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Introduction. Preferably maternal mortalities are predominant in low- and middle-income countries (LMICs). In some African
countries, including Rwanda, programs related to health-care delivery to reduce significantly severe complications including
mortalities are established. Unfortunately, historical and forecasted maternal mortality reduction and the influence of gross
national income (GNI) were not accessed. ,is study is aimed to forecast the three years of maternal mortalities (MMs) based on
the influence of gross national income (GNI) in Rwanda.Methods. ,e period involved is from January 2009 to April 2018. Data
analyzed were obtained from the Central Hospital of the University of Kigali (CHUK) and mined data from the WHO database.
Time series approach (Box-Jenkins and exponential smoothing) and linear regression models were applied. Besides, IBM-SPSS
and Eviews were used in the analysis. Results. ,e results revealed that MMs were not statistically different in several years, and
there was a significant correlation between MMs and GNI (-0.610, P value 0.012< 0.05). A double exponential smoothing model
(DESM) was fitted for the best forecast and ARIMA (0,1,0) and linear regression models for a quick forecast. Conclusion. ,ere
was a slight effect of GNI in maternal mortality reduction, which leads to the steady decrease of the forecasted maternal mortality
up to May 2021. ,e Government of Rwanda should intensively strengthen the health-care system, save the children programs,
and support pregnant women by using GNI for reducing MMs at an advanced level.

1. Introduction

Maternal mortalities (MMs) are unacceptably issued with
a higher rate in low- and middle-income countries (LMICs)
[1]. Most of those mortalities occur during labor, delivery, or
the first 24 hours postpartum, and most complications are
hard to be predicted. Timely diagnosis and suitable in-
tervention are not consistent with the prevalence of pregnant
women, whereby about 1/350 global pregnancies lead to
high maternal mortality risks due to several causes, in-
cluding hemorrhage, infection, unsafe abortion, eclampsia,
and obstructed labor [2–4]. In LMICs, the dying probability
of pregnancy women from related causes is closer to 1/50,
and it is also rising MMs [5]. Pregnant women are en-
couraged to adopt health-care services and counseling and

get financial support from governments to avoid compli-
cations during giving birth [6].

,e social economic and environmental factors such as
literacy status income and cultural factors persist in LMCs to
cause high maternal mortality [7]. As a result, there is a bit of
difference in child mortality between mothers. ,ose who
have higher education and wealth status reported a lower
rate of child mortality compared to those with less advan-
tageous socioeconomic problems [8]. Although some
countries in sub-Saharan Africa have ineffective health
policies, several countries established programs for satisfy-
ing mothers. Some of these programs are the free maternal
services in the implementation of the free maternal health-
care system (Kenya) [9], the decision-making of women on
their health autonomy of women and place of delivery
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(Ghana) [10], utilization of maternal health-care services
and identifying affecting factors (Ethiopia) [11], and ma-
ternal deaths correlated with infectious diseases prevention
(Uganda) [12]. Gross national income (GNI) is apparently
involved in all those programs.

In Rwanda, the impact of GNI to reduceMMs has not yet
scientifically identified. ,e only suggestive causes of the
soaring those mortalities are visible. ,ose causes are ir-
regular prenatal consultations for pregnant women and
insufficient supports during pregnancy and birth processes,
and the number of pregnant women sometimes is greater
than the midwives [13]. Additionally, the fact of in-
frastructure (roads) in rural villages and carrying pregnant
women to referral-level care are, therefore, crucial. Fur-
thermore, unforeseen factors disturb the needed and feasible
interventions [14]. In the greatest effort to reduce maternal
mortalities, Rwanda put the related policy ranked 5th among
eight Millennium Development Goals (MDGs) [15]. Un-
fortunately, the highest gross national budget share is used in
the programs that fuel their further agenda. In contrast,
programs aimed at improving the living standard of the
people are only visible on papers [16, 17], and maternal
mortalities were not particularly forecasted.

Various models, including Box-Jenkins and exponential
smoothing, are time series approaches and, together with the
linear regression model (LRM), were used for analyzing and
forecasting time-varying events [18]. Due to their simplicity,
effective results, and being preferable to a few observations,
they have been recently applied to examine and forecast
maternal mortality [19–23]. In this study, however, these
approaches used to forecast maternal mortality based on the
impact of GNI in Rwanda. ,e initiated objectives are
comparing maternal mortality within previous years,
showing the potential impact of GNI on the mortality re-
duction, and forecasting the monthly maternal mortality in
three years.

2. Methods

In this study, we used the secondary longitudinal monthly
maternal mortalities data provided by CHUK, yearly child
mortality, and gross national income recorded from 2002
mined in World Health Organization (WHO) database.
Wilcoxon Rank Sum Test was used to compare maternal
mortality within previous years. ,e two popular categories
of a model of time series approach (Box-Jenkins and ex-
ponential smoothing) together with linear regressionmodels
were used to forecast maternal mortality for three years.
Pearson’s correlation was used to show the relationship
between GNI and yearly maternal mortality. IBM-SPSS
version 2, and Eviews version 9 were used to analyze the
data. Here, there is a brief introduction to the models used in
this study.

2.1. Box-Jenkins Model. Box-Jenkins model consists of
ARIMA model written as ARIMA (p, d, q) where AR (p) is
the autoregressive model with the number of nonseasonal
differencing autoregressive term (p), and MA (q) is the

moving average model with some nonseasonal moving
differencing (q), and the integrated part with d as differ-
encing order (I). ARIMA model contains seasonal part
written as SARIMA (p, d, q) X (P, D, Q)s where these upper
letters represent the seasonal part, s is the number of periods
per season, P is the number of seasonal autoregressive (SAR)
terms, D is the number of seasonal differences, and Q is the
number of the seasonal moving averages (SMAs) [24, 25].

If the series is seasonal with s periods per year, then
a seasonal ARIMA (SARIMA) model can be written as
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for Φp ≠ 0 and θq(B) � 1 − θB − θ2B2 − . . . − θqBq.

ΘQ(Bs) � 1 − ΘBs − Θ2B2S − . . . −ΘQBQS forΘq(B)≠ 0,
where Φ and Θ denote the polynomials Bs of P and Q,
respectively. ,e most useful polynomial model for seasonal
data is the SARIMA model of order (0; 1; 1)X (0; 1; 1) s for
monthly data s� 12.

,is model can be given as
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2.2. Exponential Smoothing Model. When the model is not
the ARIMA, then it can be an exponential smoothing model
(ESM). By plotting time-varying data and because the series
has neither trends nor seasonal components, the model
becomes simple exponential smoothing (SESM). ,e SES
model is written as St � σ ∗Yt + (1 − σ)∗ St−1 where St is
a smoothed value for time t, a is a smoothing constant rise
between 0 and 1, and t� 1, 2, 3; for more details, see [26]. In
the case, time-varying data contains a simple trend, and
SESM becomes a double exponential smoothing model
(DESM) and is used to solve the simple trends associated
with two equations applied to estimate the parameter as
follows:

St � αYt +(1 − α) · St−1 + bt−1( 􏼁 · 0≤ α< 1, (5)

bt � Υ St − St−1( 􏼁 +(1 − Υ)bt−1 0≤Υ< 1, (6)

where btis the auxiliary smoothed value which is over time t
in DESM and ϓ is a smoothing constant rising between
0 and 1. Based on the setting initial values to smoothed and
auxiliary smoothed values, three suggestions for the starting
value of b1 can be obtained, b1 � y2-y1, b1 � 1/3 [(y2-y1) +
(y3 - y2) + (y4 - y3)], and b1 � (yn − y1)/n − 1 . ,e first
smoothing equation adjustsst directly for the trend of the
previous periodbt−1, by adding it to the last smoothed val-
uest−1. ,ese computations help to eliminate the lag and
bring stto the appropriate base of the current value. ,e
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second smoothing equation then updates the trend, which is
expressed as the difference between the last two values. ,e
values for a and ? can be obtained via nonlinear optimization
techniques that can be seen in [27, 28].

2.3. Linear Regression Model. ,e linear regression model
(LRM) is one of the simplest generalized linear models that
can be learned in parameters or variables and/or even both.
In this model, it is assumed that the response and explan-
atory variables are significantly correlated, and the least
square estimation approach is well known to be used for the
estimation of its parameters; for details, see [29]. In this
study, maternal mortality and time are the response and
explanatory variables, respectively.

2.4. Model Selection Criteria. To identify an appropriate
time series model for using, several criteria were fol-
lowed. In this case, we plotted time-varying data,
checked the stationarity of the data, applied trans-
formation if it is necessary, and found the most signif-
icant autocorrelation at any lags. ,e last step is the
model checking by following these substeps: plot the
multiple plots of original and fitted observations and
check if fitted series follow the behavior of original data,
are close together, capture the variations within the
original data, and then plot the residuals against time
[24].

2.5. Wilcoxon Rank Sum Test. ,is test is a nonparametric
test used to analyze nonnormal distributed data. In this
study, Bera-Jarque estimate used to confirm the abnor-
mality of the mortality series by dividing them into two
independent populations [29]. Population 1 is 2009–2013
with n1 to be the past mortalities, and population 2 is
2014–2018 with n2 to the early mortalities. ,en, by
Wilcoxon Rank Sum Test, populations were ranked as
follows: n1 + n2 measurements from 1 (smallest) to n1 + n2
(largest) and then adjusting for ties by averaging the ranks
that the measurements have received. We then compute
T1, the rank sum for measurements from the past mor-
talities 1, and T2, the rank measurements from the early
mortalities 2 as detailed in [30]. ,e difference between
these two groups was tested through the following hy-
pothesis (two tails):

(i) H0 : there is no true median difference in the level of
monthly maternal mortality.

(ii) H1 : there is the true median difference in the level of
monthly maternal mortality.
Mathematically, these hypotheses can be written as
follows: H0 :M1 – M2� 0 and H1 :M1 – M2 ≠ 0,
whereM1 andM2 are themedians of past mortalities
and early mortalities, respectively. ,e test statistics
is minimum (T1, T2); then, if T≤TO (TO is from the
table at the a-a level of significance), we will reject
the null hypothesis (H0).

3. Results

3.1. Fit the Model and Forecast Maternal Mortality. 111
observations were analyzed, modeled, interpreted, and
forecasted in the next three years (2018 to 2021). Firstly,
monthly maternal mortality series were plotted without
transformation, to identify whether the trend of series is
significant, and then stationary conditions of the series have
checked and determined whether there are seasonal varia-
tions in the series.

From Figure 1, the series is observed to be an additive
model and nonstationary. It presents a partial trend,
nonstationary in mean and variance, and seasonal varia-
tions. Differencing (1) technique was used to transform the
series to be stationary and removing the regular pattern,
trends, and seasonal changes. ,rough ACF and PACF,
there is a significant peak at the first lag, which simply looks
like the ARIMA model. After transformation to induce
stationarity in mean and variance, the stationarity is then
not statistically significant. Consequently, the Box-Jenkins
approach is doubted to be considered; afterward, the
analysis showed that there were two possible models, Box-
Jenkins ARIMA (0, 1, 0) random walk model and DESM.
,e next step is to fit those two models and check their
significance and decide the best-fit model to predict future
maternal mortality.

Figure 2 represents multiple plots of original and fitted
observations of maternal mortality, which are overlapping,
closer, and moving together in the same direction. ,e series
contains regular trends, seasonality, and variable (high to low)
higher and lower level mortalities. Since the fitted values
follow the behavior of the original series and capture all
variations within the original series, the time series ap-
proaches statistically fit the data. Even though the parameter
estimates of DSEM are not statistically significant (P value
>0.05) and standard deviations are not too small enough,
ARIMA model estimates are all statistically significant (P
value <0.05), and they can show all variations in the maternal
mortality. In addition, the linear regression model is slightly
good (R-square� 0.56, P value >0.05) (Table 1).

3.2. >e ACF and PACF in Monthly and Yearly Maternal
Mortalities and GNI. In monthly and annual maternal
mortalities data from 2009 to 2018, the P value of the
Ljung-Box Q statistics of each lagged month of four
months was less than 0.05. ,e absolute values of the
autocorrelation (ACF) coefficients showed strong asso-
ciations during the first two lagged months and annually
in the first lagged month of GNI for partial autocorre-
lations (PAC). ,ese outputs show the significant re-
lationship of GNI to reduce mortalities. ,e
computations of model parameters and validation cri-
teria and correlations between GNI and maternal mor-
tality are detailed in an additional file.

3.3. Evaluating Monthly Maternal Mortality in Different
Periods. Bera–Jarque procedures indicate that Skewness
and Kurtosis do not hold the conditions of normality. ,e
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data is skewed on the right side because of skewness � 1.195
and Kurtosis � 2.324. Now, the Wilcoxon rank test was
used to test whether the medians of the two groups are
different, group 1: January 2009 to April 2014 and group 2:
May 2014 to April 2018. ,e null hypothesis fails to be
rejected since the test statistic Z � -1.299∗, and it is in the
accepted region. ,erefore, there is no significant differ-
ence in the monthly maternal mortality in the past and
early mortalities (Table 1).

3.4. Models Comparison. Based on the model checking
procedures, DESM in (i) of Table 2 is the best-fitted model to
forecast monthly maternal mortality, though it is compli-
cated for applying. ,e random walk ARIMA (0, 1, 0) model
in (ii) of Table 2 and fitted linear regression model (iii) of
Table 2 is simpler to forecast the maternal mortality than the
DESM model. On the other hand, DESM and a linear re-
gression model produce closer results (Table 2).

3.5. Forecasted Maternal Mortality. Table 3 represents the
monthly forecast of maternal mortality from May 2018 to
August 2018 by using different models and the yearly
forecasted maternal mortalities by the use of DESM in three
years (2018–2021). In contrast, the total mortality will be 147
with monthly confident intervals (0, 10). In the fact that the
actual value of maternal mortality (52) and predicted value
(54) from May 2017 to May 2018 are closer, the fitted model
is adequate for maternal mortality in CHUK. ,is reason
cannot ignore results obtained by using ARIMA and linear
regression model since they are easier to be applied and
provide a reliable forecast than DESM.

3.6. Impact of GNI in Reducing Maternal Mortality. ,e
Pearson correlation between yearly maternal mortalities and
GNI is statistically significant (P value<0.05), which is
moving in the opposite direction, meaning that as GNI
increases, maternal mortality decreases. ,e increment rate
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Figure 1: ,e maternal mortality series (original and transformed). (a) Original series. (b) Transformed (1st difference).
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Figure 2: ,e trajectories of actual and monthly maternal mortality, level, trends, and the season started from 2009 to 2018. (a) Actual and
forecast. (b) Level. (c) Trend. (d) Season.
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of GNI from 2002 to 2011 corresponds to the decrement rate
of maternal mortality. Even though there was an increase in
mortality from 2012 to 2014, GNI seems constant in that
time (Table 2 and Figure 3).

4. Discussion

,is study compared maternal mortality of previous years
and forecasted the next three years of the same mortality
based on the influence of gross national income (GNI) by
using DESM, linear regression, and ARIMA models. ,e

111 observations have been used for monthly maternal
mortality series recorded from January 2009 to April 2018,
together with yearly maternal mortality and GNI from 2002
to 2017.

,e model identification revealed that the data showed
indistinguishable partial trends and nonstationarity, and
ACF and PACF, spikes at all four lags, were representing the
same information. By applying differencing (1), all partial
trend has removed. ,is result indicated that the monthly
maternal mortality series contained trends, and DESM and
ARIMA (0, 1, 0) (random drift) models are appropriate.

Table 2: Models fitting.

Model Fitted model

DSEM (i) St � 0.001Yt + (1 − 0.001)(St−1 + bt−1)

bt � 0.305(St − St−1) + (1 − 0.305)bt−1
ARIMA (ii) 􏽢Yt � 3.93 + Yt−1
Linear regression (iii) Yt � 3.312 + 0.011t + εt

Table 3: Forecasted maternal mortality using different models.

Time ARIMA (0, 1, O) Linear model DESM
May 2018 6.93± 2.28 4.533± 2.34 4 [0 8]
June 2018 9.93± 2.37 4.544± 2.47 4 [0 8]
July 2018 12.93± 2.29 4.555± 2.26 6 [2 10]
August 2018 15.93± 2.47 4.566± 2.37 6 [2 10]

Predicted value Actual value Forecast value Monthly limits Monthly errors
5/2016–5/2017 50 47 [−1, 10] [−3, 3]
6/2017–5/2018 52 54 [−1, 11] [−3, 7]
6/2018–5/2019 51 [0, 10] [−3, 7]
6/2019–5/2020 48 [0, 10] [−2, 9]
6/2020–5/2021 48 [0, 10] [−1, 7]

Table 1: Model parameters and the relationship between MMs and GNI.
Monthly mortality Yearly mortality Pearson correlation

Lags ACF PACF Q-stat P value ACF PACF Q-stat P-value MMs and GNI P value
1 0.850 0.850 13.87 0.00 0.591 0.591 6.7129 0.010 −0.610 0.012
2 0.660 −0.22 22.84 0.00 0.268 −0.125 8.1908
3 0.460 −0.13 27.53 0.00 0.283 0.279 9.9636 0.019
4 0.266 −0.10 29.23 0.00 0.124 −0.263 10.335 0.035
Model
information Parameters Estimates SE P value

DESM
Alpha (Level) 0.50 .019 .958

Gamma 0.201 0.201 .962
Beta 0.100

ARIMA (0 1 0) drift 3.39 0.23 0.000
alpha 1 0.00 0.003

Linear model Intercept alpha 3.32 0.036 0.114
R-square (0.56) alpha 0.011
Nonparameter test Stat-value Bera-Jarque Test-value
Mann–Whitney U 46.500 Skewness 1.195
Wilcoxon W 101.500 Kurtosis 2.329
Z-test −1.299 P value (2-tailed) 0.194

ACF: autocorrelation function, PACF: partial autocorrelation function, MM: maternal mortality, GNI: gross national income, SE : standard error, AIC:
Akaike information criteria. P value< 0.01 significant level.
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Again, referring to the model identification, model checking,
and model fitting for time series approaches, both models
are approximately similar to fit the monthly maternal
mortality. Because the application of DESM in the forecast
seems complicated and not friendly with users, the ARIMA
model is mostly applied instead. For instance, it was used in
maternal mortalities prediction in Ghana [19] and Norway
[31], and the results were similar to those obtained in this
study.

,e forecasted value of maternal mortality using DESM
will steadily decrease up to May 2021, where the total
monthly maternal mortality will be equal to 147 with
confident limits of (0, 10) (Figure 4 and Table 3). ,ese
results are similar to those established by Maral DerSar-
kissian in African countries, where he showed that the mean
maternal mortality ratios decreased from 695.82 in 1990 to
562.18 in 2005 and achievedMDG-5 pillar [32]. On the other
hand, there was no significant difference in the maternal
mortalities of previous years. Furthermore, a negative cor-
relation between yearly mortality and GNI indicated the
positive impact of GNI in maternal mortality reduction in
Rwanda.

,ough the forecasted maternal mortality in the next
three years was not significantly increased, GNI showed
a substantial impact to keep steadily downing mortalities.

5. Limitations

,is study lacked access to strategical subjected causes of
maternal mortalities on either pregnant women or the view
of midwives, and primary data. ,is disturbs the contri-
bution of external factors in model fitting. However, future
research can be addressed in the investigation of the main
cause’s effect and related complications, which leads to
maternal mortalities, especially in rural villages.

6. Conclusion

Despite steady forecasted maternal mortality within the next
three years, the impacts of GNI to reduce these mortalities
are not proportional to the needed targets of bothMDGs and
SDGs. Regardless of the complication of DESM, it is the best

model to produce reliable forecasts, while the linear re-
gression and ARIMA models can be used for quick fore-
casting. It is recommended that the Government of Rwanda
shall use a substantial share of GNI in the health-care system,
encourage regular prenatal consultation, and provide regular
professional training to midwives and devolution of in-
frastructure to support pregnant women to reduce maternal
mortality in advanced level.
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