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Abstract

Most neurons in peripheral sensory pathways initially respond vigorously when a preferred stimulus is presented, but adapt
as stimulation continues. It is unclear how this phenomenon affects stimulus coding in the later stages of sensory
processing. Here, we show that a temporally sparse and reliable stimulus representation develops naturally in sequential
stages of a sensory network with adapting neurons. As a modeling framework we employ a mean-field approach together
with an adaptive population density treatment, accompanied by numerical simulations of spiking neural networks. We find
that cellular adaptation plays a critical role in the dynamic reduction of the trial-by-trial variability of cortical spike responses
by transiently suppressing self-generated fast fluctuations in the cortical balanced network. This provides an explanation for
a widespread cortical phenomenon by a simple mechanism. We further show that in the insect olfactory system cellular
adaptation is sufficient to explain the emergence of the temporally sparse and reliable stimulus representation in the
mushroom body. Our results reveal a generic, biophysically plausible mechanism that can explain the emergence of a
temporally sparse and reliable stimulus representation within a sequential processing architecture.
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Introduction

The phenomenon of spike-frequency adaptation (SFA) [1],

which is also known as spike-rate adaptation, is a fundamental

process in nervous systems that attenuates neuronal stimulus

responses to a lower level following an initial high firing. This

process can be mediated by different cell-intrinsic mechanisms that

involve a spike-triggered self-inhibition, and which can operate in

a wide range of time scales [2–4]. These mechanisms are probably

related to the early evolution of the excitable membrane [5–7] and

are common to vertebrate and invertebrate neurons, both in the

peripheral and central nervous system [8]. Nonetheless, the

functional consequences of SFA in peripheral stages of sensory

processing on the stimuli representation in later network stages

remain unclear. For instance, light adaptation in photoreceptors

strongly shapes their responses [9,10] and affects stimulus

information in second-order neurons [11]. In a seminal work by

Hecht and colleagues [12], it was shown that during dark

adaptation, 10 or less photon absorptions in the retina were

sufficient to give a sensation of light within a millisecond of

exposure and the response variability could be largely accounted

for by quantum fluctuations. This is an interesting empirical result,

and still it is theoretically puzzling that the intrinsic noise of the

nervous system [13] has only little influence on the detection of

such an extremely weak stimulus. A proposal by Barlow [14]

suggested that successive processing in sensory neural pathways

decrements the number of response spikes and therefore the

informativeness of each spike increases while the level of noise

decreases. However, it remains unclear how such temporally

sparse spike responses can reliably encode information in the face

of the immense cortical variability [15] and the sensitivity of

cortical networks to small perturbations [16,17].

The widespread phenomenon of a dynamically suppressed trial-

by-trial response variability in sensory and motor cortices [18–20]

along with a sparse representation [21,22] hints at an increased

reliability of the underlying neuronal code and may facilitate the

perception of weak stimuli. However, the prevailing cortical

network models of randomly connected spiking neurons, where

the balance of excitation and inhibition is quickly reinstated within

milliseconds after the arrival of an excitatory afferent input, do not

capture this dynamic [16,17,23–25]. Recent numerical observa-

tions suggest that a clustered topology of the balanced network

[26] or attractor networks with multi-stability [27] provide possible

explanations for suppressing cortical variability during afferent

stimulation.

In this study, we introduce an alternative and unified

description in which a temporally sparse stimulus representation

and the transient increase of response reliability emerge naturally.

Our approach exploits the functional consequences of SFA in

multi-stage network processing. Here, we show that the SFA

mechanism introduces a dynamical non-linearity in the transfer

function of neurons. Subsequently, the response onset becomes

progressively sparser when transmitted across successive process-

ing stages. We use a rigorous master equation description of

neuronal ensembles [28–30] and numerical network simulations to

arrive at the main result that the self-regulating effect of SFA
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causes a stimulus-triggered reduction of firing variability by

modulating the average inhibition in the balanced cortical

network. In this manner the temporally sparse representation is

accompanied by an increased response reliability. We further

utilize this theoretical framework to demonstrate the generality of

this effect in a highly structured network model of insect olfactory

sensory processing, where sequential neuronal adaptation readily

explains the ubiquitously observed sparse and precisely timed

stimulus response spikes at the level of the so-called Kenyon cells

[31–34]. Our experimental results qualitatively supports this

theoretical prediction.

Results

Temporal sparseness emerges in successive adapting
populations

To examine how successive adapting populations can achieve

temporal sparseness, first we mathematically analyzed a sequence

of neuronal ensembles (Figure 1A), where each ensemble exhibits

a generic model of mean firing rate adaptation by means of a slow

negative self-feedback [2,28,35] (Materials and Methods). This

sequence of neuronal ensembles should be viewed as a caricature

for distinct stages in the pathway of sensory processing. For

instance, in the mammalian olfactory system the sensory pathway

involves several stages from the olfactory sensory neurons to the

olfactory bulb, the piriform cortex, and then to higher cortical

areas (Figure 1A).

The mean firing rate in the steady-state of a single adaptive

population can be obtained by solving the rate consistency

equation, �rri~f ((g�rri{1zmi){tsqs�rri Ds2
i ), where �rri is the equilibri-

um mean firing rate of the i{th population, g, mi and s2
i are

coupling strength, mean and variance of the total input into the

population, respectively, f is the response function (input-output

transfer function, or f {I curve) of the population mean activity,

qs is the quantal conductance of the adaptation mechanism per

unit of firing rate, and ts is the adaptation relaxation time constant

[2,28,35]. The firing rate model assumes that individual neurons

spike with Poisson statistics, and that the adaptation level only

affects mean input into neurons, resulting in a change to the

steady-state mean firing rate. It is known that any sufficiently slow

modulation (1=rmaxvts) linearizes the steady-state solution, �rri, due

to the self-inhibitory feedback being proportional to the firing rate

(see Materials and Methods) [36].

Here, for simplicity, we studied the case where all populations in

the network exhibit the same initial steady-state rate. This is

achieved by adjustment of a constant background input to

population i, given g (doted arrows, Figure 1A), resembling the

stimulus irrelevant interactions in the network. All populations are

coupled by the same strength g. First, we calculated the average

firing rate dynamics of the populations’ responses following a step

increase in the mean input to the first layer (black arrow,

Figure 1A). By solving the dynamics of the mean firing rate and

adaptation level concurrently, we obtained the mean-field

approximation of the populations’ firing rates (Materials and
Methods). As it is typical for adapting neurons, the responses of

each population consisted of a fast transient following stimulus

onset before it converges to the new steady-state (tonic response

part) with a stable focus (Materials and Methods). The

Figure 1B shows the mean firing rate of three consecutive

populations. The phasic response to the step increase in the input

is preserved across stages. However, the tonic response becomes

increasingly suppressed in the later stages (Figure 1B). This

phenomenon is a general feature of successive adaptive neuronal

populations with a non-linear transfer function f which, is

linearized in steady-state due to adaptation negative feedback

[36]. This result emerges as the change in the i{th population

mean rate that can be determined by solving the rate consistency

equation now for a step change in the input

D�rri~f (gD�rri{1{D�rritsqs). The necessary condition for the

suppression of the steady-state responses is a sufficiently strong

Figure 1. Neuronal adaptation in the multi-stage processing
network. (A) Schematic illustration of a three-layered model of an
adaptive pathway of sensory processing. The network consists of three
consecutive adaptive populations. Each population receives sensory
input from an afferent source (black arrows) and independent constant
background excitation (dashed arrow). Input is modeled by a Gaussian
density and a sensory stimulus presented to the first population is
modeled by an increase in the mean input value. (B) Response profiles.
The evoked state consists of a phasic-tonic response in all populations.
The tonic response level is decremented across the consecutive
populations. (C) Temporal sparseness Si

r is measured by the integral
over the firing rate and normalized by the average spike count at
t~500ms in the first population. Responses become progressively
sparser as the stimulus propagates into the network. (D) Secondary
response profiles. The additional jump increase in stimulus strength at
t~1000ms during the evoked state of the first stimulus results in a
secondary phasic response in all populations with an amplitude
overshoot in the 2nd and 3rd population.
doi:10.1371/journal.pcbi.1003251.g001

Author Summary

Many lines of evidence suggest that few spikes carry the
relevant stimulus information at later stages of sensory
processing. Yet mechanisms for the emergence of a robust
and temporally sparse sensory representation remain
elusive. Here, we introduce an idea in which a temporal
sparse and reliable stimulus representation develops
naturally in spiking networks. It combines principles of
signal propagation with the commonly observed mecha-
nism of neuronal firing rate adaptation. Using a stringent
numerical and mathematical approach, we show how a
dense rate code at the periphery translates into a temporal
sparse representation in the cortical network. At the same
time, it dynamically suppresses trial-by-trial variability,
matching experimental observations in sensory cortices.
Computational modelling of the insects olfactory pathway
suggests that the same principle underlies the prominent
example of temporal sparse coding in the mushroom
body. Our results reveal a computational principle that
relates neuronal firing rate adaptation to temporal sparse
coding and variability suppression in nervous systems.

Sequential Adaptation in Sensory Pathways
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adaptation (Materials and Methods). It is worth to note that

the populations exhibit under-shoots after the offset of the stimulus

(Figure 1B). This is due to the adaptation level that accumulated

during the evoked state.

The result in this sub-section (Figure 1B–C) was established

with a current based leaky integrated-and-fire response function.

However, the analysis presented here extends to the majority of

neuronal transfer functions since the stability and linearity of the

adapted steady-states are granted for many biophysical transfer

functions [35,36]. This simple effect leads to a progressively

sparser representation across successive stage of a generic feed-

forward adaptive processing. We assess temporal sparseness by

computing the time-dependent integral Si
r(T)~

Ð T

0
ri(t)dt, where

ri(t) is the mean firing rate of population i and T is the increasing

observation time window. Normalization of this measure by the

spike count in the first population S1
r (T~500) indicates that

responses in the later stages of the adaptive network are temporally

sparser (Figure 1C). This is expressed in the sharp increase of the

rate integral during the transient response, whereas the first

population integral shows an almost constant increase in the

number of spikes.

Does the suppression of the adapted response level impair the

information about the presence of the stimulus? To explore this,

we studied a secondary increase in stimulus strengths with an

equal magnitude, after 1 second, when the network has relaxed to

the evoked equilibrium (Figure 1D). The secondary stimulus

jump induced a secondary phasic response of comparable

magnitude in the first population (Figure 1D). However, in the

later populations this jump evoked an increased peak rate in the

phasic response (Figure 1D). Notably, the coupling factor g
between the populations shapes this phenomena. Here, we

adjusted g to achieve an equal onset response magnitude across

the populations for the first stimulus jump at t~0, and a slight

increase in the population onset response in the first population is

amplified in the later stages. This is due to the fact that the later

stages accumulated less adaptation in their evoked steady-state (the

level of adaptation is proportional to mean firing rate). Impor-

tantly, this result confirms that the sustained presence of the

stimulus is indeed stored at the level of cellular adaptation [37],

even though it is not reflected in the firing rate of the last

population (Materials and Methods). Therefore, regardless of

the absolute amplitude of responses, the relative relation between

secondary and initial onset keeps increasing across layers. This

type of secondary overshoot is also experimentally known as sensory

sensitization or response amplification, where an additional increase in

the stimulus strength significantly enhances the responsiveness of

later stages after the network converged to an adapted steady-state

[10,11,38,39].

Adaptation increases response reliability in the cortical
network

The mean firing rate approach as above is insufficient to

determine how reliable the observed response transients are

across repeated simulations. In a spiking model of neo-cortex

(the balanced network), self-generating recurrent fluctuations

strongly dominate the dynamics of interactions and produce

highly irregular and variable activity [24]. This prevailing

cortical model suggests that balance of excitation and inhibition

is quickly reinstated within milliseconds after the onset of an

excitatory input and adjusts the network fluctuations level [23].

Therefore, it has been questioned whether a few temporarily

meaningful action potentials could reliably encode the presence

of a stimulus [16].

To investigate the reliability of adaptive mapping from a dense

stimulus to a sparse cortical spike response across successive

processing stages we employed the adaptive population density

formalisms [28,29] (Materials and Methods) along with

numerical network simulations. We embedded a two-layered

sensory network with an afferent ensemble projecting to a cortical

network (Figure 2A). The afferent ensemble consisted of 4,000

adaptive neurons that included voltage dynamics, conductance-

based synapses, and spike-induced adaptation [28]. It resembles

the sub-cortical sensory processing and each neuron in the afferent

ensemble projects randomly to 1% of the neurons in the cortical

network. This is a large circuit of the balanced network

(Figure 2A) with 10,000 excitatory and 2,500 inhibitory neurons

with a typical random diluted connectivity of 1%. The spiking

neuron model in the cortical network again includes voltage

dynamics, conductance-based synapses, and spike-induced adap-

tation [28]. All neurons are alike and parameters are given in

Table 3 in Muller et al. [28]. With appropriate adjustment of the

synaptic weights, the cortical network operates in a globally

balanced manner, producing irregular, asynchronous activity

[24,40,41]. The distribution of firing rates for the network

approximates a power-law density [42] with an average firing

rate of &3:0Hz (Figure 2B) and the coefficients of variation (Cv)

for the inter-spike intervals are centered at a value slightly greater

than unity (Figure 2C) indicating the globally balanced and

irregular state of the network [41]. Noteworthy is that the activity

of neurons in both stages is fairly incoherent and spiking in each

sub-network is independent. Therefore, one can apply an

adiabatic elimination of the fast variables and formulate a

population density description where a detailed neuron model

reduces to a stochastic point process [28,29] that provides an

analytical approximation of the spiking dynamics and helps

understanding the network simulation results in this section. This

framework allows for a detailed study of a large and incoherent

network without the need of numerical simulations (Materials
and Methods).

The background input is modelled as a set of independent

Poisson processes that drive both sub-networks (dashed arrows,

Figure 2A). The stimulus dependent input is an increase in the

intensity of the Poisson input into the afferent ensemble (solid

arrow, Figure 2A). Before the stimulus became active at time

t~0, a typical neuron showed an irregular spiking activity in both

network stages (Figure 2B–D). Whenever a sufficiently strong

stimulus is applied all neurons in the afferent ensemble exhibited a

transient response before the population mean firing rate

converges back to a new level of steady-state (Figure 2D,E).

The population firing rate of neurons in the cortical network also

exhibited a transient evoked response (Figure 2D,E). However, in

the balanced network individual neurons are heterogeneous in

their responses (Figure 2D), since the number of inputs from

afferent and recurrent connectivity are random. In contrast to the

rate model in the previous section where individual neurons were

assumed to spike in a Poissonian manner, the adaptive neuron

model in the neural network simulation operates far away for this

assumption since the adaptation endows a long lasting memory

effect on the spike times [28,29] that extends beyond the last spike.

The time constant of this memory is determined by the time

constant of adaptation (ts = 110 ms). This non-renewal statistics

determines the shape of the transient component of the population

response in Figure 2E. The spiking irregularity shows that the

evoked state in the afferent ensemble is more regular than its

background. The balanced network still exhibits a fairly irregular

spiking and its average C2
v stays approximately constant slightly

above 1 (Figure 2D). The population firing rate in the numerical

Sequential Adaptation in Sensory Pathways
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simulations (solid line, Figure 2E) follow well the adaptive

population density treatment (filled circles, Figure 2E).

To measure the effect of neuronal adaptation on the temporal

sparseness, we again computed the number of spikes per neuron

after the stimulus onset, Se(T). We compare our standard

adaptive network with an adaptation time constant of ts = 110 ms

(solid lines, Figure 2F) to a weakly-adaptive control network

(ts = 30 ms; dashed lines, Figure 2F). Note, that the adaptation

time constant in the weakly adaptive network is about equal to the

membrane time constant and therefore plays a minor role for the

network dynamics. It showed that both sub-networks generated

sharp population level phasic response, which in the case of the

cortical network evoked a single sharply timed spike within the first

&10{20ms in a subset of neurons (Figure 2B,F). In the control

case, the response is non-sparse and response spikes are distributed

throughout the stimulus period (dashed lines, Figure 2F). Overall,

strong adaptation reduces the total number of stimulus-induced

action potentials per neuron and concentrates their occurrence

within an initial brief phasic response part following the fast

change in the stimulus. This temporal sparseness is reflected in the

cumulative number of spikes per neuron (Figure 2F) which

increases sharply. Thus, in accordance with the results of the rate-

Figure 2. Reliability of a temporally sparse code in the balanced cortical network. (A) Schematic of a two-layer model of sub-cortical and
early cortical sensory processing. The afferent ensemble (blue) consists of 4,000 independent neurons, and each neuron projects to 1% of the
neurons in the cortical network (green). The cortical network is a balanced network in the asynchronous and irregular state with random connectivity.
In both populations black circles represent excitatory neurons and magenta circles represent inhibitory cells. (B) The distribution of firing rates across
neurons in the cortical network is fat-tailed and the average firing rate is approximately 3 Hz. (C) The distribution of the coefficient of variation (Cv)
across neurons in the balanced cortical network confirms irregular spiking. (D) Spike raster plot for a sample set of 30 afferent neurons (blue dots) and
30 excitatory cortical neurons (green dots). At t~0 (gray triangle) the stimulus presentation starts. (E) Population averaged firing for both network
stages. The simulation (solid lines) follows the calculated ensemble average predicted by the adaptive density treatment (black circles). The firing rate
in the simulated network is estimated with a 20 ms bin size. (F) Number of spikes per neuron Se after stimulus onset (t~0) for the adaptive network
(solid lines) and the weakly adaptive control network (dashed lines). Cortical excitatory neurons (green) produced less spikes than neurons in the
earlier stage (afferent ensemble, blue). The shaded area indicates the standard deviation across neurons. (G,H) Fano factor dynamics of the afferent
ensemble in the network with strongly adapting neurons (G, ts~110ms) and in the weakly-adaptive (H, ts~30ms) network, estimated across 200
trials in a 50 ms window and a sliding of 10 ms for the ensemble network with adaptation. The black circles indicate the theoretical value of the Fano
factor computed by adaptive density treatment and shaded area is the standard deviation of the Fano factor across neurons in the network. (I) The
Fano factor of strongly adaptive neurons in cortical balanced network reduced transiently during the initial phasic response part. The crosses show
the adaptive cortical ensemble Fano factor for the case where the afferent ensemble neurons were modeled as a Poisson process with the same
steady-state firing rate and without adaption. (J) The Fano factor in the weakly adaptive cortical network did not exhibit a reduction during
stimulation.
doi:10.1371/journal.pcbi.1003251.g002

Sequential Adaptation in Sensory Pathways

PLOS Computational Biology | www.ploscompbiol.org 4 October 2013 | Volume 9 | Issue 10 | e1003251



based model in the previous section, one can conclude that the

sequence of adaptive processing accounts for the emergence of a

temporally sparse stimulus representation in a cortical population.

We also estimated the fraction of neurons that significantly

changed their number of spikes after stimulus onset. By

construction, all cells in the afferent ensemble, both in adaptive

and weakly-adaptive cases, produce a significant response.

However, neurons in the cortical layer are far more selective. In

the weakly-adaptive network 58% of all neurons responded

significantly. In the adaptive network this number drops to 36%.

This is calculated by comparing the count distribution across trials

in 200 ms windows before and after the stimulus onset (Wilcoxon

rank sum test, p-value = 0.01).

To reveal the effect of adaptation on the response variability, we

employed the time-resolved Fano factor [20], F , which measures

the spike-count variance divided by the mean spike count across

200 repeated simulations. Spikes were counted in a 50 ms time

window and a sliding of 10 ms [18]. As before, we compared our

standard adaptive network (Figure 2G,I; ts = 110 ms) with the

control network (Figure 2H,J; ts = 30 ms). Since the Fano factor

is known to be strongly dependent on the firing rate, we adjusted

the stimulus level to the latter such that the averaged steady state

firing rates in both networks were mean-matched [18]. The input

Poisson spike trains (F~1) translated into slightly more regular

spontaneous (tv0) activity in the afferent ensemble (Figure 2G),

as neuronal membrane filtering and refractoriness reduced the

output variability. After the stimulus onset (t~0), due to the

increase in the mean input rate, the average firing rate increased,

however the variance of the number of events per trial did not

increase proportionally. Therefore, we observed a reduction in the

Fano factor (Figure 2G). This phenomena is independent of the

adaptation mechanism in the neuron model and a quantitatively

similar reduction can be observed in the weakly adaptive afferent

ensemble (Figure 2H). A comparison between our standard

adaptive and the control case reveals that the adaptive network is

generally more regular in the background and in the evoked state

(Figure 2G,H). This is due to the previously known effect, where

adaptation induces negative serial dependencies in the inter-spike

intervals [29,43] and as a result reduces the Fano factor [29,44].

In the next stage of processing, the distribution of F across

neurons during spontaneous activity is high due to the self-

generated noise of the balanced circuits [23,24]. This closely

follows a wide spread experimental finding where Fw1 in the

spontaneous activity of sensory and motor cortices [18–20]

(Figure 2G,H). This highly variable regime can be achieved in

the balance network with strong recurrent couplings [23].

Whenever a sufficiently strong stimulus was applied, the internally

generated fluctuations in the adaptive balanced network were

transiently suppressed, and as a result the Fano factor dropped

sharply (Figure 2I). However, this reduction of the Fano factor is

a temporary phenomenon and F converges back to slightly above

the baseline variability (Figure 2I). At the same time, the evoked

steady-state firing remained in the irregular and asynchronous

state (Figure 2D). Indeed, this transient effect corresponds to a

temporally mismatch in the balanced input conditions to the

cortical neurons since the self-inhibitory and slower adaption effect

prevents a rapid adjustment to the new input regime. This can be

observed in the time course of variability suppression that closely

reflects the time constant of adaptation (Figure 2I). However,

with stronger adaptive feedforward input we can prevent the

return of the Fano factor to the base line, this phenomena is due to

the regularizing effect of adaptation in the afferent ensemble. In

this scenario, the afferent ensemble structured the input to the

cortical ensemble, contributing to the magnitude of the observed

variability reduction. Indeed, whenever the excitatory feedforward

strength is considerably strong, relative to the recurrent connec-

tions, the cortical network moves away from the balanced

condition. Thus, such strong input resets the internal spiking

dynamics within the cortical network and as a result it regulates

the spiking variability [45]. This mechanism evidently can be used

to prevent the recovery of the high variability. However, we

deliberately use a weak stimulation to focus on the transit

suppression of cortical variability that is mediated by the slow

self-regulation due to adaptation. For instance, under the control

condition where a pure Poisson input (with similar synaptic

strength) is provided to the cortical balanced network, the

reduction in F is reduced but the time scale of recovery remains

unaltered (crosses in Figure 2I). We contrast this adaptive

behavior with the variability dynamics in the weakly adaptive

balanced network (Figure 2J). In this case there is no reduction in

F , because for a short adaptation time constant the convergence to

the balanced state is very rapid [24]. The small increase in the

input noise strength leads to an increase of the self-generated

randomness of the balanced network [17,23].

In the above comparison, we adjust the stimulus strength to

achieve the same steady-state firing rate (tonic response) in the

afferent and cortical ensemble. In a next step we studied the effect

of adaptation on the detectability of a weak and transient

peripheral signal, which might be impaired by the self-generated

noise in the cortical network. To this end we employed the

population density approach (Material and Methods) to study

the mean and variability of the cortical network responses to a

wide range of signal strengths. We change the stimulation protocol

to a brief signal with a duration of 50ms over the spontaneous

background. The stimulation magnitude is adjusted to elicit the

same onset firing rate in the afferent ensemble network in both

adaptive and weakly adaptive cases. By modification of the feed-

forward coupling between afferent and cortical network relative to

the intracortical recurrent coupling we study the circuit responses

(Figure 3A). Evidently, the strength of the feed-forward coupling

to the cortical ensemble modifies its spontaneous background, and

therefore also the total adaptation level. The adaptive network

proves more sensitive to brief and weak stimuli. It significantly

magnifies the mean stimulus response in the adaptive network

relative to the background. Even for a considerably weak stimulus

the relative amplitude of the response to background firing is

pronounced (Figure 3A). This result resembles the amplification

of a transient in the sequence of adaptive networks as it is observed

in the previous section (Figure 1A).

Figure 3. Reliability of a weak and temporally sparse signal in
the balanced cortical network. We modify the synaptic strength of
the feed-forward input relative to the excitatory recurrent input. The
stimulation protocol consists of a brief (50ms) step increase of the
Poisson input to the afferent ensemble. (A) Amplitude of responses
relative to the background firing rate in the cortical layer for adaptive
(solid line) and weakly adaptive (dashed line) neurons in dependence of
the relative feed-forward coupling strength. (B) The Fano factor of the
responses given the relative strength of feedforward coupling.
doi:10.1371/journal.pcbi.1003251.g003

Sequential Adaptation in Sensory Pathways
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How reliable are the responses across trials? To answer this

question we calculated the Fano factor (Material and Methods)

for the cortical ensemble response in the above scenario. This

calculation indicates that the response variability in the adaptive

network is significantly lower than in the weakly adaptive network

over a large range of the feed-forward coupling strength

(Figure 3B). Interestingly, our results of the population density

treatment quantitatively follow the former prediction based on a

network simulation that in a balanced network without adaptation

the variability initially increases with signal strength (dashed line in

Figure 3B and Table 1 in [23]) and only after a critical level of

the feed-forward strengths the recurrent noise is suppressed due to

the stronger influence of excitatory inputs.

Adaptive networks generate sparse and reliable
responses in the insect olfactory system

As a case study to demonstrate how the sequential effect of the

adaptation shape responses, we investigated its contribution to the

emergence of the reliable and sparse temporal code in the insects

olfactory system, which is analogous to the mammalian olfactory

system. We simulated a reduced generic model of olfactory

processing in insects using the phenomenologically adaptive

neuron model [28]. The model network consisted of an input

layer with 1,480 olfactory sensory neurons (OSNs), which project

to the next layer representing the antennal lobe circuit with 24

projection neurons (PNs) and 96 inhibitory local inter-neurons

(LNs) that form a local feed-forward inhibitory micro-circuit with

the PNs. The third layer holds 1,000 Kenyon cells (KCs) receiving

divergent-convergent input from PNs. The relative numbers for all

neurons approximate the anatomical ratios found in the olfactory

pathway of the honeybee [46] (Figure 4A). We introduced

heterogeneity among neurons by randomizing their synaptic time

constants and the connectivity probabilities are chosen according

to anatomical studies. Synaptic weights were adjusted to achieve

spontaneous firing statistics that match the observed physiological

regimes. The SFA parameters were identical throughout the

network with ts~110ms (see Materials and Methods for

details). Experimentally, the cellular mechanisms for SFA exist for

neurons at all three network layers [47–53]. Notably, strong SFA

mediating currents have been identified in the KCs of Periplaneta

americana [52].

Using this model, we sought to understand how adaptation

contributes to temporally sparse odor representations in the KC

layer in a small sized network and under highly fluctuating input

conditions. We simulated the input to each OSN by an

independent Poisson process, which is thought to be reminiscent

of the transduction process at the olfactory receptor level [53].

Stimulus activation was modelled by a step increase in the Poisson

intensity with uniformly jittered onset across the OSN population

(Materials and Methods). Following a transient onset response

the OSNs adapted their firing to a new steady-state

(Figure 4B,C). The pronounced effect of adaptation becomes

apparent when the adaptive population response is compared to

the OSN responses in the control network without any adaptation

(ts = 0; dashed line, Figure 4C). In the next layer, the PN

population activity is reflected in a dominant phasic-tonic response

profile (green line, Figure 4D), which closely matches the

experimental observation [54]. This is due to the self-inhibitory

effect of the SFA mechanism, and to the feedforward inhibition

received from the LNs (magenta line, Figure 4D). Consequently,

the KCs in the third layer produced only very few action potentials

following the response onset with an almost silent background

activity (red line, Figure 4E,G). The average number of emitted

KC response spikes per neuron, Se, is small in the adaptive

network (average v2) whereas KCs continue spiking throughout

stimulus presentation in the non-adaptive network (Figure 4G).

This finding closely resembles experimental findings of temporal

sparseness of KC responses in different insect species [31–33] and

quantitatively matches the KC response statistics provided by Ito

and colleagues [34]. The simulation results obtained here confirm

the mathematically derived results in the first results section

(Figure 1B) and show that neuronal adaption can cause a

temporal sparse representation even in a fairly small and highly

structured layered network where the mathematical assumptions

of infinite network size and fundamentally incoherent activity are

not fulfilled (Materials and Methods). We further investigated

the effect of adaptation on the fraction of responding neurons by

counting the number of KCs that emit spikes during stimulation.

In the adaptive circuit and in presence of local inhibition only 9%

of KCs produce responses (23% in the adaptive network when

inhibition is turned off). In contrast, in the non-adaptive network

with local inhibition 60% of KCs responded. The low fraction of

responding neurons in the adaptive network quantitatively match

the experimental findings in the moth [34] and the fruit fly [55].

To test the effect of inhibition in the LN-PN micro-circuitry

within the antennal lobe layer on the emergence of temporal

sparseness in the KC layer, we deactivated all LN-PN feedforward

connections and kept all other parameters fix. We found a

profound increase in the amplitude of the KC population

response, both in the adaptive (red line, Figure 4F) and the

non-adaptive network (dashed red line, Figure 4F). This increase

in response amplitude is carried by an increase in the number of

responding KCs due to the increased excitatory input from the

PNs, implying a strong reduction in the KC population sparseness.

Importantly, removing local inhibition did not alter the temporal

profile of the KC population response in the adaptive network (cf.

red lines in Figure 4E,F), and thus temporal sparseness was

independent of inhibition in our network model.

How reliable is the sparse spike response across trials in a single

KC? To answer this question, we again measured the robustness of

the stimulus representation by estimating the Fano factor across

200 simulation trials (Figure 4H). The network with adaptive

neurons and inhibitory micro-circuitry exhibited a low Fano factor

(median &0:3) and a narrow distribution across all neurons. This

follows the experimental finding that the few spikes emitted by

KCs are highly reliably [34] (network 1, Figure 4H). Turning off

the inhibitory micro-circuitry did not significantly change the

response reliability (Wilcoxon rank sum test, p-value = 0.01;

network 2, Figure 4H). However, both networks that lacked

adaptation exhibited a significantly higher variability with a

median Fano factor close to one (Wilcoxon rank sum test, p-

value = 0.01; networks 3 and 4, Figure 4H), independent of the

presence or absence of inhibition micro-circuits.

To explore whether neuronal adaptation could contribute to

temporal sparseness in the biological network, we performed a set

of Calcium imaging experiments, monitoring Calcium responses

in the KC population of the honeybee mushroom body [33]

(Materials and Methods). Our computational model

(Figure 4) predicted that blocking of the inhibitory microcircuit

would increase the population response amplitude but should not

alter the temporal dynamics of the KC population response which

is independent of the stimulus duration. In a set of experiments, we

tested this hypothesis by comparison of the KCs’ evoked activity in

the presence and absence of GABAergic inhibition (Materials
and Methods). First, we analyzed the normalized Calcium

response signal within the mushroom body lip region in response

to a 3 s, 2 s, 1 s and 0.5 s odor stimulus (Figure 5A). We observed

the same brief phasic response following stimulus onset in all four

Sequential Adaptation in Sensory Pathways
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cases with a characteristic slope of Calcium response decay that

has been reported previously to account for a temporally sparse

spiking response [33]. These responses, unlike those of PNs in the

previous processing stage of the insect olfactory system [56,57], are

independent of the stimulation duration (Figure 5A). Bath

application of the GABAA antagonist picrotoxin (PTX) did not

change the time course of the Calcium response dynamics

(Figure 5B–D). The effectiveness of the drug was verified by

the increased population response amplitude in initial phase

(Figure 5C). Next, we tested the GABAB antagonist hydrochlo-

ride (CGP) using the same protocol and again found an increase in

the response magnitude but no alteration of the response dynamics

(Figure 5E,F). This suggests the absence of inhibition does not

change the temporal scale of KCs responses in line with the model

prediction.

Discussion

We propose that a simple neuron-intrinsic mechanism of spike-

triggered adaptation can account for a reliable and temporally

sparse sensory stimulus representation across stages of sensory

processing. The emergence of a sparse representation has been

demonstrated in various sensory areas, for example in visual [58],

auditory [59], somatosensory [60], and olfactory [61] cortices, and

Figure 4. Neuronal adaptation generates temporal sparseness in a generic model of the insect olfactory network. (A) Schematic
drawing of a simplified model of the insect olfactory network for a single pathway of odor coding. Olfactory receptor neurons (OSNs, first layer,
n = 1,480) project to the antennal lobe network (second layer) consisting of projection neurons (PNs, n = 24) and local neurons (magenta, n = 96),
which make inhibitory connections with PNs. PNs project to the Kenyon cells (KCs) in the mushroom body (third layer). (B) Spike raster plot of
randomly selected OSNs (blue), LNs (magenta), PNs (green) and KCs (red) indicates that spiking activity in the network became progressively sparser
as the Poisson input propagated into the network. (C) Average population rate of OSNs in the adaptive network (blue solid line) and the non-
adaptive control network (dashed blue lines). The shaded area indicates the firing rate distribution of the neurons. The firing rate was estimated with
20 ms bin size. (D) Average response in the antennal lobe network. PNs (green) and LNs (magenta) exhibited the typical phasic-tonic response profile
in the adaptive network (solid lines) but not in the non-adaptive case (dashed lines). (E) Kenyon cell activity. In the adaptive network the KC
population exhibits a brief response immediately after stimulus onset, which quickly returns close to baseline. This is contrasted by a tonic response
profile throughout the stimulus in the non-adaptive case. (F) Effect of the inhibitory micro-circuit. By turning off the inhibitory LN-PN connections the
population response amplitude of the KCs was increased, while the population response dynamics did not change.(G) Sparseness of KCs. The
average number of spikes per neuron emitted since stimulus onset indicates that the adaptive ensemble encodes stimulus information with only very
few spikes. (H) Reliability of KCs responses. The Fano factor of the KCs in different network scenarios is estimated across 200 trials in a 100 ms time
window after stimulus onset. Network 1: (+)Adaptation (+)Inhibition, network 2: (+)Adaptation (2)Inhibition, network 3: (2)Adaptation (2)Inhibition,
network 4: (2)Adaptation (+)Inhibition. Both networks with SFA are significantly more reliable in their stimulus encoding than the non-adaptive
networks.
doi:10.1371/journal.pcbi.1003251.g004
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thus manifests a principle of sensory computation across sensory

modalities and independent of the natural stimulus kinetic. Our

results show that adaptation allows to reliably represent a stimulus

with a temporally restricted response to stimulus onset and thus

more stimuli can be represented in time which is the basis for a

temporally sparse representations of a dynamically changing

stimulus environment.

At the single neuron level, SFA is known to induce the

functional property of a fractional differentiation with respect to

the temporal profile of the input and thus offers the possibility of

tuning the neuron’s response properties to the relevant stimulus

time-scales at the cellular level [2–4,62–65]. Our results indicate

further that sensory processing in a feedforeward network with

adaptive neurons focuses on the temporal changes of the sensory

input in a precise and temporally sparse manner (Figure 1B;
Figure 2E and Figure 4E) and at the same time the constancy

of the stimulus is memorized in the cellular level of adaptation [37]

(Figure 1D). The constancy of the environment is an important

factor of state-dependent computations [66] that evidently should

be tracked by the network. Such context-dependent modulations

set the background and have been observed in different sensory

systems where responses are strongly influenced by efferent

contextual input [67–69]. In this paper, we show that information

about the context of a given stimuli maybe stored in the adaptation

level across processing stages while at the same time the network

remains sensitive to changes. Thus, sequential adaptive popula-

tions adjust the circuit transfer function in a self-organizing

manner to avoid response attenuation to secondary stimuli. These

results add a further possibility of network level interactions to the

previous suggestions that SFA optimizes the context depended

responses and resolves ambiguity in the neuronal code [8,70] at

the single neuron level. This allows a sensory system to detect

extremely small changes in stimulus over a large background by

means of an adaptive response without contextual information loss

[39]. One prominent example is primate vision where, in the

absence of the self-generated dynamics of retina input due to

microsaccades, observers become functionally blind to stationary

objects during fixations [71].

A sparse temporal representation of stimulus permits very few

spikes to transmit high quantities of information about a

behaviorally significant stimulus [72]. However, it has been

repeatedly questioned whether a few informative spikes can

survive in the cortical network, which is highly sensitive to small

perturbations [16,73]. Our results show that a biologically realistic

cellular mechanism implemented at successive network stages can

transform a dense and highly variable Poisson input at the

periphery into a temporally sparse and highly reliable ensemble

representation in the cortical network. Therefore, it facilitates a

transition from a rate code to a temporal code as required for the

concerted spiking of cortical cell assemblies [74] (Figure 2D).

These results reflect previous theoretical evidence that SFA has an

extensive synchronizing-desynchronizing effect on population

responses in a feedback coupled network [75,76].

A balance between excitation and inhibition leads to strong

temporal fluctuations and produce spike trains with high

variability in cortex [16,23–25,77]. However, the adaption level

adjusts with a dynamics that is slow compared to the dynamics of

excitatory and inhibitory synaptic inputs. This circumstance allows

for a transient mismatch of the balanced state in the cortical

network and thus leads to a transient reduction of the self-

generated (recurrent) noise (Figure 2I). This, in turn, explains

why the temporally sparse representation can be highly reliable,

following the experimental observations [21,22]. Moreover, a

recent and highly relevant in vivo data set hints toward our

theoretical prediction, where adaptation may alter the balance

between excitation and inhibition and increase the sensitivity of

cortical neurons to sensory stimulation [78]. Here, our main result

exploited the transient role of adaptation mechanisms on the

cortical variability suppression, after which the variability recovers

to the unstimulated values, even though the network remains

stimulated (Figure 2I). One can achieve a longer time scale of

variability suppression by an increase in the effect of the afferent

Figure 5. Blocking GABAergic transmission in the honeybee changes amplitude but not duration of the KC population response. (A)
Temporal response profile of the calcium signal imaged in the mushroom body lip region of one honeybee for different stimulus durations as
indicated by color. (B) Temporal response profiles as in (A) in one honeybee after application of PTX. (C) Response profiles imaged from 6 control
animals (gray) and their average (black) for a 3 s stimulus as indicated by the stimulus bar. The responses measured in 6 animals in which GABAA

transmission was blocked with PTX (red) shows a considerably higher population response amplitude. The shaded area indicated the standard
deviation of responses across bees. (D) Average amplitude of responses that are normalized per animal are highly similar in animals treated with PTX
and control animals. (E) Blocking GABAB transmission with CGP in 6 animals (blue) again results in an increased response amplitude compared to 6
control animals (black). The shaded area indicates the standard deviation across individuals. (F) Average normalized (per animal) response profiles are
highly similar in the CGP-treated and control animals.
doi:10.1371/journal.pcbi.1003251.g005
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strength (as a network mechanism), due to the reduction of the

input irregularity in the evoked state. This proposal can be

supported by the experimental evidence that thalamic inputs

strongly drive neurons in cortex [79] and fits the previous

theoretical suggestion by [45]. Noteworthy, in our model the

irregularity of inter-spike intervals, measured by C2
v , in the

balanced network does not change significantly in different

conditions, which matches the experimentally reported evidence

[80]. The recent theoretical studies [26,27] show that the slow

time scales variability suppression can be also achieved within a

clustered topology in the balanced network [26] or likewise in an

attractor-based networks of cortical dynamics [27]. In these

approaches, the reduced variability can be attributed to an

increased regularity of the spike trains. This hints that further

research to understand the role of interactions between the

network and cellular mechanisms in the cortical variability and

other network statistics are certainly needed. Additionally, the link

between the temporal sparseness achieved here by cascaded

network of adaptive neurons with spatial sparseness of responses

[81,82] requires more elaborated research.

The insect olfactory system is experimentally well investigated

and exemplifies a pronounced sparse temporal coding scheme at

the level of the mushroom body KCs. The olfactory system is

analog in invertebrates and vertebrates and the sparse stimulus

representation is likewise observed in the pyramidal cells of the

piriform cortex [61], and the rapid responses in the mitral cells in

the olfactory bulb [83] compare to those of projection neurons in

antennal lobe [54,84]. Our adaptive network model, designed in

coarse analogy to the insect olfactory system, produced increas-

ingly phasic population responses as the stimulus-driven activity

propagated through the network. Our model results closely match

the repeated experimental observation of temporally sparse and

reliable KC responses in extracellular recordings from the locust

[31], fruit fly [85] and manduca [32,34], and in Calcium imaging

in the honeybee [33]. Although Calcium responses are slow, it has

been suggested that they closely correspond to the population

activity dynamics [86]. In our experiments we could show that

systemic blocking of GABAergic transmission did not affect the

temporal sparseness of the KC population response in the

honeybee (Figure 5) signified by the transient Calcium response

[33]. Therefore, the stable temporal activity in the mushroom

body qualitatively matches with our theoretical predication of

population rate dynamics (Figure 1). This result might seem to

contradict former studies that stressed the role of inhibitory feed-

forward [87] or feedback inhibition [88,89] for the emergence of

KC sparseness. However, the suggested inhibitory mechanisms

and the sequential effect in the adaptive network proposed here

are not mutually exclusive and may act in concert to establish and

maintain a temporal and spatial sparse code in a rich and dynamic

natural olfactory scene. In this paper, we deliberately focus on the

temporal aspect of the responses, since it seems that spatial

sparseness is mediated by connectivity schemes [90–92].

The adaptive network model manifests a low trial-to-trial

variability of the sparse KC responses that typically consist of only

1–2 spikes. In consequence, a sparsely activated KC ensemble is

able to robustly encode stimulus information. The low variability

at the single cell level (Figure 4H) carries over to a low variability

of the population response [29,30]. This benefits downstream

processing in the mushroom body output neurons that integrate

converging input from many KCs [46], and which were shown to

reliably encode odor-reward associations in the honeybee [93].

Next to the cellular mechanism of adaptation studied here,

short-term synaptic plasticity may produce similar effects. The

activity-dependent nature of short term depression (STD) produc-

es correlated presynaptic input spike trains [94]. Hence, it

facilitates weak signal detection [94] similar to adaptation [95].

Moreover, STD can also generate a sharp transient in the stimulus

response [96,97] that can propagate to higher layers of the

network. Therefore it is plausible to utilize short-term synaptic

plasticity to achieve similar results to the ones obtained here with

SFA. However, STD may have some drawbacks in comparison to

adaptation, namely a low signal-to-noise ratio, and a low-pass

filtering of input that is more sensitive to high frequency synaptic

noise [62,68]. Evidently, STD takes effect at the single synapse

while SFA acts on a neuron’s output. The combination of both

mechanisms that are encountered side-by-side in cortical circuits

[99,100] may provide a powerful means for efficient coding [98].

Our results here are of general importance for sensory coding

theories. A mechanism of self-inhibition at the cellular level can

facilitate a temporally sparse ensemble code but does not require

well adjusted interplay between excitatory and inhibitory circuitry

at the network level. This network effect is robust due to the

distributed nature of the underlying mechanism, which acts

independently in each single neuron. The regularizing effect of

self-inhibition increases the signal-to-noise ratio not only of single

neuron responses but also of the neuronal population activity

[29,30,37] that is post-synaptically integrated in downstream

neurons.

Materials and Methods

Rate model of a generic feedforward adaptive network
To address analytically the sequential effect of adaptation in a

feedforward network, we consider a model in which populations

are described by their firing rates. Although firing rate models

typically provide a fairly accurate description of network behavior

when the neurons are firing asynchronously [101], they do not

capture all features of realistic networks. Therefore, we verify all of

our predictions with a population density formalism [29] as well as

a large-scale simulation of realistic spiking neurons. To determine

the mean activity dynamics of a consecutive populations, we

employed an standard mean firing rate model of population i as

_rri~{rizf (gri{1zmi{ai Dsi)

_aai~{ 1
ts

aizriqs

(
ð1Þ

where f is the transfer input-output function, ts is the adaptation

time-scale, g is the coupling factor between two populations and a

is the adaptive negative feedback for the population i with qs

strength and si is the standard deviation of the input. In our rate

model analysis, we use the transfer function of the leaky-integrate

and fire neuron that can be written as

f (mi{ai Dsi)~ tm

ffiffiffi
p
p ðCh{(mi{ai )tm

s
ffiffiffiffiffi
tm
p

CVr{(mi{ai )tm
s
ffiffiffiffiffi
tm
p

ex2
(1zerf(x))dx

2
4

3
5

{1

ð2Þ

where mi~gri{1zmi and C, tm, h and Vr are membrane

capacitance, membrane time-constant, spiking threshold and reset

potential, respectively. Here, we assume mi is the injected current

to the population i independent of the stimulus and constant over

time. Given f , the equilibrium can be determined by

�rri~f (mi{tsqs�rri Dsi): ð3Þ

The condition for the stability reads Lri
f (mi{tsqs�rri Dsi)D�rri

v1 and
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Lmi
f (mi{tsqs�rri Dsi)D�rri

v0 [35] (Figure 6A). It is important to note

that whenever the conditions for stability are satisfied, the fix point

is reached via a focus attractor (Figure 6 C,D) since the Jacobin of

this system (under the physiological condition of tsqsvg) always

has a complex eigenvalue with a negative real part. It is also

known that the �rri is a linear function with respect to its input, given

a sufficiently slow ts or strong adaptation qs and a non-linear

shape of f [35,36,102]. It can also be shown that whenever the

adaptation is ineffective (qsts~0) we have

L
L�rri{1

f ~
1

(
Ð U

L
ex2

(1zerf(x))dx)2
(eL2

(1zerf(L))
d

d �rri{1
L

zeU2
(1zerf(U))

d

d �rri{1
U)

ð4Þ

where L~
CVr{mitm

s
ffiffiffiffiffi
tm
p and U~

Ch{mitm

s
ffiffiffiffiffi
tm
p . This derivative scales

with mi=(h{Vr) (Figure 6B). Now, we can plug back the

adaptation into the steady state solution, which has a magnitude of

�rriqsts. In Figure 6 B, we numerically determine the condition for
L�rri

L�rri{1
v1, that it reads g

4
vqsts, given the parameters C, h, tm, Vr

and s as they are stated in the caption. An increase in the

population rate D�rri{1 leads to a reduced increase D�rri in the next

population, and therefore the adapted level of responses satisfy

D�rri{1wD�rri. For realistic adaptation values this mapping closely

follows the result of a previous study where it was shown that the

effect of increasing the cells input conductance on its f-I curve is

mainly subtractive [102]. Note that for very weak adaptation the

steady-state is not affected considerably.

The magnitude of the transient response firing rate for an

adaptive population lies between the adapted steady-state rate and

the response rate without adaptation. Given the level of new input it

can be calculated analytically [2]. Hence, the slow dynamics of

adaptation and fast response f-I curve reflect two states of operation

where the onset response very closely follows the properties of the

non-adapted response curve and the adapted steady state produces

a subtractive input-output relationship. Noteworthy, the assumption

that all populations have a same background firing rate is not a

necessary condition. One can achieve the same result by using

heterogeneous couplings gi or stimulus independent private input mi

that may induce more realistic variations in background rates as

observed in different stages of sensory processing. The crucial point

of the inherited dynamics due to adaption is the fundamental non-

linearity that (1) the transient response amplitude is hardly affected

by adaptation, (2) the adapted steady-state is fall apart from it and

can become subtractive.

Population density approach to the adaptive neuronal
ensemble

In Muller et al. [28] it is shown that by an adiabatic elimination

of fast variables a detailed neuron model including voltage

dynamics, conductance-based synapses, and spike-induced adap-

tation, in the incoherent state (Asynchronous and Irregular state)

reduces to a stochastic point process. Thus, we define an orderly

point process with a hazard function argument with state variable x
as

hx(x,t)~ lim
Dt?0z

Pr(N½t,tzDt)w0Dx,t)

Dt
: ð5Þ

where N½t,tzDt) is the number of events in Dt. We assume the

dynamic of the adaptation variable is

_xx~{
1

ts

xz
X

k

d(t{tk)qs, ð6Þ

where tk is the time of kth spike in the ensemble. Thus, the state

variable distribution at time t in the ensemble is governed by a

master equation of the form

Lt Pr(x,t)~{Lx
x

ts

Pr(x,t)

� �
zhx(x{qs,t)Pr(x{qs,t)

{hx(x,t) Pr (x,t):

ð7Þ

We solve Eq. 7 with the help of the transformations

ts~g(x) : ~{t log(x=q) and y(ts)~g(g{1(tszq)) numerically

[28]. The master equation here belongs to a non-renewal process

[28,29] and its renewal correspondence can be seen in [28]. It

turns out that indeed hx is the input-out transfer function of

neurons in the network where its instantaneous parameters are

give by the input statistics [28]. For instance, the transfer function

of a conductance based leaky integrate and fire neuron can be

written as

WCB~ trzt�
ðh{m0t�ffiffiffiffi

t�
p

s0
CVr{m0t�ffiffiffiffi

t�
p

s0

ffiffiffi
p
p

ex2
(1zerf(x))dx

2
4

3
5

{1

ð8Þ

where, tr and t� are refectory period and an input-dependent

effective time constants, respectively. The m0 and s0 appearing in

Figure 6. Response properties of the rate model. (A) The input-
output transfer function of a population, where the adaptation is
ineffective or not yet adjust with the input (dashed line) and at the
adapted steady-state (solid line). During the transient response the
dashed line is a good approximation for the adaptive population. The
magenta lines indicate the case where the coupling strength is 20%
increased compared to the blue lines (s = 1000[nA], C = 500[nF],
tm = 20[ms], h = 20[mV],Vr = 0[mV], g = 20 [ms][nA] and qsts = 5
[ms][nA]). (B) The derivative of the response functions given in (A)
with respect to the input rate. (C) The adaptation-rate phase plot of the
first (blue) and third layer (red) in Figure 1D with a two-step stimulus
input. The time is encoded in the contrast of the lines (the lowest
contrast is {500ms and the highest is 2500ms). The system exhibits a
stable focus with the under shoot during the relaxation to baseline. (D)
Zoom in of (C) showing the convergence to the adapted stated for the
second step increase of the stimulus in the third layer (low contrast line)
and the relaxation to the base line (high contrast line).
doi:10.1371/journal.pcbi.1003251.g006
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WCB are the average and variance of the free (i.e., spike-less)

membrane voltage distribution [35] and C is the membrane

capacitance. Here, we used the mean-field formalism developed by

[23] and [103] to approximately determine the averaged input

within a standard balanced network, as the parameters of the

hazard function WCB suggested by [35], which uses the calculated

average firing rate of inhibitory nI and excitatory neurons nE in the

randomly connected network. The analytical results in this paper

assumed the standard WCB as a from of the hazard function hx and

the value of t� is estimated form simulations of the detailed neuron

model with an step like input increase. Here, it is important to note

that conductance-based model approximately follows the current

based neuron model with a colored noise, where t� is shorter than

the membrane time constant of the neuron, which now depends

on the total conductance [103,104]. Therefore, given the hxDt

estimate, we can approximate the numerical solution of the master

equation (eq. 7) by applying the exponential Euler method for the

death term, and reinserting the lost probability as it is fully

described in [28]. The functional form of the solution in a compact

form can be written as

Pr(tsDt)~ktV(tsDt) ð9Þ

where t0
s is the initial condition state of the system and kt is a

constant defined by
Ð

Pr(tsDt)dts~1 [28,29]. Similarly, one can

derive the distribution of ts just after the event,

Pr{ (tsDt)~ Pr� (y{1(tsDt)) d
dts

y{1(tsDt) [28]. Then, the relation-

ship between ts and the ordinary ISI distribution can be written as

r(D)~

ðz?

{?
hts (tszDDt)V(tszDDt)Pr{(tsDt)dts: ð10Þ

where V(tszDDt)~e
{
Ð D

ts
hts (tszuDt)du

. Now the nth moment mn of

the distribution and its coefficient of variation Cv can be

numerically determined. Note that the framework here is closely

connected to the spike response model, also known as the

generalized linear neuron model [30]. Alternatively, the same

ISI distribution can be also derived form the discretization of

the master equation as it is demonstrated in [37]. It can be

shown that the firing rate and the consistency equation of the

ensemble is

rt~

ð?
{?

hts (tsDt)Pr(tsDt)dts: ð11Þ

Now to calculate the counting statistics, we applied the

techniques are introduced by Farkhooi et al [29], and defined

a joint probability density as

rn(tn,tn
xDt

0
x,t) ð12Þ

where an nth event occurs at time tnwt and the state variable is

tn
x. We can write nz1th event time and state of adaptation joint

density recursively,

rnz1(tnz1,tnz1
x jt0

x,t)~ð ð
r(tnz1{tn,tnz1

x jtn
x,t)rn(tn,tn

xjt0
x,t)dtndtn

x:
ð13Þ

To simplify the integral equations, we use Bra-Ket notation

following a suggestion by [105], defined as

PDf T~

ð
p(s,a’Da)f (a)da ð14Þ

and

SPDg~

ð
p(s,a’Da)g(a’)da’: ð15Þ

Thereafter, we derive the Laplace transform (Lff (t)g~~ff (s)) of

the joint density in the eq. 13 by

~rrnz1(s,tnz1
x Dt0

s ,t)~~rrn(s,tn
xDt

0
x,t)D~rr(s,tnz1

x Dtn
x,t)T ð16Þ

where r1(t1,t1
s Dt

0
x,t)~r(t1,t1

xDt
0
x,t). Next, we define the operator

Pn(sDt),

~rrn(sDt)~S1DPn(sDt)DPr(ts,t)T~S1DPn(sDt)DPr(tx,t)T: ð17Þ

Now, by employing ~PP(1,sDt)~1=(m1s2)½~rr2(sDt){2~rr1(sDt)z1� as in

[29], we derive

~PP(n,sDt)~1=(m1s2)½~rrnz1(sDt){2~rrn(sDt)z~rrn{1(sDt)�, ð18Þ

where ~PP(n,sDt) is the Laplace transform of the probability density

of observing n events in a given time window. Now we derive

~AAsDt~
X

k
~rrk(sDt)~S1DP(sDt)=(I{P(sDt))DPr(sDt)T ð19Þ

where I is the identity operator. This equation represents the

Laplace transform of the auto-correlation function. Using auto-

correlation function ~AAsDt, we can calculate the Fano factor that

provides an index for the quantification of the count variability.

It is defined as JT~s2
T=mT , where s2

T and mT are the variance

and the mean of the number of events in a certain time window

T . It follows from the additive property of the expectation that

mT~
Ð T

0
r(u)du and in the case of a constant firing rate, it is

simply mT~reqT . To calculate the second moment of ~PP(n,s), we

require ~AAs~
P

k ~rrk(s) in eq. 19. Thus, the Fano factor is

~JJsDt~1=m1s2{(1z2 ~AAsDt) and the inverse Laplace transform is

JT Dt~1z(2=T)

ðT

0

(T{u)A(uDt)du{Trt, ð20Þ

where A(uDt)~L{1½ ~AAsDt�. In [29], we demonstrate in detail that

the asymptotic property of F~ limT?? JT at equilibrium can

be derived as

lims?0½ ~AAs{1=(m1s)�~C2
v ½1=2z

X?

k~1
jk�{1=2, ð21Þ

where jk is the linear correlation coefficient between two k
lagged intervals. Provided the limit exits, we find the familiar

relationship of F~C2
v ½1z2

P?
k~1 jk� in the steady-state.

Computational model of insect olfactory network
Our model neuron is a general conductance-based integrate-

and-fire neuron with spike-frequency adaptation as it is proposed

in Muller et al. [28]. The model phenomenologically captures a
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wide array of biophysical spike-frequency mechanisms such as M-

type current, afterhyperpolarization (AHP-current) and even slow

recovery from inactivation of the fast sodium current [28]. The

model neuron is also known to perform high-pass filtering of the

input frequencies following the universal model of adaptation [2].

Neuron parameters used follow the Table 3 in Muller et al. [28].

The conductance model used for the static synapses between the

neurons is alpha-shaped with gamma distributed time constants

from C(2:5,4) and C(5,4) for excitatory and inhibitory synapses,

respectively. All simulations were performed using the NEST

simulator [106] version 2.0beta and the Pynest interface.

The network connectivity is straight forward: each PN and LN

receives excitatory connections from 20% randomly chosen OSNs

[57,107]. Additionally, every PN receives input from 50%

randomly chosen inhibitory LNs [57,107]. In our model the PNs

do not excite one another and each PN output diverges to 50%

randomly chosen KCs [33,87,90].

We tuned the simulated network by adjusting the synaptic

weights to achieve the same spontaneous firing rate as reported

experimentally: OSNs 15–25 Hz [53], LNs 4–10 Hz [107], PNs

3–10 [54] and KCs 0.3–1.0 Hz [34].

Experimental methods
Experiments were performed following the methods published

in Szyszka et al [33]. In summary, foraging honeybees (Apis

mellifera) were caught at the entrance of the hive, immobilized by

chilling on ice, and fixed in a plexiglas chamber before the head

capsule was opened for dye injection. We retrogradely stained

clawed Kenyon cells (KC) of the median calyx, using the calcium

sensor FURA-2 dextran (Molecular Probes, Eugene, USA) with a

dye loaded glass electrode, which was pricked into KC axons

projecting to the ventral median part of the a-lobe [33]. After dye

injection the head capsule was closed, bees feed and kept in a dark

humid chamber for several hours.

The processing of imaging data was performed with custom

written routines in IDL (RSI, Boulder, CO, USA). In summary,

changes in the calcium concentration were measured as absolute

changes of fluorescence: a ratio was calculated from the light

intensities measured at 340 nm and 380 nm illumination and the

background fluorescence before odor onset was subtracted leading

to DF with F = F340/F380. Odor stimulation was preformed

under a 206 objective of the microscope, the naturally occurring

plant odor octanol (Sigma Aldrich, Germany), diluted 1:100 in

paraffine oil (FLUKA, Buchs, Switzerland), was delivered to both

antennae of the bee using a computer controlled, custom made

olfactometer. To this, odor loaded air was injected into a

permanent airstream resulting in a further 1:10 dilution. Stimulus

duration was 3 seconds if not mentioned otherwise. The air was

permanently exhausted.

For GABA blockage, a solution of 150 ml GABA receptor

antagonist dissolved in ringer for final concentration (1025M

picrotoxin (PTX, Sigma Aldrich, Germany) or 561024M

CGP54626 (CGP, Tocris Bioscience, USA)) was bath applied

to the brain after pre-treatment measurements. Measurements

started 10 min after drug application. The calcium signals

are analyzed in Matlab (The MathWorks Inc., Natick, USA).

The normalization of the responses are performed per animal

and the plotted traces are the averaged values across

subjects.
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