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Background: Korean Red Ginseng (KRG) is a traditional herb that has several beneficial properties
including anti-aging, anti-inflammatory, and autophagy regulatory effects. However, the mechanisms of
these effects are not well understood. In this report, the underlying mechanisms of anti-inflammatory
and autophagy-promoting effects were investigated in aged mice treated with KRG-water extract
(WE) over a long period.
Methods: The mechanisms of anti-inflammatory and autophagy-promoting activities of KRG-WE were
evaluated in kidney, lung, liver, stomach, and colon of aged mice using semi-quantitative reverse tran-
scription polymerase chain reaction (RT-PCR), quantitative RT-PCR (qRT-PCR), and western blot analysis.
anti-inflammatory effect Results: KRG-WE significantly suppressed the mRNA expression levels of inflammation-related genes
autophagy such as interleukin (IL)-1, IL-8, tumor necrosis factor (TNF)-¢, monocyte chemoattractant protein-1
aging (MCP-1), and IL-6 in kidney, lung, liver, stomach, and colon of the aged mice. Furthermore, KRG-WE
downregulated the expression of transcription factors and their protein levels associated with inflam-
mation in lung and kidney of aged mice. KRG-WE also increased the expression of autophagy-related
genes and their protein levels in colon, liver, and stomach.
Conclusion: The results suggest that KRG can suppress inflammatory responses and recover autophagy
activity in aged mice.
© 2021 The Korean Society of Ginseng. Publishing services by Elsevier B.V. This is an open access article
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction with age-dependent diseases show a chronic inflammatory state

such as increase of inflammatory cells and higher pro-

Inflammation in aging is associated with an increased rate of
various degenerative diseases including Parkinson’s disease, oste-
oarthritis, Huntington’s disease, and Alzheimer’s disease [1—3].
These disorders are associated with chronic inflammation. Patients

Abbreviations: KRG, Korean Red Ginseng; RT-PCR, reverse transcription poly-
merase chain reaction; TNF-¢, tumor necrosis factor-o; IL, interleukin; NF-kB, nu-
clear factor-kappa B; AP-1, activator protein-1; ATG, autophagy-related gene; MCP-
1, monocyte chemoattractant protein-1.
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inflammatory cytokine levels [4,5]. Age-related disorders in tis-
sues are harmful for important organs such as kidney, lung, and
liver. The transcriptional ability becomes dysfunctional during ag-
ing. In particular, aging regulates epigenetic modifications, causing
changes in gene expression [6,7].

Autophagy is a cytoprotective mechanism that induces degra-
dation and recycling of cytoplasmic organelles to provide new
nutrients and energy [8,9]. A dysfunction in autophagic activity due
to age contributes to accumulation of damaged intracellular or-
ganelles that result in imbalance of cellular homeostasis and loss of
function in aging [10,11], which can mediate organ damage
affecting the liver, lung, kidney, and nervous system [12,13].
Furthermore, defective autophagy is associated with common age-
related diseases [14,15].

Panax ginseng is a traditional herb used as medicine in Korea
and China for thousands of years [16,17]. In previous studies, Panax
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ginseng was reported to exert numerous beneficial effects such as
anti-diabetic, anti-aging, anti-inflammatory, anti-tumor, and
autophagy regulation [18—22]. Because chronic inflammation and
decrease of autophagic activity are associated with aging, the ef-
fects of Panax ginseng on aging were examined in the present study
[23,24]. Therefore, the molecular mechanisms of anti-inflammatory
and autophagy regulating effects caused by Korean Red Ginseng
(KRG) were investigated in aged mice.

2. Materials and methods
2.1. Materials

KRG-water extract (KRG-WE: Hongsamjeong) was obtained
from Korea Ginseng Corp. (Daejeon, Korea), and the major com-
ponents of KRG-WE are shown in Supplementary Table 1 as re-
ported previously [25,26]. Two-month-old C57BL/6] male mice
(young mice) and 17-month-old C57BL/6] male mice (aged mice)
were obtained from Dae Han Bio Link Co., Ltd. (Osong, Korea).
Metformin and sodium dodecyl sulfate (SDS) were acquired from
Sigma-Aldrich (St. Louis, MO, USA). The antibodies against p50, p65,
c-Jun, c-Fos, autophagy related 7 (ATG7), ATG12, light chain 3B
(LC3B), beclin-1, and f-actin used for immunoblotting analysis
were obtained from Cell Signaling Technology (Beverly, MA, USA).

2.2. Animals and treatment dose

C57BL/6] mice were housed in a standard plastic cage under 12-
h light/12-h dark cycles. Mice were randomly divided into the
following four groups: (I) young mice (2 month-old), (II) aged mice
(17 month-old) (Ill) aged mice treated with KRG-WE 200 mg/kg/
day, and (IV) aged mice treated with metformin 200 mg/kg/day.
Mice (7 mice/group) were orally treated with KRG-WE (200 mg/kg),
or metformin (200 mg/kg) once a day for 30 days. Dose of KRG-WE
was decided by previous animal experiments carried out with
crude extracts [27,28]. Metformin as anti-aging drug was used ac-
cording to previous report [29]. Animal care followed the guide-
lines of the Institutional Animal Care and Use Committee at
Sungkyunkawn University (Approval number: 2018-10-16-1).

2.3. Semi-quantitative RT-PCR and qRT-PCR

Total RNA was isolated from animal tissues using TRIzol Reagent
following the manufacturer’s instructions. After measuring the
total amount of RNA, cDNAs were synthesized from total RNA (1 pg)
using MMLV RTase (SuperBio, Daejeon, Korea). Quantification of
mRNA expression was performed using semi-quantitative reverse
transcription polymerase chain reaction (RT-PCR) or quantitative
RT-PCR (qRT-PCR) as previously described [30]. All primer se-
quences are listed in Supplementary Table 2.

2.4. Immunoblotting analysis

Whole lysates were extracted from animal tissues. Lysates were
prepared using lysis buffer. Protein targets were detected using the
specific antibodies. Immunoblotting analysis was conducted as
previously reported [31].

2.5. Statistical analyses

All data in the present study are presented as mean + standard
deviation (SD). To compare the data, Mann-Whitney tests was
utilized. All statistical tests were performed using the computer
program SPSS (version 26, SPSS Inc., Chicago, IL, USA), and a p-
value < 0.05 was considered statistically significant.
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3. Results and discussion

3.1. KRG-WE decreased the mRNA expression levels of inflammatory
cytokines in lung, kidney, liver, stomach, and colon

Aging induces chronic inflammatory activity evidenced by
increased expression of inflammation-related genes including tu-
mor necrosis factor (TNF)-a, interleukin (IL)-6, monocyte chemo-
attractant protein-1 (MCP-1), IL-1f, and IL-8 [32,33]. To examine
whether KRG-WE can inhibit the inflammatory activities in lung,
kidney, liver, stomach, and colon of aged mice, the mRNA expres-
sion levels of inflammation related genes were evaluated. In lung,
chronic inflammation upregulates the platelet-activating factor
receptors on the surface of epithelial cells and can induce bacterial
adhesion and accumulation in the aged lung [34]. Although the IL-6
expression level in lung was increased in the aged mice, KRG-WE
(200 mg/kg) suppressed IL-6 expression in aged mice (Fig. 1A).
Metformin is a control drug that has been used to treat diabetes and
is associated with aging-related activities [35,36]. Metformin (200
mg/kg) decreased IL-6 expression similar to KRG-WE (200 mg/kg).
Repeat tissue inflammation accelerates the aging process in the
kidney [37]. IL-8, MCP-1, IL-1B, and IL-6 expression levels were
increased in the kidney of aged mice, while KRG-WE (200 mg/kg)
downregulated MCP-1 expression (Fig. 1B). The incidence of liver
diseases accompanied by inflammation resulting from damaged
hepatic cells increases with age [38]. Although IL-1B and IL-6
expression levels were increased in the liver of aged mice, KRG-
WE (200 mg/kg) and control drug metformin (200 mg/kg) down-
regulated IL-1f and IL-6 expression in aged mice (Fig. 1C). Gastritis
is associated with aging of the stomach and is characterized by
chronic inflammation [39]. Although the IL-1f and IL-8 expression
levels in stomach were increased in the aged mice, KRG-WE (200
mg/kg) and control drug metformin (200 mg/kg) downregulated
the IL-1f and IL-8 expression in aged mice (Fig. 1D). Chronic
inflammation including intestinal bowel disease, which is common
in older people, can provoke tumorigenic responses [40]. In the
colon, IL-8, IL-6, and TNF-a expression levels were increased in the
aged mice, while KRG-WE (200 mg/kg) and control drug metformin
(200 mg/kg) downregulated IL-6 and IL-8 expression in aged mice
(Fig. 1E). These data suggest that KRG-WE has anti-inflammatory
effect by suppressing mRNA expression of inflammatory cyto-
kines including IL-8, MCP-1, IL-1B, IL-6, and TNF-«, in lung, kidney,
liver, stomach, and colon of aged mice.

3.2. KRG-WE downregulated the mRNA expression levels of
transcriptional factor subunits associated with inflammation in
lung, kidney, and colon

The expression of inflammatory cytokines is regulated by tran-
scriptional factors such as nuclear factor (NF)-kB and activator
protein (AP)-1 [41,42]. The NF-kB family is composed of five
structurally similar subunits, p50, p52, p65, Rel B, and c-Rel, which
regulate the expression of target genes associated with inflamma-
tion by binding heterodimers or homodimers [43,44]. The AP-1 is a
dimeric transcription factor comprised of c-Fos and c-Jun and
mediates inflammation-related genes [45,46]. To evaluate the ef-
fects of KRG on transcriptional factors associated with inflamma-
tion, the mRNA levels of transcriptional factor subunits were
analyzed. RT-PCR results showed that expression levels of c-Jun and
p50 were increased in aged mice, and KRG-WE (200 mg/kg)
inhibited the mRNA expression of c-JUN and p50 (Fig. 2A). In kid-
ney, mRNA expression level of the AP-1 subunit c-Fos was upre-
gulated in aged mice, while KRG-WE (200 mg/kg) inhibited the
mRNA expression of c-Fos (Fig. 2B). In liver, expression levels of
transcription factor subunits p50 and c-Fos did not differ between
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Fig. 1. Suppressive effects of KRG-WE on mRNA expression levels of inflammatory cytokines in lung, kidney, liver, stomach, and colon. (A—E) KRG-WE (200 mg/kg) was orally
administered to aged mice. The IL-1f, TNF-q, IL-8, MCP-1, and IL-6 mRNA expression levels in lung, kidney, liver, stomach, and colon were measured using semi-quantitative RT-PCR.
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Fig. 2. Inhibitory effects of KRG-WE on mRNA expression level of transcription factor NF-kB or AP-1. (A—E) The mRNA expression levels of p50, p65, c-Fos, and c-Jun that are
subunits of NF-kB or AP-1 were measured in lung, kidney, liver, stomach, and colon using qRT-PCR. #P < 0.05 and ##P < 0.01 compared with the normal group; * P < 0.05 and **

P < 0.01 compared with the control group.

young and aged mice (Fig. 2C). In stomach, KRG-WE did not
decrease the expression levels of p50 and p65 in aged mice
(Fig. 2D). In colon, expression levels of p50 and p65 were increased
in aged mice, while KRG-WE (200 mg/kg) suppressed the protein
expression of p50 and p65 (Fig. 2E). Taken together, these results
indicate that KRG-WE suppresses mRNA expression of transcription
factors associated with inflammation, such as c-Jun, c-Fos, p50, and
p65, in lung and kidney of aged mice.

3.3. KRG-WE suppressed the protein levels of transcriptional factor
subunits associated with inflammation in lung, kidney, stomach, and
liver

Because KRG-WE affected the expression of transcription factors
at the mRNA level, the protein expression level of transcription
factors associated with inflammation was evaluated using western
blot analysis. In lung of aged mice, KRG-WE (200 mg/kg) decreased
the p50 and c-Jun protein expression levels (Fig. 3A). The p50
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Fig. 3. KRG-WE exerted anti-inflammatory effects by regulating the protein expression levels of transcription factors NF-kB and AP-1. (A—E) The protein expression levels of p50,
p65, c-Fos, and c-Jun, subunits of NF-kB or AP-1, were evaluated in lung, kidney, liver, stomach, and colon of mice using western blot analysis.

protein expression level was increased in kidney of aged mice, but
KRG-WE (200 mg/kg) inhibited the p50 expression level (Fig. 3B).
KRG-WE (200 mg/kg) decreased p65 protein expression level in
liver of aged mice (Fig. 3C). KRG-WE (200 mg/kg) decreased c-Fos
protein expression level in the stomach of aged mice (Fig. 3D). The
protein expression levels of NF-kB and AP-1 subunits in the colon
did not differ between young and aged mice (Fig. 3E). Similar to the
results of mRNA expression levels, these data indicate that KRG-WE
downregulated the protein expression levels of transcription fac-
tors associated with inflammation in lung and kidney of aged mice.
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3.4. KRG-WE increased the mRNA levels of autophagy-related genes
in stomach, kidney, lung, liver, and colon

In several studies, autophagy in age-related diseases was asso-
ciated with genetic alterations of autophagy-related proteins
[47,48]. Therefore, the autophagy-promoting activity of KRG-WE
was assessed in the present study by determining the mRNA
levels of autophagy-related genes. ATG7, ATG12, LC3B, and beclin-1
are autophagy-related genes that are essential for formation of the
autophagosome [49—51]. In lung cells, autophagy represents a
protective response to injury resulting from exposure to stress
stimuli such as hypoxia, oxidants, inflammation, and aging [52].
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The mRNA expression levels of ATG7 and LC3B were decreased in
the lung of aged mice but were unchanged by KRG-WE (200 mg/kg)
treatment (Fig. 4A). Autophagic activity in kidney diseases regu-
lates immune responses that decrease with age. The mRNA
expression levels of ATG12, ATG7, LC3B, and beclin-1 were
decreased in kidney of aged mice, but KRG-WE (200 mg/kg) did not
increase the mRNA expression level (Fig. 4B). In the liver, autophagy

Journal of Ginseng Research 45 (2021) 717—725

is a major process that exerts cytoprotective effects against pro-
longed ischemia and reperfusion injury [53]. Although the mRNA
expression levels of ATG12, ATG7, LC3B, and LC3B were decreased
in the liver of aged mice, KRG-WE (200 mg/kg) recovered the
expression of ATG12, LC3B, and beclin-1 (Fig. 4C). Autophagy re-
covers injury of gastric epithelial cells induced by oxidative stress
or aging [54]. The mRNA expression levels of ATG7 and beclin-1
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Fig. 4. Autophagy-promoting effects of KRG-WE by increasing the mRNA expression levels of autophagy-related genes. (A—E) The mRNA expression levels of ATG7, ATG12, LC3B,
and beclin-1 were measured using qRT-PCR. #P < 0.05 and ##P < 0.01 compared with the normal group; * P < 0.05 and ** P < 0.01 compared with the control group.
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Fig. 5. Autophagy-promoting effects of KRG-WE by increasing the protein expression levels of autophagy-related genes. (A—E) The protein expression levels of ATG7, ATG12, LC3B,

and beclin-1 were measured using western blot analysis.

were decreased in the stomach of aged mice, but KRG-WE (200 mg/
kg) recovered these levels (Fig. 4D). Essential energy sources in the
colon have been identified as autophagy mediators and might exert
diverse functions of energy metabolism during aging [55].
Although the mRNA expression level of ATG12, ATG7, LC3B, and
beclin-1 were decreased in aged mice, KRG-WE (200 mg/kg)
recovered the expression levels in colon (Fig. 4E). Overall, KRG-WE
upregulated the mRNA expression levels of autophagy-related
genes such as LC3B, ATG7, ATG12, and beclin-1 in liver and colon
of aged mice.
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3.5. KRG-WE increased the protein levels of autophagy-related
genes in stomach and lung

To explore whether KRG regulates the protein synthesis of
autophagy-related genes, the effects of KRG-WE were evaluated at
the protein level. In lung, the protein level of ATG12 was down-
regulated in aged mice compared with young mice, but KRG-WE
(200 mg/kg) increased ATG12 expression level in aged mice
(Fig. 5A). In kidney, the expression level of Beclin-1 was decreased
in aged mice compared with young mice, and KRG-WE (200 mg/kg)
did not recover the expression (Fig. 5B). In liver, KRG-WE (200 mg/
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Fig. 6. Summary of anti-inflammatory and autophagy-promoting mechanisms of KRG-WE in lung, kidney, liver, stomach, and colon of aged mice.

kg) recovered ATG12 and ATG7 protein levels that were decreased
in aged mice (Fig. 5C). In stomach, protein levels of LC3B, ATG12,
and ATG7 were downregulated in aged mice, but KRG-WE (200 mg/
kg) recovered the expression levels (Fig. 5D). In colon, the expres-
sion level of LC3B was downregulated in aged mice, and KRG-WE
(200 mg/kg) did not recover the expression (Fig. 5E). Taken
together, these results suggest that KRG exerts autophagy-
promoting activity in the stomach by decreasing the expression
of autophagy-related genes such as ATG7, ATG12, and LC3B.

4. Conclusion

In summary, the mechanisms of anti-inflammatory and
autophagy-promoting effects of KRG in aged mice were investi-
gated. Administration of KRG-WE for 8 weeks significantly sup-
pressed the mRNA expression levels of inflammation-related genes
such as IL-1B, TNF-a, IL-8, MCP-1, and IL-6 in lung, kidney, liver,
stomach, and colon of aged mice. Furthermore, KRG-WE sup-
pressed the expression of transcription factors including NF-kB and
AP-1 that stimulate the expression of inflammatory cytokines in
lung and kidney. KRG-WE (200 mg/kg) also inhibited NF-kB and AP-
1 protein levels, specifically in lung and kidney. These results
indicate that the inflammatory response can be inhibited by KRG in
lung, kidney, liver, and stomach of aged mice. KRG-WE promoted
autophagy activity by increasing the expression level of autophagy-
related genes such as ATG7, ATG12, LC3B, and beclin-1 in liver and
colon of aged mice. In particular, KRG-WE (200 mg/kg) recovered
ATG7, ATG12, and LC3B protein expression levels in the stomach of
aged mice. These data indicate that KRG exerts anti-inflammatory
and autophagy-promoting activities especially in lung, liver, and
stomach of aged mice as summarized in Fig. 6. Collectively, these
results suggest that KRG can be used as an herbal medicine with
anti-inflammatory and autophagy-promoting effects in the elderly.
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