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Abstract

The regenerative capacity of skeletal muscle declines with age. Previous studies suggest that this 

process can be reversed by exposure to young circulation, but systemic age-specific factors 

responsible for this phenomenon are largely unknown. Here we report that oxytocin- a hormone 

best known for its role in lactation, parturition, and social behaviors - is required for proper muscle 

tissue regeneration and homeostasis, and that plasma levels of oxytocin decline with age. 

Inhibition of oxytocin signaling in young animals reduces muscle regeneration, whereas systemic 

administration of oxytocin rapidly improves muscle regeneration by enhancing aged muscle stem 

cell activation/proliferation throughactivation of the MAPK/ERK signalling pathway. We further 

show that the genetic lack of oxytocin does not cause a developmental defect in muscle, but 

instead leads to premature sarcopenia. Considering that oxytocin is an FDA approved drug, this 

work reveals a potential novel and safe way to combat or prevent skeletal muscle aging.

INTRODUCTION

The proportion of people over the age of 60 is growing faster than any other age group, as a 

result of both longer life expectancy and declining fertility rates, thus enhancing the quality 

of life as age of people is of major importance. With aging, the capacity of our tissues to 

maintain homeostasis and regenerate declines and eventually fails, leading to degenerative 

disorders and eventual organ failure. The reduction in muscle mass in humans starts in the 
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third decade of life and accelerates after the fifth decade, resulting in a decrease in strength 

and agility1. Muscle aging is characterized by a deficiency in muscle regeneration after 

injury and by muscle atrophy associated with altered muscle function, defined as 

sarcopenia2. The limiting step in muscle regeneration after injury is the activation of the 

muscle stem cells, or satellite cells. They need to break quiescence and proliferate in order to 

form new myofibers or fuse with damaged ones. Satellite cells from old muscle are 

intrinsically able to repair damaged muscle, but are reversibly inhibited by the aged niche, 

yet can be quickly rescued for productive tissue repair by a number of experimental 

methods, including heterochronic parabiosis3. While the rejuvenating effects of 

heterochronic parabiosis have been observed in several tissues such as muscle, brain, liver, 

pancreas, and heart4-9 the molecular mechanisms are not fully understood and only a few 

potential systemic factors responsible for this phenomena have been identified. A few pro-

aging circulating factors which increase in old animals have been identified, including TGF-

β and Wnt signaling pathway effectors, which are deleterious for muscle regeneration5,10, as 

well as the CCL11 chemokine that leads to impaired neurogenesis and decreased cognition 

and memory6. To date, few circulating molecules decreasing with age have been identified 

to be responsible for skeletal muscle aging

Considering that oxytocin (OT) levels decrease after ovariectomy, which mimics hormonal 

aging11 and that myoblasts express the oxytocin receptor (OTR)12, we hypothesized that OT 

might be among the key circulating age-specific determinants of maintenance and repair of 

skeletal muscle. OT is a nonapeptide mainly produced by the hypothalamus and stored in the 

neurohypophysis. It acts via its receptor both centrally as a neuromodulator and peripherally 

as a hormone, released by the neurohypophysis into the circulation. The OTR is a class I G-

protein-coupled receptor, which upon OT binding activates protein kinase C and induces 

intracellular calcium release that acts as a second messenger to induce a cascade of 

intracellular changes and activity13. OT is best known for its role in lactation and 

parturition14 as well as in social behaviors, promoting trust and bonding15. While the role of 

OT in supporting tissue homeostasis and regeneration is poorly documented, recent 

published work proposed a role of OT in preventing osteoporosis and obesity11,16-20 and in 

improving myocardium recovery after ischemic injury21. Additionally, OT has been shown 

to facilitate in vitro differentiation of mesenchymal stem cells toward cardiomyogenesis and 

osteogenesis and to inhibit adipocyte differentiation11,22.

Here we show that plasma levels of oxytocin and the levels of oxytocin receptor in muscle 

stem cells dramatically decline with age and demonstrate that oxytocin is required for 

skeletal muscle tissue regeneration and homeostatic maintenance. Importantly, we show that 

short-term systemic OT delivery restores muscle regeneration in old mice by improving 

aged muscle stem cell function, while pharmacologic attenuation of OT signaling with a 

selective antagonist alters muscle regeneration in young mice. Confirming the dependence 

of muscle maintenance and repair on oxytocin, mice deficient for Ot present signs of 

premature muscle tissue aging: defective muscle regeneration and a decrease in muscle mass 

and fiber size characteristic of sarcopenia at only 12 months of age. Our results suggest that 

OT per se or deliberate modulation of OT signaling could become a potential treatment to 

combat the age-related decline in muscle tissue maintenance and repair.
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RESULTS

Systemic OT and OTR levels in satellite cells decline with age

Since circulating OT levels decrease after ovariectomy, which mimics hormonal aging11, we 

hypothesized that its level would decrease during natural aging. OT plasma levels were 

measured in young (2-4 month old) and old (18-24 month old) C57/BL6 male mice, using 

an OT-specific enzyme immunoassay. A significant 3-fold decrease was observed in aged 

mice as compared to young, suggesting that endocrine levels of OT decline with age (Fig. 

1a). Little is known about the expression of the oxytocin receptor (OTR) in skeletal muscle 

either in general or in an age-specific way; thus we examined OTR protein expression in 

young and old skeletal muscle. Western blotting analysis demonstrates that OTR is detected 

in whole skeletal muscle (Fig 1b). Similar levels of OTR were observed in young and old 

whole muscle lysates that contain, in addition to proteins from muscle fibers and satellite 

cells, proteins from other cell types including vascular and immune cells, adipocytes and 

fibroblasts (Fig. 1b, d). Notably, when protein lysates were prepared from muscle stem cells, 

OTR was found to be expressed at significantly higher levels in young satellite cells as 

compared to old (Fig. 1c, e). These results demonstrate that with aging the decline in the 

circulating OT hormone is compounded by diminished levels of OTR in the old muscle stem 

cells. Confirming the western blotting data, immunofluorescence analysis of muscle tissue 

sections revealed that OTR was indeed expressed in cells that were observed in the satellite 

cell position (Fig. 1f, top) and co-localized with the satellite cell marker Pax7 in quiescent 

and injury-activated satellite cells (Fig. 1f, middle panels). Although most Pax7-positive 

satellite cells express OTR, expression of this receptor was also observed in many Pax7-

negative cells (Fig. 1f), suggesting that OT acts on several cell types in skeletal muscle.

Systemic decline in OT causes poor regeneration of old muscle

To determine whether the age-specific decrease in systemic OT is responsible for the decline 

in muscle regeneration that is typical of old mice, we systemically administered OT to old 

mice and an OT-selective antagonist (OTA) to young mice and studied the success in 

muscle regeneration after cardiotoxin-induced injury. The schematic for this study is shown 

in Figure 2a. Five days post injury, robust muscle regeneration was observed in young mice, 

based on the high numbers of newly-formed (eMyHC+) fibers with centrally-located nuclei 

in the injured area (Fig. 2b, c). As expected, a significant decline in the formation of new 

muscle fibers was evident in old mice. Interestingly, subcutaneous injections of OT 

improved muscle regeneration in the old mice to a level comparable to the young. In young 

mice, in which muscle regeneration occurs efficiently, ectopic OT had no effect (Fig. 2b, c). 

Importantly, a significant decrease in muscle regeneration, to a level similar to that seen in 

old mice, ensued when young mice were administered with OTA (Fig. 2b, c).

The deficiency in skeletal muscle regeneration observed in aged mice is associated with an 

increase in fibrotic tissue formation5,23. As expected, the fibrotic index was greater in old 

mice as compared with young (Fig. 2d and Supplementary Fig. 1a). Ectopic OT significantly 

decreased the fibrotic index in old mice, whereas OTA injections increased fibrosis in young 

mice (Fig. 2d and Supplementary Fig. 1a).
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These data demonstrate that one consequence of the age-specific systemic decline in OT is 

poor regeneration of skeletal muscle accompanied by increased fibrosis. Importantly, 

ectopic OT rapidly rescued repair of damaged old muscle, while OTA quickly incapacitated 

the regeneration of young muscle.

OT mediates the regenerative potential of muscle stem cells

Satellite cell activation/proliferation are the main limiting steps in old muscle regeneration. 

Exposure to a young environment has been shown to restore muscle regeneration by 

promoting satellite cell proliferation3,4,24. Since ectopic OT exposure over a short period of 

time rescued the repair of damaged old muscle, we evaluated whether the decreased level of 

OT in old was responsible for the lack of satellite cell proliferation in vivo. OT was 

administered to old mice daily starting 6 days prior to cardiotoxin-induced muscle injury 

(Fig. 3a). To monitor cell division in vivo, BrdU was injected subcutaneously 12 hours prior 

to euthanasia. Three days after injury, tibialis anterior muscles were isolated, and the 

percentages of BrdU and Desmin double positive cells (i.e. proliferating myogenic 

progenitor cells that were generated by satellite cells activated in response to tissue injury) 

were quantified in the injury area in muscle sections (Fig. 3b, c). As we have previously 

published, these myogenic cells co-express Pax7 and Desmin, while the non-myogenic 

Desmin-positive cells represent less than 2% in such experiments25,26. A 3-fold decrease in 

myogenic cell proliferation was observed in old muscles as compared with young (Fig. 3c). 

Importantly and in agreement with the rescue of muscle repair, ectopic OT significantly 

improved myogenic cell proliferation in vivo (Fig. 3c).

To further study the effect of OT on satellite cell proliferation and differentiation, we 

performed an ex vivo analysis, as described in the schematic of Figure 4a. Three days post 

injury, muscles were isolated and digested into bulk myofibers as previously 

described4,24,25,27 and cells were cultured in their own mouse’s respective serum for 24 

hours (Fig. 4a). In order to label the cells that were activated in vivo in response to muscle 

injury, BrdU was injected subcutaneously 12 hours prior to euthanasia. Myogenic 

proliferation of cells activated in vivo was quantified by calculating the percentage of BrdU 

and Desmin double positive cells, which as mentioned above is a sensitive and accurate way 

to measure the age-specific differences in myogenicity24,25,27. A 41% decrease in 

proliferation was observed in the old activated satellite cells as compared with young (Fig. 

4b, c). Confirming the in vivo data observed in Figure 3c, ectopic OT restored the myogenic 

proliferation of old satellite cells to a level comparable to young. Moreover, decreased 

myogenic proliferation was observed when young mice were treated with OTA (Fig. 4b, c). 

We also observed that the proliferation of activated satellite cells derived from young mice 

administered with OT tended to increase.

To study whether these Brdu and Desmin double-positive satellite cell progeny were 

functionally competent, we evaluated their myogenic differentiation potential. As illustrated 

in Figure 4a, cells isolated from muscles at 3 days post injury were cultured for 24 hours in 

their mouse’s respective serum and were switched to differentiation medium for 48 hours, 

when a pronounced age-specific decline in generation of de-novo myotubes is typically 

detected. The myogenic fusion index (the number of nuclei included in de novo formed 
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eMyHC+ myotubes as a fraction of the total nuclei), was then scored to assess cell 

differentiation. Supporting the observed increase in the number of newly-regenerated 

eMyHC+ fibers in vivo after OT injection (Fig. 2b, c), systemic administration of OT to old 

mice rejuvenated the myofiber-forming capacity of satellite cells responding to tissue injury 

(Fig. 4d, e). In agreement with the idea that OT is required for myogenicity, when OT 

signaling was antagonized in young mice not only the proliferation but also the 

differentiation declined to levels similar to those of old animals, with their low circulatory 

OT (Fig. 4d, e). These results demonstrate that myogenic proliferation and subsequent 

differentiation depend on “youthful” levels of OT.

Since we showed that OTR was expressed in skeletal muscle satellite cells (Fig. 1c, e and f), 

we hypothesized that OT acts directly on myogenic cells. To test this hypothesis, satellite 

cells were freshly isolated from cardiotoxin-injured muscles and plated in medium 

containing their own mouse serum supplemented or not with OT for 24 hours. As previously 

published28 and shown in Supplementary Figure 2, satellite cell purity was similar for young 

and old cells and greater than 90%. OT increased the proliferative capacity of old satellite 

cells cultured in old serum to similar levels of young cells cultured in young serum, as 

shown by the increased percentage of Ki67 positive activated muscle stem cells and the 

diminished expression of the cyclin-dependent kinase inhibitor 1, p21 (Fig. 5a-c). No effects 

of OT were observed on young satellite cells, in agreement with the higher levels of 

endogenous OT in young circulation (Fig. 1a). OT also promoted the proliferation of 

primary myogenic progenitors as shown by a three-fold increase in the percentage of BrdU 

positive cells (Fig. 5d, e).

OT directly acts in satellite cells via the MAPK/ERK pathway

Since the MAPK signaling pathway plays an important role in muscle stem cell activation/

proliferation29-34 and phospho-ERK1/2 is a well-documented downstream effector of OT in 

other cell types11,35, we postulated that OT could be a physiological inducer of MAPK, that 

promotes myogenic cell proliferation via the phosphorylation of ERK1/2. Indeed, addition 

of a MEK inhibitor (MEKi) decreased the proliferation of young satellite cells and increased 

the expression of p21 to old levels (Fig. 5a-c). In accordance with the idea that OT signals 

via MAPK in supporting adult myogenesis, the effects of ectopic OT on freshly isolated 

activated satellite cells and on primary myogenic progenitor cells were abolished in the 

presence of MEKi (Fig. 5a-e).

To confirm the ability of OT to induce ERK1/2 phosphorylation, primary myogenic 

progenitor cells were stimulated for 5 to 20 minutes with OT in the presence or absence of 

MEKi. ERK1/2 phosphorylation was greatly induced 5 minutes after stimulation with OT 

(Fig. 5f). At 10 minutes ERK1/2 phosphorylation started to decrease and returned to the 

basal level by 20 minutes (Fig. 5f). In support of functional effects of OT on myogenic cell 

proliferation shown above, MEKi prevented OT-induced ERK1/2 phosphorylation, reducing 

the levels of phospho-ERK1/2 below the basal level observed in untreated cells (Fig. 5f), all 

confirming activation of the MAPK pathway by its endogenous ligand for productive 

myogenic responses.
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Ot deficient mice display premature muscle aging

To confirm these findings in a genetic model, we studied muscle regeneration after 

cardiotoxin-induced injury in Ot knockout (KO) mice (B6;129S-Oxttm1Wsy/J). As 

compared to their wild type (WT) littermates, we observed a progressive decline in muscle 

regeneration of Ot KO mice that was noticeable at 3 months of age and became pronounced 

and significant at 12 months of age (Fig. 6a, b). The decline in muscle regeneration observed 

between one year old WT and Ot KO mice is comparable to the one measured between 

young (2-4 month old) and old (18-24 month old) WT C57/BL6 mice. In accordance with 

the data on the in vivo decline in the myogenic cell proliferation in old C57/BL6 mice, a 

decrease in activated satellite cell proliferation was observed in Ot KO mice when compared 

to WT littermates (Fig. 6c). A significant decline in muscle maintenance and repair is not 

expected and was not observed in WT mice at 12 months of age (Fig. 6b); thus it is very 

interesting that the lack of OT prematurely ages the animals in this aspect.

Moreover, similarly to 24-month-old C57/BL6 old mice, 12-month-old Ot KO mice display 

prematurely increased fibrosis when compared to age-matched WT littermates (Fig. 6d, 

Supplementary Fig. 1b). Appearance of adipocytes within the injured area has been reported 

to occur after muscle injury36-39. The number of adipocytes within the recently regenerated 

or un-injured muscle (assayed by perilipin staining), was generally low and a non-significant 

increase was observed in Ot KO mice, as compared with WT animals (Fig. 6e-g). However, 

we observed a clear increase in perimuscular and intermuscular adipose tissue deposition 

around the hind limb muscles in Ot KO versus WT littermates (Fig. 7a), consistent with the 

overall adipose tissue mass increase17.

Muscle aging is characterized by a deficiency in muscle regeneration after injury but, most 

importantly, by muscle atrophy and altered muscle function observed in older individuals 

and defined as sarcopenia1,2. Having demonstrated that a lack of OT resulted in the 

diminished regeneration of old muscle after injury we next sought to examine whether OT 

was involved in age-associated sarcopenia. To test this hypothesis, we assessed the mass of 

the gastrocnemius and the tibialis anterior muscles of 12-month-old Ot KO mice and their 

WT littermates. As shown in Figure 7b and c, Ot deficiency resulted in significantly smaller 

muscles: Ot KO mice displayed a 32% decrease in muscle mass for the tibialis anterior and a 

22% decrease for gastrocnemius as compared to their WT littermates. We further compared 

the muscle histology of Ot KO versus WT mice by measuring muscle fiber surface area as 

well as the minimum Feret diameter of muscle cross section. Remarkably, there was a 

significant decrease in both the surface area and the minimum Feret diameter in Ot KO as 

compared to WT mice (Fig. 7d, e). Importantly, no difference was observed in the fiber 

surface area or in the minimum Feret diameter between WT and Ot KO mice when 

compared at 3 months of age, demonstrating that the muscle atrophy observed in Ot 

deficient mice at 12 months of age was not a consequence of a developmental defect (Fig. 

7d, e). These data demonstrate that the KO in Ot is the first known genetic defect that results 

in premature sarcopenia and suggest that in the absence of OT, the non-significant but 

noticeable decline in muscle regeneration observed at 3 months of age might contribute to 

the decline in muscle fiber size and increased fibrosis and fat deposition by 12 months of 

age (Fig. 6b).
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DISCUSSION

The role of OT in tissue homeostasis and regeneration is poorly documented and age-

specific OT studies are lacking. The present work is the first to demonstrate that OT 

supports productive repair and maintenance of skeletal muscle, and that age-imposed decline 

in OT contributes to sarcopenia. Moreover, we show that OT acts directly on muscle stem 

cells (in vitro and in vivo) and that pro-myogenic effects of OT are mediated by 

MAPK/ERK signalling.

The age-specific decrease in OT receptor levels in muscle stem cells compounds the decline 

of OT itself, but importantly, significant OT receptor levels still remain in the old cells, 

allowing for an enhancement of myogenesis by ectopic OT. Interestingly, these findings are 

a mirror image of the age-imposed deregulation of TGF-beta/pSmad3 signaling in muscle 

stem cells, where with age there is an up-regulation of TGF-beta1 and simultaneous 

elevation of the TGF-beta receptor24,40. The concordant deregulation of receptors in muscle 

stem cells (and perhaps in tissue stem cells in general), and of the specific ligands (locally 

and / or in circulation) might be an interesting commonality of the aging process.

The conclusion of a pivotal role of OT in the age-specific regulation of myogenesis is 

emphasized by the agreement between pharmacological and genetic studies. Even though Ot 

KO mice could have developed compensations for the lack of OT and the high levels of 

myogenic IGF1, GH, etc. factors that are present in these animals at a young age there is 

already a tendency toward a decline in muscle regenerative capacity in Ot KO mice at 3 

months of age. Such a decline is clearly manifested upon an acute administration of OT 

antagonist to young C57/BL6 animals. Prolong constant attenuation of muscle regeneration 

might contribute to premature decrease in muscle tissue health, which we observe by 1 year 

in Ot KO mice. While OT is a multifunctional hormone and future comprehensive work is 

needed in order to uncover its many age-specific effects on cells and tissues, this study 

strongly suggest that the lack of OT causes decline in myogenic responses of satellite cells, 

leading to an abandonment of muscle tissue maintenance.

Considering that during normal aging ubiquitin-proteasome proteolysis does not seem to 

cause the age-related muscle atrophy and that in contrast, muscle hypertrophy and healthy 

functionality cannot be sustained without effective tissue remodeling41-43, the contribution 

of the age-specific decline in OT to the lack of myogenicity is a significant factor in muscle 

aging. Importantly, no deterioration of muscle tissue or decrease in myofiber size have been 

detected in the 3-month-old Ot KO mice, suggesting that the genetic lack of Ot does not 

cause a developmental defect, and instead specifically exacerbates sarcopenia.

To date, no effective treatment is available to treat or prevent sarcopenia and the primary 

recommendation remains exercise. Our work suggests that OT represents a physiological 

systemically present inducer of satellite cell activation/proliferation and hence, that systemic 

delivery of OT can counteract the defects in regeneration and maintenance of old muscle, 

which develop in part due to the age-specific decline in this hormone.

Our results demonstrate that OT is one of the key age-specific systemic regulators of muscle 

maintenance and repair; however, it is unlikely that only one circulating molecule accounts 
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for systemic aging or rejuvenation and other cell fate regulatory pathways have been shown 

to participate in these phenomena5,24. While other strategies such as long-term activation of 

the Notch signaling pathway or down-regulation of the TGF-β/pSmad and Wnt signaling 

pathways have been shown to be successful in acute rejuvenation of myogenesis4,5,24 they 

come with side-effects such as oncogenic transformations, inadequate hematopoiesis, broad 

immune deregulation, etc. Therefore therapeutic modulation of key regulatory pathways is 

not an easy task. In contrast, OT is a naturally-produced endocrine peptide that has little to 

no known detrimental side effects. Diminished circulating levels of OT are associated with 

pathological states such as autism in children44,45, osteoporosis46, and depression47. OT is 

approved for use in women during parturition, has been tested to improve psychological 

well-being in the elderly48, and is in clinical trials to treat autism, schizophrenia, and 

depression. Because of its size and structure, OT can be administered easily and by multiple 

routes such as by intra-nasal inhalation. The potent positive effects of OT on muscle tissue 

homeostasis and repair that were uncovered in this study are thus promising for developing 

an effective and safe new clinical strategy where OT and OTR agonists might be potentially 

used as systemically applicable, and sustainable molecules for combating the deterioration 

of muscle mass, strength, and agility in the elderly.

METHODS

Plasma preparation and oxytocin quantification

Whole blood was collected into a citrate-treated tube and spun at 700 g for 15 minutes to 

remove cells. Supernatant was transferred to a second citrate-treated tube, spun at 1500 g for 

20 minutes to remove platelets. Plasma was aliquoted and stored at −80°c. Plasma OT 

concentration was measured using an Enzyme Immunoassay kit (Bachem, S-1355) 

according to the manufacturer’s recommendation.

Animals

8-week-old male C57BL/6 mice and B6;129S-Oxttm1Wsy/J mice were purchased from the 

Jackson Laboratory. 22-month-old male C57BL/6 mice were purchased from the National 

Institute on Aging. Animals were housed and B6;129S-Oxttm1Wsy/J mice were bred at the 

Northwest Animal Facility (University of California, Berkeley). All procedures were 

performed in accordance with the administrative panel of the Office of Laboratory Animal 

Care, UC Berkeley. Sample size for each experiment was determined based on previously 

published differences between control young versus old animals in order to have sufficient 

statistical power, using the minimum necessary number of mice. The protocol was approved 

by the UC Berkeley Animal Care and Use Committee (ACUC). Mice were anesthetized by 

isoflurane drop and killed by cervical dislocation; blood samples were collected by heart 

puncture. Mice were injected daily with 50 μL of OT (1 μg g−1 of mice), OTA (2 μg g−1 of 

mice), or vehicle (HBSS) by interscapular subcutaneous injections.

Satellite cell preparation and cell culture

Tibialis anterior and gastrocnemius muscles of mice were injected with a total of 10 μg of 

cardiotoxin (Sigma-Aldrich) per leg dissolved in PBS or were left uninjured. Muscles were 

dissected 3 days post injury and satellite cells were derived as previously described4,24,25. 
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Briefly, harvested muscles underwent enzymatic digestion in DMEM (Mediatech) 

containing collagenase type II (250 U mL−1; Sigma-Aldrich), 10 mM HEPES, and 

penicillin/streptomycin antibiotics (500 IU mL−1, 0.1 mg mL−1; MP Biomedicals) at 37 °C 

for 1 hour under agitation. Fat pads and tendons were removed after a quick wash with PBS 

and repeated rounds of muscle trituration and sedimentation were performed to purify 

myofibers. Myofibers were either plated or incubated with collagenase type II (40 U mL−1, 

Sigma-Aldrich) and dispase (2 U mL−1; Invitrogen) diluted in Ham’s F-10 (Mediatech), 

supplemented with 10% horse serum, and penicillin/streptomycin at 37 °C for 1 hour and 30 

minutes under agitation. Suspensions were vortexed for 1 minute to release satellite cells 

from digested fibers, passed through a 40-μm cell strainer (BD Biosciences) and pre-plated 

on uncoated dishes for 20 minutes at 37 °C, 5% CO2. Cells that did not adhere during pre-

plating were collected and plated onto Matrigel-coated (BD Biosciences) CC2-treated 

chamber slides (LabTek II, Thermo Fisher Scientific) in DMEM supplemented with 10% 

sera from the mouse they came from. Myofibers were plated in Opti-MEM (Gibco) 

supplemented with 10% sera from the mouse they came from for 24 hours. Myofibers were 

then washed away and cells were either fixed for staining or induced to differentiate in the 

presence of DMEM 2% horse sera for 48 hours. Primary myogenic progenitors were 

cultured in growth medium composed of Ham’s F10 (Mediatech), penicillin/streptomycin 

antibiotics (500 IU mL−1, 0.1 mg mL−1; MP Biomedicals), and 20% Bovine Growth Serum 

(Life Technologies/Hyclone), supplemented with FGF-2 (6 ng mL−1). To monitor the effect 

of OT on primary myogenic progenitor cell proliferation, cells were cultured in growth 

medium supplemented with OT (30 nM) alone or in combination with UO126 MEK 

inhibitor (10 μM). For ERK1/2 phosphorylation kinetics, primary myogenic progenitors 

were starved for 16 hours in Opti-MEM (Gibco) before stimulation with, OT (30 nM) alone 

or in combination with UO126 MEK inhibitor (10 μM) for 5, 10, 15, and 20 minutes.

Western blotting

Cells were lysed in RIPA buffer containing a protease inhibitor cocktail (Complete, Roche), 

PMSF, NaF, β-glycerphosphate and activated sodium orthovanadate. Whole muscle were 

lysed in the same buffer using a gentleMACS™ Dissociators (Miltenyi Biotec) in 

combination with M Tubes, to homogenize the tissue. 30 μg of total protein extract were 

resolved in Laemmli buffer by SDS-PAGE on pre-cast gels (Bio-Rad) and transferred to 

polyvinylidene fluoride (PVDF) membranes. Membranes were blocked for 30 min in 5% 

non-fat milk in TBS-0.05% Tween buffer. Primary antibodies against pERK1/2 (1:1000), 

total ERK1/2 (1:1000), pax7 (1:250), MHC (1:200), OTR (1:2000), β-Actin (1:1000) were 

diluted in 5% non-fat milk in TBS-0.05% Tween buffer. PVDF membranes were incubated 

in antibody solutions overnight at 4°C. HRP-conjugated secondary antibodies were diluted 

1:4000 in 5% non-fat milk in TBS-0.05% Tween buffer and membranes were incubated for 

2 hours at room temperature. Blots were subsequently developed using Amersham ECL Plus 

(GE Healthcare), and analyzed with a Bio-Rad Gel Doc/Chemi Doc Imaging System. 

Quantifications were done using Image J.

RNA isolation and Real-time RT-PCR

RNA isolation was performed using an RNAeasy Mini Kit (Qiagen) according to 

manufacturer’s recommendations. Reverse transcription (RT) was performed using 
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SuperScript III First-Strand Synthesis System (Invitrogen). Real-time PCR was performed 

with Biorad iQ5 real-time PCR. Primers used are as follow: GAPDH-F 5′-

CCACTTGAAGGGTGGAGCCA-3′; GAPDH-R 5′-TCATGGATGACCTTGGCCAG-3′; 

p21-F 5′-GCCCGAGAACGGTGGAACTT-3′; p21-R 

5′GACAAGGCCACGTGGTCCTC-3′.

Muscle histology

We used an injury model consisting of a focal injection of cardiotoxin in the Gastrocnemius 

(GA) or the Tibialis anterior (TA) muscle. Muscles were dissected 3 or 5 days post injury 

and placed in 25% sucrose in PBS at 4 °C for 4 hours. Muscle samples were then quickly 

rinsed and frozen in Tissue-Tek OCT for cryosectioning. 10 μm cross-sections were stained 

with Hematoxylin and Eosin or Richard-Allan Scientific Gomori trichrome (Thermo 

Scientific) for histology analysis.

Immunocytochemistry

Cells or muscle sections were fixed for 20 minutes in 4% PFA, permeabilized with 0.25% 

Triton-X-100 in staining buffer (0.1% Sodium Azide and 1% Bovine Growth Serum in PBS) 

for 15 minutes, and incubated with primary antibody diluted in staining buffer overnight at 4 

°C. Primary antibodies were diluted as following: BrdU: 1:200; Desmin: 1:200; Dystrophin: 

1:200; eMyHC: 1:200; Ki67: 1:200; Myf5: 1:100; OTR: 1:100; Pax7: 1:20; Perilipin: 1:250. 

Cells or muscle sections were washed with staining buffer and incubated with an Alexa-

Fluor conjugated secondary antibody (1:2000, Invitrogen) in staining buffer for 2 hours at 

room temperature, washed with staining buffer, and slides were mounted with ProLong 

Gold antifade reagent with DAPI (P36935, Invitrogen). An additional incubation with HCl 

2.5 M for 30 minutes was performed before the permeabilization step when cells were 

stained for BrdU.

Chemicals and antibodies

OTA desGly-NH2-d(CH2)5[D-Tyr2,Thr4]OVT is a potent OT-selective antagonist kindly 

provided by Pr. Maurice Manning from the University of Toledo49,50. OT was purchased 

from Bachem (H-2510). MEK inhibitor UO126 was purchased from Cell Signaling (9903) 

and PD98059 from Tocris (1213). Antibody against eMyHC (F1.652) and Pax7 were 

purchased from Developmental Studies Hybridoma Bank. Anti-OTR antibody was 

purchased from Proteintech (23045-1-AP). Antibody against Desmin (ab15200), Ki67 

(ab15580), BrdU (ab6326) and Dystrophin (ab3149) were purchased from Abcam. 

Antibodies against Phospho-p44/42 MAPK (ERK1/2) (Thr202/Tyr204) and p44/42 MAPK 

(ERK1/2) and β-Actin were purchased from Cell Signaling (4370, 4696, and 4967 

respectively). Anti-Perilipin A/B antibody was purchased from Sigma-Aldrich (P1873) and 

antibody against Myf5 and MHC were purchased from Santa Cruz (SC-302 and SC-20641 

respectively). Fluorophore-conjugated secondary antibodies (Alexa Fluor) were purchased 

from Invitrogen. HRP-conjugated secondary antibodies were purchased from Santa Cruz 

Biotechnologies.
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Fiber size

Fiber surface area and Feret minimum diameter were measure using Image J software on 

hematoxylin and eosin stained muscle cross sections.

Fibrosis quantification

Fibrosis was quantified as previously described 5. Briefly, gastrocnemius muscle cross 

sections were immunostained for eMyHC. The total injured area and the fiber area of all 

eMyHC-positive fibers were measured using Image J software. The “Fibrotic Index” was 

calculated as: (1 − (total eMyHC+ fibers area / total injury area)) × 100%.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Systemic oxytocin declines with age and oxytocin receptor is expressed in skeletal 
muscle satellite cells
a, OT plasmatic levels were quantified by Enzyme Immunoassay in young (2-4 month old) 

and aged (18-24 month old) C57BL/6 male mice. Data represent mean ± SEM (n=6 young 

versus n=7 old). Two-tailed unpaired Student’s t test **: p value < 0.01.

b and c, Whole skeletal muscle (GA) protein extracts (b), and hind limb satellite cell protein 

extracts (c) were prepared from young and old non-injured mice. Oxytocin receptor (OTR), 

Pax7, and myosin heavy chain (MHC) were assayed by western blot analysis. 30 μg of 

protein were loaded per lane and β-actin was used as a loading control. In b and c, Y-SKM: 

young skeletal muscle; O-SKM: old skeletal muscle; Y-SC: young satellite cell; O-SC: old 

satellite cell.

d and e, Quantification of western blot from b, and c, using Image J software. Data represent 

mean +/− SEM (n=4 Y-SKM, n=4 O-SKM, n=3 Y-SC, and n=3 O-SC). Two-tailed unpaired 

Student’s t test *: p value < 0.05.
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f, Cross sections from non-injured and 3 day-injured tibialis anterior muscle were 

immunostained for OTR and dystrophin or OTR and Pax7, as indicated, and counterstained 

with DAPI. IgG control are displayed (bottom) and dashed lines delineate muscle fibers. 

Scale bars represent 20 μm.
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Figure 2. Age-specific systemic oxytocin decline plays a key role in the defective muscle 
regeneration observed upon aging
a, Schematic of the experimental procedure. Cardiotoxin (CTX) muscle injury was 

performed at day 0. Four days before muscle injury and over the course of the experiment, 

mice were administered OT (1 μg g−1 of mice), OTA (2 μg g−1 of mice), or vehicle (HBSS) 

daily. Five days after muscle injury, mice were killed and (GA) muscles were dissected. 10 

μm cross sections were stained for hematoxylin and eosin (H&E).

b, Hematoxylin and eosin (H&E) (top) and eMyHC (bottom) staining of cardiotoxin-injured 

gastrocnemius muscle cross sections from mice injected with OT, OTA, or vehicle (HBSS). 

Scale bars represent 50 μm.

c, Muscle regeneration was quantified by scoring the number of newly-formed fibers 

(eMyHC positive fibers with centrally-located nuclei) in the injured area of gastrocnemius 

cross sections. Data represent mean ± SEM (n=9 YV, n=5 OV, n=6 YOT, n=6 OOT, n=5 
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YOTA). One-way ANOVA with post-hoc Newman-Keuls test **: p value < 0.01, ***: p 

value < 0.001, NS: Not Significant.

d, Fibrosis quantification of gastrocnemius muscle cross sections 5 days after injury. The 

fibrotic index represents the percentage of the injury area occupied by connective tissue. 

Data represent mean ± SEM (n=3 YV, n=3 OV, n=3 YOT, n=3 OOT, n=3 YOTA). One-

way ANOVA with post-hoc Newman-Keuls test *: p value < 0.05, **: p value < 0.01, NS: 

Not Significant.

In b-d, YOTA: Young injected with OTA; YOT: Young injected with OT; YV: Young 

injected with vehicle, OV: Old injected with vehicle; OOT: Old injected with OT.
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Figure 3. Oxytocin improves muscle stem cell proliferation in vivo after injury
a, Schematic of the experimental procedure. Cardiotoxin (CTX) muscle injury was 

performed at day 0. Six days before muscle injury and over the course of the experiment, 

mice were administered OT (1 μg g−1 of mice), or vehicle (HBSS) daily. Twelve hours prior 

to euthanasia, mice were administered with BrdU (50 μg g−1 of mice, IP). Three days after 

muscle injury, tibialis anterior (TA) muscles were isolated.

b, Representative micrographs of 3-day-injured TA muscle cross sections (10 μm) 

immunostained for BrdU and Desmin and counterstained with DAPI. Right panels represent 

magnifications of the dashed area from left panels. White arrow indicates a BrdU and 

Desmin double positive cell, yellow and white arrowheads indicate BrdU or Desmin single 

positive cells, respectively. Scale bars represent 100 μm (left panels) and 50 μm (right 

panels).

c, Quantification of the percentage of proliferating myogenic cells (Desmin+ and BrdU+). 

Data represent mean ± SEM (n=4 YV, n=4 OV, n=4 OOT), one-way ANOVA with post-hoc 

Newman-Keuls test *: p value < 0.05, **: p value < 0.01.
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Figure 4. Oxytocin rejuvenates muscle stem cell function in injured tissue
a, Schematic of the experimental procedure. Cardiotoxin (CTX) muscle injury was 

performed at day 0. Six days before muscle injury and over the course of the experiments, 

mice were administered OT (1 μg g−1 of mice), OTA (2 μg g−1 of mice), or vehicle (HBSS) 

daily. Twelve hours prior to euthanasia, mice were administered with BrdU (50 μg g−1 of 

mice, IP). Three days after muscle injury, GA and TA muscles were isolated and digested 

into bulk fibers. Cells were cultured in their mouse’s respective sera (shortened as “own” on 
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the schematic) for 24 hours and either fixed and stained for Desmin and BrdU or induced to 

differentiate for 48 hours and subsequently fixed and stained for eMyHC.

b and c, Myogenic cell proliferation. Muscle fiber associated activated satellite cells were 

isolated 3 days after injury from mice injected with OT, OTA, or vehicle (HBSS), plated in 

media containing their mouse’s respective sera and fixed 24 hours after plating. b, 

Representative micrographs of cells immunostained for Desmin and BrdU and 

counterstained with DAPI. Scale bars represent 50 μm. c, Quantification of the percentage of 

proliferating myogenic cells (Desmin+ and BrdU+). Data represent mean ± SEM (n=6 YV, 

n=3 OV, n=3 YOT, n=3 OOT, n=5 YOTA).

d and e, Myogenic fusion index. Muscle fiber associated activated satellite cells were 

isolated 3 days after injury from mice injected with OT, OTA, or vehicle (HBSS), and plated 

in media containing their mouse’s respective sera for 24 hours. Cells were then induced to 

differentiate in mitogen-low fusion medium for 48 hours, fixed and immunostained for 

eMyHC using DAPI to label all nuclei. d, Representative micrographs. Scale bar represents 

50 μm. e, Quantification of the percentage of nuclei in eMyHC+ myotubes. Data represent 

mean ± SEM (n=8 YV, n=5 OV, n=6 YOT, n=6 OOT, n=5 YOTA). In b-e YOTA: Young 

injected with OTA; YOT: Young injected with OT; YV: Young injected with vehicle, OV: 

Old injected with vehicle; OOT: Old injected with OT. One-way ANOVA with post-hoc 

Newman-Keuls test *: p value < 0.05, **: p value < 0.01, ***: p value < 0.001, NS: Not 

Significant.
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Figure 5. Oxytocin improves myogenic progenitor cell proliferation via activation of the 
MAPK/ERK pathway
a and b, Activated satellite cells were isolated 3 days after injury from young or old mice, 

cultured for 24 hours in media containing their own mouse’s respective sera supplemented 

with OT (30 nM), PD98059 MEK inhibitor (50 μM), or OT plus MEK inhibitor, fixed and 

stained for Ki67 and counterstained for DAPI. a, Representative micrographs. Scale bars 

represent 200 μm. b, Quantification of the percentage of proliferating (Ki67+) satellite cells. 
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Data represent mean ± SEM (n=4 mice per group). Two-way ANOVA with post-hoc 

Bonferroni test **: p value < 0.01, ***: p value < 0.001, NS: Not Significant.

c, p21 mRNA relative expression analyzed by qRT-PCR. RNA was extracted from satellite 

cells isolated and cultured as in a. GAPDH was used as reference gene (n=3 mice per 

group). Two-way ANOVA with post-hoc Bonferroni test **: p value < 0.01, ***: p value < 

0.001, NS: Not Significant.

d and e, Primary myogenic progenitors were cultured in the presence or absence of OT (30 

nM), and UO126 MEK inhibitor (10 μM) for 48 hours. BrdU was added to the culture 

medium during the last hour. Cells were then fixed, immunostained for BrdU and 

counterstained with DAPI. d, Representative micrographs. Scale bars represent 50 μm. e, 

The percentages of BrdU positive cells were scored. Data represent mean ± SEM (n= 8 

independent experiment performed on different primary cultures). One-way ANOVA with 

post-hoc Newman-Keuls test ***: p value < 0.001, NS: Not Significant.

f, Primary myogenic progenitors were serum starved overnight then treated with OT (30 

nM), or OT (30 nM) plus UO126 MEK inhibitor (10 μM) for up to 20 minutes. ERK1/2 and 

phospho-ERK1/2 were assayed by western blot analysis. O: OT, OM: OT plus UO126 MEK 

inhibitor.
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Figure 6. Impaired muscle regeneration in mice lacking oxytocin
a, Hematoxylin and eosin staining (H&E) (top) and eMyHC (bottom) of cardiotoxin-injured 

gastrocnemius muscle cross sections from 12-month-old wild type (WT) and Ot knockout 

(KO) mice. Scale bars represent 50 μm.

b, Muscle regeneration quantification of 3-month-old and 12-month-old WT or Ot KO mice 

was performed by scoring the number of newly-formed fibers (eMyHC positive fibers with 

centrally-located nuclei) in the injured area of gastrocnemius cross sections. Data represent 

mean ± SEM (n=6 WT and n=4 KO for the 3 month old mice, n=4 WT and n=5 KO for the 

12 month old). Two-way ANOVA with post-hoc Bonferroni test *: p value < 0.05, NS: Not 

Significant.

c, Quantification of the percentage of proliferating myogenic cells (Desmin+ and BrdU+) of 

3-day-injured TA muscle cross sections immunostained for BrdU and Desmin. Data 

represent mean ± SEM (n=5 WT, n=5 KO). Two-tailed unpaired Student’s t test *: p value < 

0.05.

d, Fibrosis quantification of gastrocnemius muscle cross sections 5 days after injury. The 

fibrotic index represents the percentage of the injury area occupied by connective tissue. 

Data represent mean ± SEM (n=4 WT and n=4 KO). Two-tailed unpaired Student’s t test *: 

p value < 0.05.

e, Representative micrograph of perilipin immunostaining on 5-day-cardiotoxin-injured 

gastrocnemius muscle cross section. Scale bar represents 50 μm.
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f and g, Adipocyte numbers (perilipin positive cells) per injured (f) or un-injured (g) area 

from WT and Ot KO mice. Data represent mean ± SEM (n=3 WT and n=5 KO). Two-tailed 

unpaired Student’s t test, NS: Not Significant.
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Figure 7. Mice lacking oxytocin develop premature sarcopenia
a, Representative photographs of Ot KO and WT mice hind limb skeletal muscles (right leg) 

after the skin was carefully removed (WT and KO mice are presented side by side on each 

photograph). Visualization of perimuscular adipose tissue deposition (arrows) and of 

exposed intermuscular adipose tissue (arrowheads). (i) Ventral view, arrows indicate the 

adipose tissue on the internal part of the quadriceps. The star shows that Ot KO mice display 

increased posterior subcutaneous adipose tissue. (ii) Ventral view showing adipose tissue 

deposition over the quadriceps (top arrows) and the tibialis anterior (bottom arrows). (iii) 
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Lateral view showing adipose tissue deposition covering the quadriceps (top arrows) and the 

tibialis anterior and gastrocnemius (bottom arrows). (iv) Dorsal view showing the 

intermuscular adipose tissue deposition of the hind leg (arrowheads) and the adipose tissue 

covering the gastrocnemius muscle (arrows). As compared to the WT littermates, the KO 

mice have an increase in fat tissue in all the studied muscle groups, and visibly reduced 

muscle, which is studied in more detail and quantified below.

b, TA and c, GA muscles from 12-month-old WT or Ot KO mice were weighed. Data 

represent mean ± SEM (top), representative pictures (bottom). Two-tailed unpaired 

Student’s t test *: p value < 0.05, ***: p value < 0.001, n=5 WT and n=10 KO mice.

d, The surface area and e, The minimum Feret’s diameter were measured using WT and Ot 

KO muscle cross section stained with Hematoxylin and eosin. Data represent mean ± SEM 

(n=4 mice per group), two-way ANOVA with post-hoc Bonferroni test *: p value < 0.05, **: 

p value < 0.01, NS: Not Significant.
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