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Abstract

Objective: To determine the intra‐, inter‐ and test‐retest variability of CT‐based tex-

ture analysis (CTTA) metrics.

Materials and methods: In this study, we conducted a series of CT imaging experi-

ments using a texture phantom to evaluate the performance of a CTTA panel on

routine abdominal imaging protocols. The phantom comprises of three different

regions with various textures found in tumors. The phantom was scanned on two

CT scanners viz. the Philips Brilliance 64 CT and Toshiba Aquilion Prime 160 CT

scanners. The intra‐scanner variability of the CTTA metrics was evaluated across

imaging parameters such as slice thickness, field of view, post‐reconstruction filter-

ing, tube voltage, and tube current. For each scanner and scanning parameter com-

bination, we evaluated the performance of eight different types of texture

quantification techniques on a predetermined region of interest (ROI) within the

phantom image using 235 different texture metrics. We conducted the repeatability

(test‐retest) and robustness (intra‐scanner) test on both the scanners and the repro-

ducibility test was conducted by comparing the inter‐scanner differences in the

repeatability and robustness to identify reliable CTTA metrics. Reliable metrics are

those metrics that are repeatable, reproducible and robust.

Results: As expected, the robustness, repeatability and reproducibility of CTTA met-

rics are variably sensitive to various scanner and scanning parameters. Entropy of

Fast Fourier Transform‐based texture metrics was overall most reliable across the

two scanners and scanning conditions. Post‐processing techniques that reduce

image noise while preserving the underlying edges associated with true anatomy or

pathology bring about significant differences in radiomic reliability compared to

when they were not used.

Conclusion: Following large‐scale validation, identification of reliable CTTA metrics

can aid in conducting large‐scale multicenter CTTA analysis using sample sets

acquired using different imaging protocols, scanners etc.
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1 | INTRODUCTION

With the technological advancements in medical imaging, radiomics,

defined as the high‐throughput extraction of quantitative features

from routine medical images to create a mineable database of imag-

ing metrics, has emerged as a promising tool for decision support.1,2

Radiomic metrics assessing tumor shape, nonuniform grayscale

appearance (texture) which are difficult to assess visually have been

reported to provide information regarding tumor diagnosis, progno-

sis, and treatment response.1–7 In spite of various benefits within the

clinical workflow such as objective whole tumor assessment at no

additional imaging cost and longitudinal disease monitoring, limita-

tions with the standardization of the method reduce its reliability,

particularly in multicenter studies.8–16

Typical radiomic workflows comprise of four stages: image

acquisition, region of interest (ROI) segmentation, feature extrac-

tion and statistical analysis.6 Each of these four stages can be

implemented using a variety of approaches and techniques. Cur-

rently, there is no consensus regarding a standardized implementa-

tion of the radiomics workflow, thereby hampering efforts to

reproduce results.

Previous studies assessing the reproducibility of radiomic metrics

conclude that radiomic metrics are not equally sensitive or insensi-

tive to changes in scanning protocols or CT scanners. Therefore,

careful consideration of the type of radiomic metrics is warranted

based on the clinical application particularly in multicenter studies to

avoid the chances of false discovery.16

A recent systematic review conducted by Traverso et al.16

assessing the repeatability and reproducibility of radiomics identi-

fied that most current studies report high‐risk of type I error,

thereby increasing the chances of false discovery.17 In addition,

the use of correlated metrics within the radiomics panel increases

the chances of false associations with high significance.18 One of

the solutions suggested by Traverso et al.16 to reduce the risk of

false‐positive associations in radiomic studies is to identify repro-

ducible and repeatable radiomic metrics and use them to train pre-

dictive models of tumor behavior. To address this concern, we

conducted a series of CT imaging experiments using a texture

phantom on multiple scanners and scanning protocols to assess

the reliability of CTTA metrics. We define CTTA reliability as a

measure of intra‐scanner variability, inter‐scanner variability and

test‐retest performance of the CTTA metrics. To assess the intra‐
scanner variability or the “robustness” of the CTTA metrics, images

of the texture phantom are obtained using a variety of imaging

conditions (scanning parameters) on a given scanner and assessed

using a CTTA panel. CTTA metrics that show a strong unchanging

signal across the various imaging conditions are identified as “ro-

bust” CTTA metrics. To assess the test‐retest variability or the

“repeatability” of the CTTA metrics, images of the texture phan-

tom are obtained using a variety of imaging conditions on a given

scanner, 15 min apart and the difference in the performance of

the CTTA panel across the two time‐points is calculated. CTTA

metrics that show small to no changes in their values across the

various imaging conditions are identified as “repeatable” CTTA

metrics. To assess the inter‐scanner variability or the “reproducibil-

ity” of the CTTA metrics, CTTA metrics with consistent perfor-

mance of the robustness and repeatability were shortlisted across

scanners.

Through this study, we determine which type of CTTA metric is

most reliable within the limitations of the study and we provide

heatmaps of metrics such as robustness, repeatability, and repro-

ducibility showing comparative performance of the various CTTA

metrics.

2 | MATERIALS AND METHODS

2.A | CTTA Phantom

Most commercially available CT phantoms are designed to be

homogeneous throughout their volume; however, in real life

human anatomy has variable densities inside creating texture. In

our study, to evaluate the reliability of the CTTA metrics, we

develop a texture phantom. The phantom comprises of three tex-

ture patterns within a homogenous background representative of

textures seen in medical images (Fig. 1). The patterns were 5cm x

5cm in a 15 cm short cylinder. The phantom patterns were made

using acrylonitrile butadiene styrene (ABS) plastic using 3D print-

ing technologies and casting them into tissue density urethane.

The patterns Bk, 1, 2 and 3 represent texture varying from the

smoothest, that is, the background, to 10% fill, 20% fill, and 40%

fill. Our intention was to create a generic phantom that could be

imaged using diverse imaging protocols and scanners to identify

reliable CTTA metrics. It was not our intention to create a tumor‐
specific phantom as much as it was to create a phantom that

covers a wide enough span of tumor textures seen in oncological

CT images.

The goal of our project was to be able to reproducibly create

and manipulate textures. For this, we used a 3D printer to create

the texture patterns. While we tried a variety of approaches, we are

currently focusing on creating reproducible geometric patterns,

which could be varied in different ways to better understand how

changes in patterns drive texture and its analysis. The materials

selected for our tests were within the tissue density and texture

range and provided targeted contrast within our texture patterns.

These target Hounsfield number ranges were based on an evaluation

of patient images.
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2.B | CTTA phantom imaging

The texture phantom was scanned using a Philips Brilliance 64 CT

and Toshiba Aquilion Prime 160 CT scanner. The phantom was

fixed on the CT patient table for the duration of this study. The

image acquisition scanning positioning for each volume was rigidly

set to produce identically positioned slices, therefore obviating any

need for volume registration. For the robustness assessment, 21

different settings, were tested on the Philips scanner and 16 differ-

ent settings were tested on the Toshiba scanner (Table 1). For each

setting, the value of only one imaging parameter was changed from

the baseline scan, keeping all other variables constant. For the

repeatability assessment, the CTTA results acquired from scans

obtained 15 min apart on the same scanner were compared to

each other. Reproducibility assessment was conducted by compar-

ing the consistency of the robustness and repeatability signal

across the two scanners. For the CTTA analysis only ROIs 1, 2,

and 3 were analyzed. The post‐processing variables, i.e., IDOSE

levels (1–6) on the Philips scanner and Mild/Strong on the Toshiba

scanner were adjusted after all the scans. All acquisition parameters

were held constant while varying the post‐processing variables, one

at a time.

2.C | Region of interest segmentation

The ROI delineation was performed using a manual segmentation

technique. Three spherical ROIs were segmented in 3D using image‐
rendering software (Synapse 3D, Fujifilm, Stamford CT). Some

images of the phantom had air bubbles created as a result of the

construction process, care was taken to exclude these regions when

the analysis was performed.

Custom MATLAB (Mathworks, Natick, MA, USA) code was used

to extract voxel data corresponding to the ROI. Two‐dimensional

CTTA was conducted on the orientation that provided the largest

diameter in the axial, coronal, or sagittal dimension. Three‐dimen-

sional CTTA was conducted on the whole ROI volume. We used a

20‐bin gray‐level quantization. The slice thickness varied between 2

and 3 mm.

2.D | Image data

From the segmented ROI within the texture phantom, highlighted in

Fig. 1, the CTTA metrics were extracted.

2.E | CTTA metrics

Texture analysis involves the study of the variation of pixel image

intensity. We evaluated eight different types of texture quantifica-

tion techniques on each ROI image with 235 different texture met-

rics. These techniques have been described in the literature19–23

(Supplementary S1: Details of CTTA metrics).

2.E.1 | Histogram analysis

We implemented histogram analysis which focused on the first‐order
statistical analysis of texture,19 that is, the technique focused on

assessing image intensities (Gray‐level distribution of an image), with

no regard for the spatial location of the intensities. (13 features).

F I G . 1 . (Left) Texture phantom comprising of three texture patterns. (Middle) Phantom placement for image acquisition. (Right) Cross section
of texture phantom patterns. (1), (2) and (3) are 3D printed ABS plastic with fill levels 10%, 20%, and 40%, respectively. (Bk) is a homogenous
ABS material. (The window level is −500 HU with a width of 1600 HU).

TAB L E 1 Imaging parameters that were varied across the two
scanners

Imaging parameters
Philips Brilliance
64 CT

Toshiba Aquilion Prime
160 CT

Slice thickness (mm) 1x1, 2x2, 3x3,

4x4, 5x5

1x1, 2x2, 3x3, 4x4, 5x5

FOV (mm) 125, 500 125, 500

Post‐reconstruction
filtering

I‐dose (1,2,3,4,5,6) Mild, Strong

Tube voltage (kVp) 80, 100, 140 100, 135

Tube current (mA) 40, 60, 80,100 40,60,80,100
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2.E.2 | Two‐dimensional and Three‐dimensional
Gray‐level co‐occurrence method (GLCM) and Gray‐
level difference method (GLDM) Analysis

We performed second‐order statistical analysis of texture, which

included 2D‐ and 3D‐GLCM and GLDM analysis. These analyses

took into account both, the pixel intensities and their inter‐relation-
ships, thereby providing spatial information of the intensities (2nd

order texture analysis) in various forms. For workflow implementa-

tion, the number of gray levels was reduced to 12‐bit, which was

determined to be sufficiently accurate for the study of texture. Sixty

different metrics were calculated in 2D analysis. In the 3D analysis,

20 additional directions in the z‐plane were added. (80 × 2 = 160

features).

2.E.3 | Two‐dimensional fourier analysis

A 512‐point fast Fourier transform (FFT) was applied to all images.

Matlab® (Mathworks, Natick, MA) was used to apply the transfor-

mation.21 Applying the FFT algorithm, we extracted the individual

frequencies, their amplitude (how much of frequency of a given type

is present in the image), and phase (where in the image a given fre-

quency is present), of the original image. FFT metrics were assessed

between 10% and 90% of the maximum frequency to avoid high‐
and low‐frequency noise, which is typical for medical images. The

frequency boundary was set based on maximization of the signal to

noise ratio. (18 features).

2.E.4 | Two‐dimensional and Three‐dimensional
Gray‐level run‐length method (GLRLM) analysis

We performed additional second‐order statistical analysis of texture,

which included 2D‐ and 3D‐GLRLM.22 This analysis took into

account the spatial relationship between pixels/voxels to each other

by evaluating the frequency with which a given value of voxels

occurs next to each other in a given direction. The 2D analysis com-

prised of 33 metrics and 3D analysis included 11 more metrics (44

features).

2.F | Statistical analysis

For the robustness test, 21 unique image settings were tested on

the Philips scanner (x‐axis of Fig. 2A) and 16 unique settings were

tested on the Toshiba scanner (x‐axis of Fig. 2C). From the images

acquired for each setting, three ROIs (ROI 1, 2 and 3 from Fig. 2)

were segmented and analyzed using the texture panel of the USC

radiomics framework. The texture panel comprised of 229 features

belonging to eight subgroups of texture extraction methods (y‐axis
of Fig. 2A). The repeatability test was conducted 15 min apart for all

the image settings on both scanners.

For the repeatability test, the percent absolute difference

between each of the radiomic metrics in the initial scan and the

scan 15 min later was plotted for each scanner [Figs. 2(a) and 2(C)].

For the robustness test, the percent absolute difference between

each of the radiomic metrics in the baseline scan setting and new

F I G . 2 . Reliability assessment of the
texture metrics of the USC Radiomics
panel using two different CT scanners.

158 | VARGHESE ET AL.



settings (x‐axis variables) was plotted for each scanner [Figs. 2(a)

and 2(C)]. The variables were changed one at a time with respect to

the baseline scan settings. The percent absolute difference in the

radiomic metrics in the repeatability and robustness study has been

presented as a heatmap ranging from 0% (blue) to 20% (red) varia-

tion.

In the repeatability heatmap (Fig. 2), a solid horizontal blue band

represents good repeatability across these acquisition parameters

(here, <5% absolute difference between various settings). In the

robustness heatmap (Fig. 2), a solid horizontal blue band represents

good robustness across these acquisition parameters (here, <5% dif-

ference between various settings).

3 | RESULTS

Our results indicate that the reliability of radiomics metrics is depen-

dent on the scanner and scanning settings.

3.A | Repeatability

The percentages of repeatable CTTA according to the test‐retest
analysis, on the Philips scanner is 97.08% (4771 of 4914 CTTA met-

rics) when the cutoff value of 0.15 is chosen for the percent abso-

lute difference. A similar analysis on the Toshiba scanner showed

reduced repeatability of 74.01% (2771 of 3744 CTTA metrics). In

general, second‐order texture metrics such as GLCM, GLDM, and

GLRLM show poor repeatability in both the Philips and Toshiba

scanners. Three‐dimensional versions of these metrics show

improved repeatability on the Toshiba scanner in comparison to the

Philips scanner. Consistently, FFT metrics analysis metrics show

good repeatability (blue bands in the repeatability map next to FFT,

Metric 218 220 224 and 225).

3.B | Robustness

Regarding the influence of the modification of the CT acquisition

parameters on the reproducibility of RFs, results varied depending

on the scanner and imaging parameters. When robustness was eval-

uated, as in the reproducibility analysis, a cutoff value of 0.15 was

chosen for the percent absolute difference, that is, the difference

with respect to the baseline images. The robustness varied from

97.02% (456 of 470 CTTA metrics) when the field of view was chan-

ged to 8.93% (105 of 1175 CTTA metrics) when the slice thickness

was varied on the Philips scanner. The difference in the number of

CTTA variables stems from the fact that more combinations were

tested some variables compared to the others (Table 1). For example,

five combinations of slice thickness were considered, so 5 × 235

texture metrics = 1175 CTTA metrics were considered. Similarly,

only two combinations of field of view were considered, so 2 × 235

texture metrics = 470 CTTA metrics were considered. Robustness

measures dropped drastically on the Toshiba scanner, the values ran-

ged from 3.19% (15 of 470 CTTA metrics) when the noise filters

were used to 9.57% (45 of 470 CTTA metrics) when the field of

view was changed.

In general, FFT metrics show good robustness (blue bands in the

robustness map next to FFT, Metric 218 220 224 and 225). In gen-

eral, texture metrics are more robust on the Philips scanner com-

pared to the Toshiba scanner.

3.C | Reliability

By assessing the consistency of robust and repeatable CTTA metrics

across the two scanners, we see that only select FFT metrics (Metric

218 220 224 and 225) show strong signal on both scanners and

hence most reliable at least across the two scanners in considera-

tion. The reliable FFT metrics are related to assessing entropy of the

FFT magnitude and phase.

3.D | Effect of post‐processing techniques that
reduce image noise while preserving the underlying
edges associated with true anatomy or pathology

By comparing the changes in robustness of the CTTA metrics across

the two scanners, we observe that post‐processing techniques that

reduce image noise while preserving the underlying anatomical edges

for example, I‐dose levels (here 6 levels) on the Philips scanner and

Mild/Strong (here 2 levels) levels on the Toshiba scanner produce

significant difference in CTTA robustness compared to the base set-

ting (Fig. 3). Stronger noise reduction techniques were associated

with a significant reduction in reliability in the Philips scanner, how-

ever, the opposite was observed on the Toshiba scanner. In both

cases, no noise reduction techniques were used in the base setting.

4 | DISCUSSION

While CTTA based tumor‐modeling assessment is increasingly being

reported,1–7 a consensus on radiomics reliability has not emerged

leading to an increased risk of false discovery. Such a scenario can

impede the clinical translation of radiomics. The primary objective of

our study was to identify CTTA metrics that are reliable using a CT‐
based texture phantom. We specifically assess the intra‐, inter‐ and
test‐retest variations of 235 CTTA metrics derived from eight differ-

ent texture methods using the texture phantom imaged under differ-

ent CT imaging settings.

Several studies have been conducted to investigate the temporal

stability of CTTA metrics. However, most of these studies have been

limited to performing the stability assessment using the Credence

Cartridge Radiomics (CCR) Phantom in a test‐retest setting and for

different combinations of scanners, imaging, and post‐processing
protocols.10,11,24,25 By design, the CCR phantom has been cus-

tomized to assess the reliability of global texture metrics assessed

from non‐small cell lung carcinoma (NSCLC) imaging data. Studies by

Mackin et al reporting the first use of the CCR phantom established

that the inter‐scanner variability of the radiomic metrics depended
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on both the cartridge material of the CCR phantom and the metric

being assessed.10 While the range of the scan acquisition parameter

variations was limited to those used in imaging NSCLC patients, the

study identified select radiomics metrics extracted from NSCLC

tumors that had large inter‐scanner variability compared to the inter‐
patient variability. Yet another limitation of the phantom is its cuboi-

dal shape which makes it prone to CT‐based imaging artefacts and

also, only a couple of cartridge inserts, namely rubber and acrylic

have been further analyzed in other studies.24,25 Our phantom is an

improvement over the anthropomorphic thorax phantom used by

Zhao et al., as our ROIs were designed to be heterogeneous in den-

sity to evaluate image textures.26 Future versions of our phantom

will consider using the 3D shapes as suggested by Zhao et al. in

combination with our texture patterns.

From a material standpoint, our texture phantom was made using

ABS plastic using 3D printing technologies and casting them into tis-

sue density urethane. Our intention was to create a generic phantom

that could be imaged using diverse imaging protocols and scanners

to identify reliable CTTA metrics. We focused on using materials and

designs inspired from a wide span of tumor textures seen in onco-

logical CT images. Subsequently, the materials selected for our tests

were within the tissue density and texture range that provided

targeted contrast within our texture patterns. This is an improve-

ment over texture analysis reliability studies conducted using a water

phantom.27 Last, but not least, from a design standpoint, our texture

phantom is designed as a short length cylinder, similar to the stan-

dard ACR/AAPM phantom28 which is comparatively more CT‐friendly
design in terms of reducing imaging artefacts compared to a cuboid.

From an analysis standpoint, using the concordance correlation

coefficient (CCC) as a metric for stability, a few studies assess the

variation in radiomic metric values with changes in slice thickness,

exposure and bin width. Studies by Larue et al., showed that of

these three, slice thickness and exposure were dominant. Changes

due to slice thickness could be overcome by resampling, however,

no clear relationship between radiomic metrics and exposure was

established.25 While the finding of this study is important, some of

the important limitations of this study include that study was limited

to the rubber insert of the CCR phantom, which was identified in

prior studies by Mackin et al to produce the most comparable radio-

mic metrics distribution comparable to NSCLC datasets. Therefore,

the findings are not translatable to other tumor types. Most recent

studies conducted by Mackin et al., indicate that variable x‐ray tube

current is unlikely to have a large effect on radiomic features

extracted from computed tomography images of textured objects

F I G . 3 . Robustness assessment of the
texture metrics due to changes in
reconstruction filters; I‐dose levels (Philips
scanner [a] and changes in noise
corrections levels (Mild or Strong) on the
Toshiba scanner[b].
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such as tumors.10 Studies by Hassan et al., showed that normalizing

voxel size and gray‐level discretization greatly reduced the depen-

dence of CTTA metrics on these quantities.24 While novel CTTA

metrics such as first‐order wavelet features were assessed in this

reliability study, the limited suitability of the CCR phantom to truly

assess the performance of metrics of local texture variations limits

the scope of these findings. Recent studies by Lu et al., using the a

Gammex CT ACR 464 phantom29 and scanning its four water equiv-

alent inserts using routine abdomen protocols on a GE Discovery

scanner reported that highly reliable radiomic metrics were attained

from images reconstructed at high tube current and thick slice thick-

ness. Also, based on a ranking of the reliability of commonly used

CTTA metrics, first‐order texture metrics such as mean, standard

deviation, skewness, kurtosis were more reliable than second‐order
texture metrics such as GLCM‐energy, correlation, contrast, and

homogeneity. While encouraging, the study was tested on only one

scanner and using two materials for each pattern.

In addition to designing a more sophisticated phantom that mimic

in vivo lesions with the help of 3D‐printing technique, we include a

new addition, that is, FFT‐based features in this analysis. Considering

that FFT‐based metrics still assess the global variations in texture, it

is a valuable addition to the CTTA panel and suitable for evaluation

using our phantom and the CCR phantom. While the reliability of

FFT‐based metrics are being assessed for the first time, its predictive

value has been assessed in prior studies. Published literature shows

that FFT‐based spectral metrics can differentiate between ccRCC

grades and differentiating solid, non‐macroscopic fat containing,

enhancing renal masses based on their CT images.21 While using

wavelet features that have also shown great potential in characteriz-

ing tumor behavior15,30 would have been a more generalized

approach to FFT, a phantom made of multi‐material would be best

suited to study the local variations in texture captured by the wavelet

metrics and assess its reliability. Our texture pattern is based on 3D

printing a single material, which is immersed a casting material. While

the boundaries serve as multi‐material regions, the assessment will be

limited and unrealistic owing to simplification. Our next generation/

version of the texture phantom will include this.

Identification of reliable CTTA metrics is an important step

toward the clinical translation of radiomics. Our approach of identify-

ing such metrics differs from studies in the literature13,31 by the use

of a new texture phantom and a rigid ROI registration, which helps

in eliminating the reported challenges such as patient‐based tumor

variability and segmentation bias/errors. In addition, we assessed all

the CT acquisition parameters together, which to the best of our

knowledge has not been performed before. Finally, we assessed the

reliability of CTTA metrics by using comparable acquisition protocols,

over a wide range of values, over two CT scanners. Similar stud-

ies9,10 have addressed such issues but their use of automatic acquisi-

tion protocols for different CT scanners, lead to reproducibility

concerns, particularly since, automatic acquisition protocols optimize

imaging parameters such as tube current, slice thickness etc., which

make it impossible to study the effects of various imaging parame-

ters simultaneously at the same time.

Different CT scanners have been proven to report a variation in

Hounsfield units.10 In addition to scanner specific calibration, these

differences may be responsible for the changes in radiomics repro-

ducibility across the two scanners. Our results support this fact and

identify reliable CTTA metrics for use across different scanners. In

addition to testing the reliability of CTTA metrics to image acquisi-

tion parameters, also tested its reliability to changes brought about

by using noise reduction techniques such as I‐dose etc. As expected,

due its nonlinear effect, the use of I‐dose levels affects radiomic reli-

ability significantly. The CTTA reliability reduces with the increase in

I‐dose levels.

Published data assessing radiomics reproducibility and repeatabil-

ity have reported a high reliability is associated with the entropy

measure of first‐order statistical measure (e.g., histogram analysis).32

Though we do not observe histogram‐based entropy measure to be

reliable in our experiments, we do observe entropy of FFT magni-

tude and FFT phase to be reliable.16 While other measures of local

variation such as GLRLM failed to show reliability, entropy of FFT‐
based metrics such as magnitude and phase which also assess local

variations of texture showed reliability. The reduced sensitivity of

the FFT measures to the scanner and imaging confounds needs to

be further evaluated. However, within the limitation of the study,

the entropy of FFT‐based magnitude and phase was shown to be

more reliable than other texture metrics across the two scanners

and imaging conditions we considered.

In our study, we observe that nonlinear noise reduction tech-

niques such as I‐dose levels bring about a significant difference in

the robustness of the CTTA metrics compared to the when such

techniques were not used. Future studies assessing the effects of

such post‐reconstruction noise reduction techniques are warranted.

One of the limitations of our study is that we used a texture

phantom; therefore, a biological correlation for identified CTTA met-

rics could not be addressed. However, development of texture phan-

toms is crucial to conducting inter‐scanner, intra‐scanner, and test‐
retest variability of CTTA metrics within a multicenter setting. Once

reliable CTTA metrics are identified follow‐up studies assessing bio-

logical correlation can be designed. Another limitation of our study is

that our result could be affected by the fundamental design differ-

ences of the scanners. Rather than following clinical protocol, we

decided to use imaging‐variables that spanned the values seen in

clinical scans. This approach allowed us to assess the variability in

the phantom scans as a result of characteristics inherent to the scan-

ner. Using our approach, imaging protocols that produce high‐relia-
bility CTTA metrics can be identified, however, this is not the focus

of the paper. Further, our work was limited to only two scanners

and the effect of factors such as motion, scatter, noise etc. was not

assessed. In the developed texture phantom, we use textures non-

specific to a given human tissue, but this was done to improve the

comprehensive assessment of a variety of human tissue textures

than that of a specific one.

The two commonly used statistical indices to assess reliability

include the intraclass correlation coefficient (ICC) and the CCC.33

When assessing reproducibility alone without repeating multiple
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times for a given scanner or modality, the ICC2 (two‐way random)

and ICC3 (two‐way mixed) are identical to CCC. However, if with

repeated measures, which is equivalent to assessing reproducibility

and repeatability at once, only ICC3 (two‐way mixed) is identical to

CCC. CCC or ICC2/ICC3 include two components for claiming reli-

able (a) small difference between measurements (b) correlated result

between measurements. An excellent CCC or ICC will represent

both the small difference and high correlation, however when the

CCC or ICC value is moderate, it will be hard to pin point whether

the problem is from large difference or poor correlation. In this pre-

liminary study, we only have three inserts for the phantom, thus we

are only interested in observing the signal change (difference) when

altering the scanner settings, or between scanners. The absolute per-

cent difference is very intuitive to serve the purpose of this study. If

evidence established for reliability in signal difference, we will pro-

ceed further study with more heterogeneous inserts (e.g., 9) and

investigate both difference and correlation.

Various studies have shown the valuable role of CTTA metrics in

tumor characterization, prognosis, and survival information, albeit

using a small sample size.6,21,33–35 While The Cancer Imaging Archive

(TCIA) database can aid large‐scale validation of the CTTA panel,

additional problems such as noisy or missing data can reduce the

impact. Machine‐learning methods have been used to augment these

limitations,36 however, the choice of machine‐learning algorithms

and associated steps affects the final performance and thus far a

consensus has not been reached. Future work within our group will

evaluate the clinical applications of our results using data‐driven
radiomics37 frameworks in combination with TCIA data.

In conclusion, our study has demonstrated the intra‐, inter‐ and

test‐retest variation in CTTA metrics calculated on CT images of a tex-

ture phantom imaged using two different CT scanners. We identify

reliable CTTA metrics, that is, those metrics with less < 5% change in

its value when assessing for robustness, reproducibility, and repeata-

bility. We strongly recommend that groups working on future radiomic

studies account for the performance variations demonstrated here

and/ or use the reliable CTTA metrics, that is, Entropy of FFT‐based
magnitude and phase, within their radiomics texture panel.
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SUPPORTING INFORMATION

Additional supporting information may be found online in the

Supporting Information section at the end of the article.

Supinfo. CTTA metrics used in the reliability assessment heatmap.
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