC00814199 was

within the top 14 ranked compounds by both methods. Lastly, the hydrophobic molecule

ZINC63411510 is predicted to bind the G protein on its ephrin-B2 binding interface. Though

both docking methods identified this site, the docking poses were different (RMSD_lig of 0.8

nm). We hypothesize that the hydrophobic nature of the binding pocket and its size could con-

tribute to the difference in docked poses. Note that in our list there are 3 ligands

(ZINC12362922, ZINC00814199 and ZINC73641145) that (S11 Table) bind different pockets
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on the same protein or pockets on different proteins. The ligand binding pockets (PN4 and

PM2) that bind ZINC12362922 and ZINC00814199 have a similar amino acid composition

containing Lys/Arg residues, Tyr residue and Leu/Val residues. The two ligands have terminal

oxygens that interact with positively charged residues of the binding pocket. Another ligand

ZINC73641145 binds to two different pockets on N protein (PN5 and PN4), these pockets are

spatially close to one another and the ligand occupies the region between the two pockets in a

similar orientation.

Computational prediction of the stability of the protein-inhibitor complexes. To assess

the stability of the 13 protein-small molecule ligand complexes, we carried out three indepen-

dent MD simulations of 50 ns each, using the AMBER99SB-ILDN force field (S12 and S13

Tables). 10 of the 13 ligands have RMSD_lig values of less than 0.15 nm (S9 Table) and were in

the top 100 scoring models as predicted by both the docking tools. For these ligands the simu-

lations were carried out starting with the DOCK6.8 predicted pose. For each of the trajectories,

the distance of the centre of the small molecule ligand to the centre of the binding pocket

(based on the starting structure after NPT equilibration) was monitored (S6 and S7 Figs). The

triplicate MD simulations were terminated if this distance in 2 of the 3 trajectories exceeded 1

nm from its starting value and these complexes were then re-simulated using the CHARMM27

force field (this was restricted to cases where RMSD_lig < 0.15 nm). 5 out of 10 cases were re-

simulated as a consequence. For the 3 ligands with RMSD_lig> 0.15 nm simulations were car-

ried out starting with both the DOCK6.8 and Autodock4 predicted poses.

We computed binding energies for the protein-ligand complexes using MM/PBSA (as men-

tioned in Methods section on accessing the stability of inhibitory peptides and small molecules

against the NiV proteins). 9 of the binding energies were computed to be negative in at least

one of the replicates (3 for N protein, 4 for P protein, 1 for G protein and 1 for M protein). In

one case (P protein-ZINC7262705 ligand), the binding energy with the CHARMM force field

(after the AMBER simulation was terminated) was computed to have positive binding free

Fig 2. The docked poses of ZINC94258558 bound to N protein (A) and ZINC91252717 bound to P protein (B) as predicted by Autodock4 (green sticks with surface

mesh) and Dock6.8 (lilac sticks with surface mesh). The protein is represented in white ribbons with the residues interacting with ligand shown in stick representation.

Hydrogen bonds (only displayed in A) are shown as dashed lines.

https://doi.org/10.1371/journal.pntd.0007419.g002

Predicting and designing therapeutics against the Nipah virus

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0007419 December 12, 2019 11 / 23

https://doi.org/10.1371/journal.pntd.0007419.g002
https://doi.org/10.1371/journal.pntd.0007419


energy. In 3 cases (1 for N, P and M protein each) the ligand did not remain bound to the pro-

tein in either CHARMM or AMBER simulations (S12 and S13 Tables).

The two known drugs, ZINC04829362 and ZINC12362922 remained bound to the N pro-

tein in all 3 replicates with negative binding energies in at least 2 of the trajectories. For the

important druggable site on the G protein (that recognizes the ephrin receptor on the host),

the ligand remained bound in all 3 replicates when starting with the Autodock4 bound pose

with negative binding energies.

Sequence variations in NiV isolates

At the time of modeling the NiV proteins, the sequence data from the 2018 outbreak was not

available [77]. Hence, all the modeling was done by considering that sequence of the Malaysian

strain. We rationalized that as the Malaysian and Bangladeshi/Indian strains shared a high

degree (79–99%) of sequence similarity, structural models using sequences of one strain would

be applicable to the other, which is the basis of comparative modeling. However, we wanted to

assess whether the efficacy of the designed/proposed therapeutic molecules would be affected

by observed sequence variations between the different strains (7 Malaysian, 3 Bangladeshi and

5 Indian) of NiV.

The amino acid variations (S14 Table) were mapped onto their respective structures. All

protein sequences are of equal length except the V protein whose length varies between the dif-

ferent strains. The V and W protein have the least sequence conservation (~79%) while the M

protein is the most conserved (98.6%). A general observation is that the Bangladeshi and

Indian strains are more similar to one another than they are to the Malaysian sequences (S8

Fig).

We mapped the sequence variations onto all the protein structures/models that were used

for peptide inhibitor design and drug docking. No variations in the sequence were found close

to the peptide inhibitor binding sites on the F, M and G proteins. We found 1 (Lys236Arg), 2

(Asp188Glu, Gln211Arg), 1 (Asp252Gly) and 1 (Ile331Val) variations close to the docking

sites on G, N, F and M protein respectively. All the mutations (except for Asp252Gly on F pro-

tein) on the binding site were conservative (similar physico-chemical properties and BLO-

SUM62 score> = 0) and hence we conjectured would not affect the interactions between the

protein and the inhibitor. Though there is a non-conservative change (Asp252Gly) in one of

the drug/inhibitor binding sites of the F protein, this position is not involved in H-bonding

with the ligand. Hence the binding of the inhibitor to the protein is unlikely to be affected.

Among the top 13 shortlisted ligands, ZINC04829362 and ZINC12362922 bound to N protein

and ZINC63411510 bound to G protein were within 0.5 nm of the amino acids that showed

variations. No single sequence variant we have studied appears to show that the drug binding

would be directly affected.

Web service and database

We have archived all structures/models of NiV proteins and their inhibitor bound complexes

in a consolidated database at http://cospi.iiserpune.ac.in/Nipah. The data at this site lists details

of modeling, docking features and multiple sequence alignments (between the various NiV

strains) such as template PDB code, target-template sequence identity, model quality assess-

ment score, docking energies, docking rank and the RMSD_lig between the docking poses.

Discussions

NiV is a deadly zoonotic virus with a mortality rate of 72% and 86% in Bangladesh and India

respectively. There are no approved drugs/therapeutics against NiV. The overarching aim of

Predicting and designing therapeutics against the Nipah virus

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0007419 December 12, 2019 12 / 23

http://cospi.iiserpune.ac.in/Nipah
https://doi.org/10.1371/journal.pntd.0007419


this study is to computationally design inhibitors and predict small molecule drugs against

NiV proteins. To design/predict therapeutic molecules to act against NiV, we characterized all

of its proteins. As a part of this effort, we constructed partial models of 5 NiV proteins viz., M,

L, V, W proteins along with the post fusion conformation of the F protein. The structure of the

post-fusion conformation of the F protein is modeled for the first time in this study. Our

model is based on the post-fusion structures of another class I fusion protein from Human

Parainfluenza virus 3.

Our efforts have increased the coverage of existing structures of the G, N and P proteins (by

13%, 8% and 8% respectively) by modeling a fraction of their unresolved residues. No reliable

models could be generated for the C protein. Effectively, we doubled the number of amino

acids in the NiV proteome that were structurally characterized. While our aim is to use these

models to predict/design inhibitors, we believe that many of our models are by themselves

quite insightful. They could serve as templates for future structure-guided drug designing

efforts against members of the Paramyxoviridae family. We attempted to build complexes of

the viral and host protein (host cathepsin-L with NiV F protein and host AP3-B1 with NiV M

protein) to target the interactions for inhibitor design. However, we were unsuccessful in mak-

ing reliable models of host-pathogen protein-protein interaction complexes. With improve-

ments to protein-protein docking methods, the quality of such models of complexes could be

improved, which in turn would help in better targeting host-viral interactions.

We next used these models to design 4 peptide inhibitors against the F, M and G proteins.

The inhibitor against F protein would putatively prevent the pre to post fusion transition of

the F protein, a crucial step for viral entry. Our model of the post fusion conformation of the F

protein was crucial in designing this inhibitor. Another inhibitor against the M protein was

designed such that it would prevent the dimerization of the protein, hence preventing the bud-

ding process. The two inhibitors against the G proteins were selected such that they bind to

the ephrin receptor binding pocket, preventing viral attachment to the host cell. The peptides

here mimic the ephrin-B2 protein and an antibody (m102.3) that are bound at the same site.

We conjectured that these peptides would competitively inhibit the G protein from binding

the host ephrin receptors. All of these protein-peptide systems were subjected to triplicate runs

of 100 ns MD simulations to assess interaction strengths. The distance of the centre of the

inhibitor and the peptide fluctuates with a standard deviation of 0.03–0.09 nm from the mean

distance, indicative of the inhibitor remaining bound in the binding pocket. The inhibitors

against the F and M proteins also had stable hydrogen bond associations in the MD trajecto-

ries. Binding affinity calculations suggest that three of the designed putative inhibitors bind

tightly (~100 kJ/mol) to their targets, making them promising leads against NiV proteins.

We screened a set of drug like molecules in a docking exercise to identify potential small

molecule inhibitors of NiV. The screen consisted of 22685 compounds of the 70% non-redun-

dant set of clean drug like molecules of the ZINC library. The docking onto the NiV proteins

was done using two different docking programs, Autodock4 and Dock6.8. Empirically, we

chose the top 150 ligands from each of the two methods and selected those that were common

between them. This resulted in 146 compounds that bound the G, N, P, F and M proteins of

NiV. As a more stringent test, we whittled down this list to only include those molecules that

were docked in similar poses (empirically chosen RMSD of 0.15 nm or smaller) on the same

binding site and were in the top 100 scored models by both docking schemes. Hence, we pre-

dicted 10 compounds that would inhibit the N (5), P (4) and M (1) proteins of NiV. In addition

we also included 3 drugs to the list that did not clear the criteria explained above. These drugs

include one that binds the G protein on its ephrin binding interface and two others which

bind to P and M proteins. The 13 ligand bound protein complexes were subjected to triplicate

MD simulations (50 ns each) to gauge the stability of the association. In 9 of the complexes, at
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least one of the trajectories was evaluated to have favourable (negative) binding energy. While

the simulations and the energy calculations that follow are not to be construed as indicators of

binding strength, they do provide the same general trends and give pointers and/or boost our

confidence in the binding efficacy of the ligand-protein complex. Only 3 of the 13 ligands con-

sistently moved away from the original predicted binding pocket even when the simulations

were repeated using a different force field. In one other case, though the protein-ligand com-

plex remained conformationally stable throughout the course of the triplicate trajectories, our

energy estimates of this interaction were unfavourable (positive energy). In the absence of

experimental validation, which we seek to do next, these MD simulations serve as indicators of

the viability of the ligands to bind the viral proteins.

Of the 13 ligands, two bind in interface regions, one in the M protein dimer interface and

another on the ephrin receptor recognition site of protein G. When not bound to these two

sites, the ability of the ligands to functionally impair the virus would only be known with

experimental testing. The most important aspect of the docking study is that the molecular

screen consists of known drugs or drug like compounds. The implication is that a few of our

proposed inhibitors could be readily tested and repurposed. For instance, we have identified

Cyclopent-1-ene-1,2-dicarboxylic acid (ZINC04829362) as an inhibitor of the NiV N protein.

This compound is a known drug prescribed for antiasthmatic and antipsoriatic among other

disorders. Another example is Bicyclo[2.2.1]hepta-2,5-diene-2,3-dicarboxylic acid

(ZINC12362922) that we propose also inhibits the N protein, is a drug prescribed against

depression and Parkinson’s disease. Both these ligands have a negative binding free energy in

at least 2 of the 3 replicates.

In all our computational predictions, an independent scoring scheme(s) was used to evalu-

ate results. MD simulations were always carried out in triplicate and sometimes using different

force fields. In short, we have taken care to ensure cross validation of our computations to

whatever extent practically possible. We cannot overemphasize the importance of these

computational predictions, especially for swift acting potent viruses as NiV where mortality

rates are high.

Finally, we assessed how effective our proposed inhibitors would be against different strains

of the virus and assess the risk of the virus getting drug resistant. For this, we studied 3 Bangla-

deshi, 7 Malaysian and 5 Indian strains and inferred the variations between the various strains

from their multiple sequences alignment. Further, we investigated whether such changes

would affect inhibitor binding. Here, we narrowed the changes only to those residues that

were in direct contact (< 0.5 nm) from the inhibitors. We precluded the possibility of allosteric

interactions. None of the residues contacting the peptide inhibitors showed any variations in

their sequence. Only 5 residue positions that were involved in binding the drug like inhibitors

were changed between the different strains. 4 of these changes are conservative substitutions

where the nature of the mutated residue is not deemed to change the binding property of the

protein to its inhibitor. Only 1 amino acid change of Asp252Gly of the F protein is a non-con-

servative change, however the Asp is not involved in hydrogen bonding with the ligand. We

conclude that it is likely that the proposed inhibitors would be potent against all strains of NiV

and other related zoonotic viruses that pose a serious epidemic threat. Computational

approaches can help identify/design inhibitors that could be rapidly tested or even deployed as

they may be drugs previously licensed for other uses. Our study also has connotations for

related viruses such as HeV and other Paramyxoviruses. Importantly, our models and the web

pages we have created could be modified to serve as a portal to study the epidemiology of the

virus should there be further outbreaks.
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dynamics simulations carried out using AMBER and CHARMM force fields for 10 ligands

predicted against N, P and M proteins. The binding free energies were not calculated

(depicted by -) when the ligand left the binding site in at least 2 out of 3 replicates. CHARMM

was only used to run molecular dynamics simulations when the ligand left the binding pocket

in AMBER simulations.

(DOCX)

S13 Table. Binding free energy as predicted using MM/PBSA calculations from molecular

dynamics simulations carried out using AMBER force fields for 3 ligands predicted against

G, M and P proteins for both the predicted DOCK6.8 and Autodock4 poses. The binding

free energies were not calculated (depicted by -) when the ligand left the binding site in at least

2 out of 3 replicates.

(DOCX)

S14 Table. The sequence variations between the 15 NiV strains. The mutations are men-

tioned by the residue number followed by the amino acids present in different strains.

(DOCX)

S15 Table. List containing the number of water molecules and counter ions used during

MD simulations.

(DOCX)

S1 Fig. Conformational change of the human Parainfluenza virus 3 (HPIV3) fusion pro-

tein and its sequence conservation with Nipah virus (NiV) and Hendra virus (HeV). The

fusion protein undergoes a large conformational change from the pre-fusion state (A, PDB id:

6MJZ) to post-fusion state (B, PDB id: 1ZTM) to form the 6 helix bundle by interactions

between the HRA domain (Salmon ribbon) and HRB domain (Cyan ribbon) heptad repeat

regions. (C) Alignment of the heptad repeat regions between fusion protein sequences of the

three viruses (Uniprot ids—HPIV3: P06828, NiV: Q9IH63, HeV: O89342). The alignment is

color coded based on ClustalX.

(TIF)

S2 Fig. A) Energy of the F protein-inhibitor complex during 100 ns of MD simulation B) Dis-

tance of the center of the inhibitor from the center of the F protein during the simulation C)

Number of hydrogen bonds between the F protein-inhibitor complex during the simulations

D) Plot showing the formation of hydrogen bonds between inhibitor and F protein over 100

ns trajectories. Y axis shows the 11 different hydrogen bonds identified as numbered index (S3

Table). X axis labels time instant during simulation. Each rectangular color box represents the

presence of hydrogen bond for a particular run. E) Root mean square deviation (RMSD) # of

the designed inhibitor during the simulations F) Root mean square fluctuation (RMSF) # of

the inhibitory peptide during the simulations. Each of the simulations were run in triplicate,
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with each run being color coded as red, green and blue. (# RMSD and RMSF were calculated

for the inhibitor by superimposing the protein molecule)

(TIF)

S3 Fig. A) Energy of the M protein-inhibitor complex during 100 ns of MD simulation B) Dis-

tance of the center of the inhibitor from the center of the M protein during the simulation C)

Number of hydrogen bonds between the M protein-inhibitor complex during the simulations

D) Plot showing the formation of hydrogen bonds between inhibitor and M protein over 100

ns trajectories. Y axis shows the 8 different hydrogen bonds identified as numbered index (S5

Table). X axis labels time instant during simulation. Each rectangular color box represents the

presence of hydrogen bond for a particular run. E) RMSD # of the designed inhibitor during

the simulations F) RMSF # of the inhibitory peptide during the simulations. Each of the simu-

lations were run in triplicate, with each run being color coded as red, green and blue. (#

RMSD and RMSF were calculated for the inhibitor by superimposing the protein molecule)

(TIF)

S4 Fig. A) Energy of the G protein-FSPNLW inhibitor complex during 100 ns of MD simula-

tion B) Distance of the center of the inhibitor from the center of the G protein during the sim-

ulation C) RMSD # of the designed inhibitor during the simulation D) RMSF # of the

inhibitory peptide during the simulation. Each of the simulation were run in triplicate, each

run being color coded as red, green and blue. (# RMSD and RMSF were calculated for the

inhibitor by superimposing the protein molecule)

(TIF)

S5 Fig. A) Energy of the G protein-LAPHPSQ inhibitor complex during 100 ns of MD simula-

tion B) Distance of the center of the inhibitor from the center of the G protein during the sim-

ulation C) RMSD # of the designed inhibitor during the simulation D) RMSF # of the

inhibitory peptide during the simulation. Each of the simulation were run in triplicate, each

run being color coded as red, green and blue. (# RMSD and RMSF were calculated for the

inhibitor by superimposing the protein molecule)

(TIF)

S6 Fig. Distance of the centre of the ligand from the centre of the binding site (calculated

based on the residues within 5Å of the first snapshot after NPT equilibration) during the

simulation. The identity of the ligand, force field and docking strategy used and the target pro-

tein has been indicated above each plot.

(TIF)

S7 Fig. Distance of the centre of the ligand from the centre of the binding site (calculated

based on the residues within 5Å of the first snapshot after NPT equilibration) during the

simulation. The identity of the ligand, force field and docking strategy used and the target pro-

tein has been indicated above each plot.

(TIF)

S8 Fig. Heatmap showing the sequence conservation between the different strains of NiV for

(A) C protein (B) F protein (C) G protein (D) L protein (E) M protein (F) N protein (G) P pro-

tein (H) V protein (I) W protein. The color gradient represents sequence conservation where

white indicates 100% conservation and redder shades indicate lesser sequence conservation.

The labelling convention is Protein_Country_Genome-accession code.

(TIF)
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S9 Fig. Structure of 12 molecules that were predicted as top hits in the study.

(TIF)

S1 Text. Modeling of host-pathogen interactions.

(DOCX)
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