Contents lists available at ScienceDirect

Genomics Data

journal homepage: http://www.journals.elsevier.com/genomics-data/

Transcriptional profiling of apoptosis-deficient Drosophila mutants

Fumiaki Obata ^a, Katsura Tomioka ^a, Masayuki Miura ^{a,b,*}

^a Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan

^b CREST, Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0075, Japan

ARTICLE INFO

ABSTRACT

Article history: Received 2 July 2014 Received in revised form 29 July 2014 Accepted 1 August 2014 Available online 10 August 2014 Apoptosis is a fundamental way to remove damaged or unwanted cells during both developmental and postdevelopmental stages. Apoptosis deficiency leads to various diseases including cancer. To know the physiological changes in apoptosis-deficient mutants, we conducted non-biased transcriptomic analysis of *Drosophila dark*^{cd4} mutants. As recently reported, combined with metabolome and genetic analysis, we identified systemic immune response, energy wasting, as well as alteration in S-adenosyl-methionine metabolism in response to necrotic cells [1]. Here, we describe in detail how we obtained validated microarray dataset deposited in Gene Expression Omnibus (GSE47853). Our data provide a resource for searching transcriptional alterations in *Drosophila* apoptosisdeficient mutants.

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND licenses (http://creativecommons.org/licenses/by-nc-nd/3.0/).

Specifications Organism/cell line/tissue Drosophila melanogaster Male Sex Sequencer or array type Agilent Technologies, DNA microarray system Data format Raw data Apoptosis-deficient Experimental factors (*dark*^{cd4} homozygous mutant) vs wild type control Experimental features Day-five adult flies, whole body homogenates Consent n/a Sample source location n/a

Direct link to deposited data.

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE47853.

Experimental design, materials and methods

Drosophila preparation

Flies were maintained on a standard diet containing 4% yeast, 4% cornmeal, 10% glucose and propionic acid. All flies were kept in 25 °C with 60% humidity in the alternate 12 h light and dark cycle. As a model of apoptosis-deficient mutant, we utilized a hypomorphic allele of *Drosophila apaf1* ortholog, *dark*^{cd4} mutants, in which both developmental and stress-induced apoptosis were remarkably diminished [2,3]. For the precise control of genetic background, we have backcrossed *dark*^{cd4} mutants six generations into w¹¹¹⁸ control strains.

RNA extraction, purification, and quality verification

All flies were collected within one day after adult eclosion and incubated for five days for adult maturation with free access to food and mating. Five male flies were collected in one sampling tube and immediately frozen in liquid nitrogen. Flies were homogenized in TRIzol reagent (Invitrogen) by Multi-Beads Shocker (Yasui Kikai) set to 1500 rpm, 15 s \times 3 cycles, and total RNA was extracted as reported [4]. Total RNA was then purified using RNeasy Plus Micro Kit (Qiagen) according to the manufacturer's instruction. After checking RNA concentration and purity by NanoDrop 2000c (Thermo Fisher Scientific), RNA quality and quantity were further validated by an Agilent 2100 Bioanalyzer and the Agilent RNA 6000 Nano Kit (Agilent Technologies). Four independent RNA samples of high quality, which had two sharp peaks of 18S and 28S ribosomal RNA [5] were subjected to microarray analysis (Fig. 1).

Experimental procedures for microarray analysis

Cyanine-3 (Cy3)-labeled cRNA was prepared from 50 ng of total RNA by Low Input Quick Amp Labeling Kit, One-Color (Agilent Technologies) according to the manufacturer's instruction. cRNA was purified by RNeasy Mini Kit (Qiagen), and cRNA yield (more than 0.825 µg) and labeling efficiency (6 pmol/µg) were validated by NanoDrop 2000c spectrophotometer (Thermo Fisher Scientific). 600 ng of Cy3labeled cRNA was then fragmented in a 30-minute incubation at 60 °C

Data in Brief

^{*} Corresponding author at: 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan. E-mail address: miura@mol.fu-tokyo.ac.jp. (M. Miura).

^{2213-5960/© 2014} The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

Fig. 1. An example of RNA quality validation by Agilent 2100 Bioanalyzer. Drosophila total RNA contains two main peaks, 18S and 28S ribosomal RNA.

Table 1List of differentially expressed entities in $dark^{cd4}$ (up-regulated, fold change > 1.5, p < 0.05).</td>

Probe name	Gene symbol	p-Value	Corrected p-value	Fold change	Entrez gene ID
A_09_P137560	CG6484	1.21E-07	7.59E-04	826.2603	36994
A_09_P074111	CG3397	3.84E-07	0.001204653	543.77155	41454
A_09_P057606	CG30091	3.29E-06	0.005706159	259.83295	246449
A_09_P022946	CG6639	7.32E-06	0.009384108	156.37743	35049
A_09_P012361	Dro	9.64E - 06	0.010052347	84.814896	36635
A_09_P164825	CG3397	5.14E-05	0.020792374	54.593582	41454
A_09_P109300	CecC	2.58E-04	0.044110067	50.98296	43599
A 09 P205050	AttA	3.38E-05	0.017613623	45.11442	36636
A 09 P022951	CG18563	1.37E - 04	0.036148455	44.82299	35050
A 09 P177575	AttA	5.63E-05	0.022063293	42.283108	36636
A 09 P029506	AttA	2.88E-05	0.016047167	37.23442	36636
A 09 P076441	Lin3	1.72E - 04	0.039214883	25.980417	41643
A 09 P042191	Fh	2.37E - 06	0.004951735	24 375402	42101
A 09 P017606	CG33459	1.48E - 04	0.037204254	22,659021	2768847
A 09 P064286	AttB	1.77E - 04	0 039214883	17 377863	36637
A 09 P070721	CC13822	1.98F - 05	0.013739567	8 938663	42787
A 09 P022706	nhurs	2.07F - 04	0.042714648	8 529773	34845
A 09 P074106	CG12224	2.45F - 05	0.015018947	7 8313622	41453
A 09 P075311	Spn88Fb	3.79F - 05	0.017992863	7 8204455	41829
A 09 P191620	hbs	3.69F - 04	0.049772616	7 671836	44129
A 09 P070756	CC10232	3.85E 04	0.017992863	7 1368327	42800
A 09 P199616	Amv-d	3.83E 05	0.006001143	5 9436913	36932
A 09 P1/23/0	Strp_Mlck	1.49E - 0.4	0.03720/25/	5 568332	36753
A 09 P205465	Amy-p	1.45L - 04 1.76E - 05	0.013231209	5.1067333	47764
A 09 P022091	CC1/035	3 30F - 04	0.04758134	5.07/1186	3/508
A 09 P210570	Ast-CC	1 16F - 05	0.010380089	4 611063	34538
A 00 P022021	Khc 72	0.26E 05	0.020085202	4.020024	26719
A 09 P030336	Cp7F2	5.30E - 05	0.0208358	4 3110275	3885650
A 09 P128140		3.25E = 0.01	0.020033884	4.3110273	32000
A 00 P041241	Amy d	7.02E 06	0.00224102	4.2164664	26022
A_09_P023551	CC13077	7.52E = 00 2.78E = 04	0.009584108	4.2104004	35252
A 00 P012241	olk	2.782 - 04	0.015019047	4,0061927	27047
A_09_P013241	Cup620	2.402 - 05	0.01/055865	2 0260826	26662
A_00_P122150	Cypoas	2.272 - 05	0.017612622	2 9076274	30003
A_09_P152150	Cyp6a9 CC14062	3.44E - 03	0.01/013023	3.09/02/4	20002
A_09_P028900	CG14905	2.40E - 04	0.020140201	2,76797	24044
A_09_P213430	Iepii	9.75E-03	0.030146361	3.7362166	54044
A_09_P043731	MtnA	2.14E - 04	0.042714648	3./33833	41202
A_00_D009251	Tef2	2.272 04	0.042255179	2 7416559	26800
A_09_P008251	1513	2.43E - 04	0.043355178	3.7410558	30800
A_09_P212340	CG0283	2.57E-05	0.015016947	3.0653904	43230
A_09_P072171	CG6283	3.06E - 05	0.016309947	3.4509046	43230
A_09_P064071	repii	8.46E - 05	0.028292092	3.150775	34044
A_09_P070726	CG10157	1.79E - 04	0.039407473	2.9077814	42788
A_09_P030331	Clig	6.87E-05	0.02535672	2.8066733	30800
A_09_P007626	CG8613	6.21E - 09	1.56E - 04	2.802572	36593
A_U9_P05/3/6	CG30026	1.64E - 04	0.03885829	2./4/6/45	246399
A_09_P0/4211	CG1/404	3.38E-04	0.04/642/	2./2/6456	41482
A_09_P021871	CG16/43	1.20E - 04	0.033890933	2.6894252	34517
A_09_P032876	Inor	3.51E - 04	0.0489/1/8/	2.6882927	33569
A_09_P007811	CG10205	2.72E - 05	0.015888466	2.3559587	36650
A_09_P003151	CG34195	1.40E - 04	0.036542486	2.2845542	37018

(continued on next page)

Table 1 (continued)

Probe name	Gene symbol	p-Value	Corrected p-value	Fold change	Entrez gene ID
A_09_P052476	ple	1.51E-04	0.037204254	2.1827874	38746
A_09_P074666	CG8449	2.99E-04	0.045802735	2.1643517	41628
A_09_P030576	Fer1HCH	3.29E-04	0.04758134	2.0881882	46415
A_09_P017531	Sp212	2.59E-04	0.044110067	2.0289657	2768666
A_09_P013336	Pms2	1.37E-04	0.036148455	1.9307616	36705
A_09_P128510	pot	1.75E-04	0.039214883	1.8138448	32154
A_09_P074856	CG9312	1.43E-05	0.011565035	1.7268412	41686
A_09_P112520	CG31664	3.71E-04	0.049772616	1.7204942	33359
A_09_P064416	yellow-c	3.59E-04	0.049245566	1.7027588	34879
A_09_P079531	CG1927	4.83E-05	0.020355958	1.700692	38262
A_09_P171400	CG9760	1.11E-05	0.010331039	1.7006437	39388
A_09_P030571	Fer2LCH	4.83E-05	0.020355958	1.6878232	44965
A_09_P078611	Idgf4	1.69E - 04	0.039214883	1.6784037	31926
A_09_P121595	Wnt2	2.12E-04	0.042714648	1.6761436	35975
A_09_P079936	CG14787	1.32E-04	0.036148455	1.6502483	31096
A_09_P145165	CG9284	7.03E - 05	0.025569357	1.6346469	50130
A_09_P055421	CG10646	7.58E-05	0.026382491	1.6279341	39426
A_09_P032636	Spred	1.96E-04	0.041651685	1.5928276	36643
A_09_P154000	Idgf4	3.09E-04	0.045933884	1.5830332	31926
A_09_P020526	spz3	2.86E-04	0.045345914	1.5688794	34077
A_09_P217505	CG9449	3.00E-04	0.045802735	1.5068132	40117
A_09_P125405	Fer2LCH	2.94E - 04	0.045802735	1.5040354	44965

Table 2

List of differentially expressed entities in $dark^{cd4}$ (down-regulated, fold change > 1.5, p < 0.05).

A_09_P057096 CG9284 1.46E-08 1.83E-04 -8526.699 50 A_09_P056531 Obp57a 2.21E-07 9.46E-04 -460.8703 246	130 670 691
A_09_P056531 Obp57a 2.21E-07 9.46E-04 -460.8703 246	670 691
	691
A_09_P112980 CG6602 1.04E-05 0.010052347 -228.13199 38	
A_09_P058096 CG30325 5.27E-08 4.41E-04 -117.28926 246	541
A_09_P017491 CG33306 1.56E-06 0.00392256 -89.36473 2768	915
A_09_P025106 CG14759 1.51E-04 0.037204254 -55.705208 35	803
A_09_P022106 CG16964 2.44E-04 0.043355178 -16.280725 34	605
A_09_P053136 Jon65Aii 1.51E-04 0.037204254 -13.278319 38	684
A_09_P025336 CG8235 2.75E-04 0.044967778 -8.24512 35	892
A_09_P147930 RpS23 6.10E-05 0.022846662 -7.943826 36	576
A_09_P009466 CG10051 1.29E-04 0.035887856 -6.1546483 37	222
A_09_P103745 Ark 3.21E-06 0.005706159 -6.0242305 36	914
A_09_P010541 LysB 1.15E-04 0.033018567 -5.5206275 38	125
A_09_P048621 se 2.03E-05 0.013739567 -4.5446115 3E	973
A_09_P076786 Ark 6.00E-05 0.022796065 -4.5321417 36	914
A_09_P051166 Pkn 2.25E-04 0.042714648 -3.7968385 35	950
A_09_P008396 Svn2 7.89E-06 0.009384108 -3.762351 36	848
A 09 P058576 CG30471 7.76E-05 0.026382491 -3.7158039 246	633
A 09 P076781 Ark 2.34E - 04 0.042868607 - 3.460493 36	914
A 09 P023806 CG9317 8.23E - 06 0.009384108 - 3.2488701 35	334
A 09 P023916 CG9270 3.87E - 05 0.017992863 - 3.2225685 35	366
$A_{09} = P008036$ CG8204 $2.19E = 0.4$ 0.042714648 -3.194339 36	728
A 09 P007056 CG12374 3.38E - 04 0.0476427 - 3.0680518 36	410
A 09 P007696 Oaz 3.26E – 04 0.04751293 – 2.807796 36	609
A 09 P061211 CG7912 2.88E - 04 0.045445487 - 2.6248696 43	561
A 09 P054936 CG12289 1.02E - 04 0.030490918 - 2.5969746 35	279
$A = 09 = 0022701$ CG16885 $3.33E = 04$ 0.0476427 -2.499752 3^{4}	811
-0^{-} P061331 CG9682 3.36E -0^{4} 0.0476427 -2.149636 43	602
A 09 P004556 CG34457 2.29E - 04 0.042714648 - 2.1067915 5740	661
A 09 P008606 CG15605 1.79E - 05 0.013231299 - 2.0780075 36	933
A 09 P024716 CG11112 1.33E-05 0.0111519 -2.0632255 35	658
A 09 P007636 Arc1 4.58E - 05 0.020355958 - 2.0212839 36	595
A 09 P054941 CG7551 7.68E - 05 0.026382491 - 1.9311175 35	280
A 09 P008236 mri 1.91E - 04 0.041254394 - 1.926147 36	797
A 09 P134485 Aplip1 1.76E - 04 0.039214883 - 1.8730602 53	472
A 09 P057636 CG30099 3.87E - 05 0.017992863 - 1.7842374 36	818
A 09 P023122 Ntf-2r 3.18E - 04 0.046977073 - 1.7637537 35	101
A 09 P196550 Rh6 4.87E-05 0.020355958 -1.732648 41	889
A 09 P224825 OS-C 1.11E - 04 0.03227867 - 1.6809722 40	942
A 09 P055141 CG7264 2.32E - 04 0.042849243 - 1.6779261 35	339
A 09 P023376 CG17572 2.22E - 04 0.042714648 - 1.6729306 35	182
A 09 P008841 CG6410 3.47E - 04 0.048562963 - 1.6300013 37	015
A 09 P202455 Bb6 3 03E - 04 0 045802735 - 1 6175661 41	889
A 09 P020711 CG14277 2.21E - 04 0.042714648 - 1 5980519 34	129
A 09 P031996 Rh6 2.76E-04 0.044967778 -1.5790434 41	889
A 09 P112005 CG10357 1.49E-05 0.011698553 -15706613 38	435
A 09 P049331 Cbp53E 1.95E -04 0.041651685 -15593123 36	905
A_09_P008671 Lhr 1.60E-04 0.038315967 -1.501875 36	957

in a reaction mixture containing $1 \times$ Agilent fragmentation buffer and $2 \times$ Agilent GE blocking agent. After fragmentation, $2 \times$ Agilent GE hybridization buffer HI-RPM was added to the sample and then hybridized to SurePrint G3 custom microarray $8 \times 60K$ (G4102A#040871) for 17 h at 65 °C in a rotating Agilent hybridization oven (Agilent Technologies). Slides were scanned after washing on the SureScan Microarray Scanner using AgilentG3_GX_1Color_HighSensitivity (Agilent Technologies). Feature Extraction Software 10.7.3.1 (Agilent Technologies) was used with default parameters (protocol GE1_107_Sep09 and Grid: 040871_D_F_20120511) to obtain background-subtracted and spatially-detrended Processed Signal intensities. Data quality was evaluated by Evaluation Metrics for GE1_QCMT_Sep09 in the QC Report.

Data processing and analysis

Extracted text data were processed using GeneSpring GX12.1 (Agilent Technologies). Non-uniform or saturated probes as well as population outliers were compromised and quantile normalization was applied to each data set as the following setting: Threshold raw signal 1.0, Algorithm, Percentile Shift, Percentile Target, 75. Baseline was corrected by the median of all samples. Probes from all samples with intensity less than 20% were filtered out, resulting in 25,083 validated entities. These data from four independent samples for wild type and dark^{cd4} flies were subjected to statistical analysis by unpaired student's t-test with Benjamini Hochberg FDR correction. We obtained differentially expressed 188 (p < 0.05) or 481 entities (p < 0.1), and subsequent cut-off by fold change > 1.5 yielded 149 (Tables 1, 2) or 321 entities, respectively. GO analysis of these entities clearly demonstrated that immune-related genes were drastically elevated in *dark*^{cd4} mutants, while no GO term was enriched significantly for down-regulated genes. dFoxO target genes such as thor or lip3 were also significantly induced in *dark*^{cd4} mutants (Table 1). Reduction in *dark* expression was confirmed as three entities corresponding to dark were downregulated 6.0-, 4.5- and 3.5-fold compared to control (Table 2). Drosophila gnmt, the gene of our interest from metabolome analysis [1], was also included in the list of upregulated genes (p < 0.1), as two probes indicated 3.1and 3.2-fold increase in *dark*^{cd4} mutants.

Discussion

Here we described a transcriptomic profiling of *Drosophila* apoptosisdeficient mutants, *dark^{cd4}*. As reported recently, necrotic wing cells triggered spontaneous immune response in apoptosis-deficient mutants at this stage. Our well-controlled microarray data delineated the phenotypes observed in *dark^{cd4}* mutants and helped us clarify the systemic responses against necrotic cells. As far as we know, this is the first microarray analysis to describe transcriptional changes in apoptosis-deficient mutants in *Drosophila*. It is interesting that many other genes are also down- or upregulated in these mutants, and this dataset may be useful for revealing novel and unexpected phenotypes triggered in response to necrosis or other functions of Dark/caspase.

Conflict of interest

The authors declare no conflicts of interest.

Acknowledgments

We thank J. M. Abrams for providing *dark*^{cd4} mutants. We thank K. Takenaga and L. Ando for technical assistance and proofreading of the article, respectively. This work was supported by grants from the Japanese Ministry of Education, Science, Sports, Culture, and Technology (23229002).

References

- F. Obata, et al., Necrosis-driven systemic immune response alters SAM metabolism through the FOXO-GNMT axis. Cell Rep. 7 (3) (2014) 821–833.
- [2] A. Rodriguez, et al., Unrestrained caspase-dependent cell death caused by loss of Diap1 function requires the Drosophila Apaf-1 homolog, dark. EMBO J. 21 (9) (2002) 2189–2197.
- [3] A. Rodriguez, et al., Dark is a Drosophila homologue of Apaf-1/CED-4 and functions in an evolutionarily conserved death pathway. Nat. Cell Biol. 1 (5) (1999) 272–279.
- [4] M. Ming, et al., Persephone/Spatzle pathogen sensors mediate the activation of Toll receptor signaling in response to endogenous danger signals in apoptosis-deficient *Drosophila*. J. Biol. Chem. 289 (11) (2014) 7558–7568.
- [5] C.J. Mee, Microarray methods in *Drosophila* neurobiology. Invert. Neurosci. 5 (3–4) (2005) 189–195.