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Previous methods for predicting protein-protein interactions (PPIs) were mainly focused on PPIs within a single species, but PPIs
across different species have recently emerged as an important issue in some areas such as viral infection. The primary focus of this
study is to predict PPIs between virus and its targeted host, which are involved in viral infection. We developed a general method that
predicts interactions between virus and host proteins using the repeat patterns and composition of amino acids. In independent
testing of the method with PPIs of new viruses and hosts, it showed a high performance comparable to the best performance of other
methods for single virus-host PPIs. In comparison of our method with others using same datasets, our method outperformed the
others. The repeat patterns and composition of amino acids are simple, yet powerful features for predicting virus-host PPIs. The
method developed in this study will help in finding new virus-host PPIs for which little information is available.

1. Introduction

Viral infection involves a large number of protein-protein
interactions (PPIs) between virus and its targeted host. These
interactions range from the initial binding of viral coat
proteins to host membrane receptor to hijack the host
transcription machinery by virus proteins. Various viral
diseases are caused by infection with pathogenic viruses. For
instance, Ebola virus disease is a highly contagious and fatal
disease caused by infection with Ebola virus. During the 2014
Ebola epidemic, the world witnessed over 28,000 cases and
over 11,000 deaths [1]. So far, there is no specific vaccine or
effective treatment for Ebola virus disease [2]. Despite the
increased number of known virus-host PPIs, viral infection
mechanism is not fully understood. Thus, identifying in-
teractions between virus proteins and host proteins helps
understand the mechanism of viral infection and develop
treatments and vaccines.

So far, many computational methods have been de-
veloped to predict PPIs. However, most of these methods
predict PPIs within a single species and cannot be used to

predict PPIs between different species because they do not
distinguish interactions between proteins of the same species
from those of different species. Recently, a few computa-
tional methods have been developed to predict virus-host
PPIs using machine learning methods. For instance, a ho-
mology-based method [3] predicts PPIs between H. sapiens
and M. tuberculosis H37Rv. Support vector machine (SVM)
models developed by Cui et al. [4] and Kim et al. [5] pre-
dicted PPIs between human and two types of viruses
(hepatitis C virus and human papillomavirus). However,
these methods are intended for PPIs between virus of a single
type and host of a single type. Recent computational
methods developed for predicting virus-host PPIs [6-8] are
also limited to PPIs between human and the human im-
munodeficiency virus 1 (HIV-1) and cannot predict PPIs of
new viruses or new hosts which have no known PPIs to the
methods. A recent SVM model called DeNovo can excep-
tionally predict PPIs of new viruses with a shared host [9].

In this paper, we present a new method for predicting
virus-host PPIs, which is applicable to new viruses or hosts
using amino acid repeat patterns and composition. Proteins
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FiGure 1: Example of computing feature 1 (F1) of amino acid repeats. F1 is the sum of squared length of single amino acid repeats (SARs)
in the whole protein sequence. In this example, F1 (repeats of S) = 17+ 3% + 32 =19, F1 (repeats of W) = 4%+ 2° = 20, and F1 (repeats of R) =

1> +6°=37.

in a variety of species contain significant amino acid repeats,
with more abundance of repeats in eukaryotic proteins than
in prokaryotic proteins [10, 11]. It has been found that
proteins with a large number of amino acid repeats have
a greater number of interacting partners compared to those
without [12]. Experimental results of our method show that
the repeat patterns and local composition of amino acids are
simple, yet powerful features for predicting virus-host PPIs.
The rest of this paper discusses the details of the method and
its experimental results.

2. Materials and Methods

2.1. Features and Representation. Proteins are of different
lengths and have different amino acid compositions. Many
features of proteins have been used to predict PPIs from
protein sequences. In this study, we represent a virus-host
PPI by three features (F1, F2, and F3):

F1: sum of squared length of single amino acid repeats
(SARs) in the entire protein sequence

F2: maximum of the sum of squared length of SARs in
a window of 6 residues

F3: composition of amino acids in 5 partitions of the
protein sequence

F1, which is the sum of squared length of SARs in the
protein sequence, is defined by (1). Since SAR of length 1 is
also included in F1, the F1 score reflects global composition
of amino acids as well as amino acid repeats. Figure 1 shows
an example of how we compute F1.

FI(SAR)= ) length(SAR)™.

SAResequence

(1)

Feature F2 is defined by (2). It appears to be similar to F1,
but there are two differences: (1) for F2, the sum of squared

length of SARs is computed for every window of size 6 instead
of a whole protein sequence, and (2) the maximum of the sum
of squared length of SARs in a window is selected for F2. For
example, a protein sequence SWWWWRSSSRRRRRRSSSWW
has 15 possible windows of size 6, as shown in Figure 2. For
each amino acid, we compute its F2 score by selecting the
maximum of the sum of squared length of the SAR in
a window of size 6:

F2(SAR) = max

windowesequence

length (SAR)%.

SARewindow

(2)

The reason that we use a window of size 6 for F2 is
because a window larger than 6 residues generates a same
score for different repeat patterns. For example, with
awindow of size 7, we may obtain a same value of F2 even for
different patterns of single amino acid repeats, whereas with
a window of size 6, we obtain all different values of F2 for
different patterns of single amino acid repeats (Figure 3).

While feature F1 represents the repeat patterns and
global composition of amino acids in the whole protein
sequence, feature F3 represents the local composition of
amino acids. For feature F3, we partition a protein sequence
into 5 segments of equal length except the last one and
compute the composition of amino acids in each of the 5
segments. Since the three features, F1, F2, and F3, are
computed for each amino acid, every pair of virus and host
proteins is represented in a feature vector with 280 elements
(140 for a virus protein and 140 for a host protein).

2.2. Datasets of Virus-Host PPIs. We constructed several
datasets of virus-host PPIs to examine the applicability of the
prediction method to new viruses and hosts. The first
training dataset consists of PPIs of human with positive-
sense single-stranded RNA (+ssRNA) viruses except hepa-
titis C virus (HCV) and severe acute respiratory syndrome
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FiGure 2: Example of computing feature 2 (F2) of amino acid repeats. F2 is the maximum value of the sum of squared length of single amino
acid repeats in a window of size six. The maximum repeat size of amino acid S is 3, which is observed in the windows starting at 4, 5, 6, 7, 13,
14, and 15. So, F2 (repeats of S) = 32=9. The maximum repeat size of amino acid W is 4, observed in the windows starting at 1 and 2.
F2 (repeats of W) = 4> = 16. The maximum repeat size of amino acid R is 6, observed in the window starting at 10. F2 (repeats of R) = 6> = 36.

Case Window of size 6 Equation for feature #2 Value
1 0*=0 0
2 . 1’=1 1
3 . . P+ 12=2 2
4 . . . 12+12+1%=3 3
5 . . 22=4 4
6 . . . 22+1%=5 5
7 . . . . 22+ 12+ 1%°=6 6
8 . . . . 224+22=38 8
9 . . . 3%=9 9
10 . . . . 32+12=10 10
11 . . . . . 324+22=13 13
12 . . . . 4*=16 16
13 . . . . . 424 12=17 17
14 . . . . . 57=25 25
15 . . . . . . 6> =36 36
Case Window of size 7 Equation for feature #2 Value
1 . . . . P+1?+12+1%=4 4
2 . . 2%2=4 4

FIGURE 3: Values of feature 2 for windows of six and seven residues. With a window of size 6, different patterns of single amino acid repeats
lead to 15 different values for feature 2. With a window of size 7, different patterns of single amino acid repeats can lead to a same value for

feature 2, as shown in this example.

(SARS) virus. The SVM model trained with the training
dataset was tested on PPIs of five new viruses: HCV, SARS
virus, influenza A (HIN1) virus, human papillomavirus
(HPV-16), and human immunodeficiency virus HIV-1. Both
HCV and SARS are positive-sense single-stranded RNA
(+ssRNA) viruses, but the remaining three viruses are of
different type. HINI virus is a negative-sense single-
stranded RNA (—ssRNA) virus, HPV-16 is a double-
stranded DNA (dsDNA) virus, and HIV-1 is a retrovirus.
The second training dataset is composed of PPIs between
human and +ssRNA viruses, including HCV and SARS
virus. The SVM model trained on the second training dataset
was tested on PPIs of new hosts: Mus musculus, Bos taurus,
Rattus norvegicus, Sus scrofa, and Escherichia coli K-12.
Data of virus-host PPIs were collected from IntAct [13]
and VirusMentha [14]. But PPIs of HCV with human were

obtained from the Hepatitis C Virus Protein Interaction
Database (HCVpro) [15] because HCVpro has more
human-HCV PPIs than IntAct. The sequences of the pro-
teins involved in the virus-host PPIs were obtained from the
UniProt database [16].

The training and test datasets constructed in our study
can be summarized as follows.

1. Training (TR) and Test (TS) Datasets for Assessing the
Applicability of the Prediction Model to New Viruses

TR1: 638 PPIs between 499 human proteins and 25
+ssRNA virus proteins

TS1: 515 PPIs between 423 human proteins and 11
HCV proteins

TS2: 30 PPIs between 27 human proteins and 12 SARS
virus proteins



TS3: 377 PPIs between 307 human proteins and 10
HINTI virus proteins

TS4: 319 PPIs between 298 human proteins and 11
HPV-16 proteins

TS5: 1,578 PPIs between 1,056 human proteins and 46
HIV-1 proteins

2. Training (TR) and Test (TS) Datasets for Assessing the
Applicability of the Prediction Model to New Hosts

TR2: 689 PPIs between 522 human proteins and 35
+ssRNA virus proteins

TS6: 191 PPIs between 141 Mus musculus proteins and
116 virus proteins

TS7: 125 PPIs between 87 Bos taurus proteins and 34
virus proteins

TS8: 86 PPIs between 79 Rattus norvegicus proteins and
24 virus proteins

TS9: 57 PPIs between 38 Sus scrofa proteins and 10
virus proteins

TS10: 78 PPIs between 64 Escherichia coli K-12 proteins
and 27 virus proteins

Machine learning-based approaches to PPI prediction
require both positive and negative PPI data, but negative
data are not available in databases. Constructing a negative
dataset of PPIs is not straightforward because there is no
experimentally verified noninteracting pair [17]. Eid et al.
[9], for example, used negative sampling for their negative
dataset. In our study, we constructed a negative dataset with
human proteins whose sequence similarity is lower than 40%
to any human protein in the positive dataset by running CD-
HIT [18]. Our negative dataset includes 2,819 interactions
between 90 virus proteins and 2,819 human proteins. The
training and test datasets constructed in this study are
available in Additional files 1 and 2.

2.3. Prediction Models of Virus-Host PPIs. We built several
support vector machine (SVM) models using LIBSVM [19]
to evaluate our approach. The radial basis function (RBF)
was used as a kernel of the SVM models, and the best values
of parameters C and y were obtained by running the grid
search of LIBSVM on training datasets. Unless specified
otherwise, the results shown in this paper were obtained with
C=2and y=0.5. The SVM models take a pair of virus and
host protein sequences as input. As output, the SVM models
classify whether or not the virus protein interacts with the
host protein. The SVM models and supporting data are
available at http://www.bclab.inha.ac.kr/VHPPI.

3. Results and Discussion

3.1. Performance Measures. The performance of the SVM
models was evaluated by several measures: sensitivity (Sn),
specificity (Sp), accuracy (Acc), positive predictive value
(PPV), negative predictive value (NPV), and Matthews
correlation coefficient (MCC), which are defined by the
following equations:
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Sn = TP 1IN’ (3)
Sp= % (4)
Acc= TP+E§:¥§+ FN’ ©)
PPV = TPT+PFP, (6)
NPV = TNT% (7)
MCC (TP x TN) — (FP x FN)

" /(TP + FP) (TP + FN) (IN + FP) (IN + FN)
(8)

In (3)-(8), true positives (TP) are host proteins that are
correctly predicted as interacting with a virus protein. True
negatives (TN) are noninteracting host proteins that are
correctly predicted as noninteracting with a virus protein.
False positives (FP) are noninteracting host proteins that are
incorrectly predicted as interacting with a virus protein.
False negatives (FN) are interacting host proteins that are
incorrectly predicted as noninteracting with a virus protein.

3.2. Results of Cross Validation. We performed 10-fold cross
validation of the SVM model with several datasets which
contain different ratios (1:1, 1:2, and 1:3) of positive to
negative PPIs between +ssRNA viruses and human. As shown
in Table 1, the best performance of the SVM model was
observed in the balanced dataset with 1:1 ratio of positive to
negative data. As expected, running the SVM model on
unbalanced datasets resulted in lower performances than
running it on the balanced dataset with 1: 1 ratio of positive to
negative data. Datasets are available in Additional file 3.

We also examined the contribution of the features to the
prediction performance of the SVM model. Table 2 shows
the results of using different combinations of features in 10-
fold cross validation of the SVM model with the 1:1 dataset
of Table 1. Among the single features, F3, which is the local
composition of amino acids, was the best in all performance
measures. With F3 alone, the SVM model achieved an ac-
curacy above 92% and an MCC above 0.86, indicating that
F3 is a very powerful feature in predicting virus-host PPIs.
The best performance of the SVM model was observed when
F1 and F3 were used. We also examined this work with
different combinations of features. We used double amino
acid repeats (DARs) for F1 and F2 instead of single amino
acid repeats (SARs), but here for F2, we used a window size
of 10 residues not 6 residues because we are working with
DAR, so a window size of 10 residues is the biggest available
window size that obtain a different value for every double
amino acid repeat in it, but a window size of 6 residues does
the same thing for the single amino acid repeat.

For features F1 and F2, we tried both single amino acid
repeats (SARs) and double amino acid repeats (DARs) along
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TaBLE 1: Results of 10-fold cross validation of SVM model on 1,072 PPIs between 36 RNA viruses and 812 human proteins with different

ratios of positive to negative instances.

P:N Dataset Sn (%) Sp (%) Acc (%) PPV (%) NPV (%) MCC AUC

1 88.24 97.34 92.79 97.07 89.22 0.859 0.963

1:1 2 81.03 94.36 87.7 93.49 83.26 0.761 0.931

’ 3 77.74 94.04 85.89 92.88 80.86 0.728 0.926
mean + SD 82.34 + 4.39 95.25 + 1.49 88.79 + 2.92 9448 + 1.85 84.45 + 3.51 0.78 + 0.06 0.94 + 0.02

1 64.89 97.34 86.52 92.41 84.72 0.693 0.893

1:2 58.31 97.57 84.48 92.31 82.4 0.646 0.886

’ 3 63.64 96.08 85.27 89.04 84.09 0.661 0.891
mean + SD 62.28 + 2.85 97 + 0.65 85.42 + 0.84 91.25 + 1.57 83.74 + 0.98 0.67 + 0.02 0.89 + 0.00

1 46.24 98.28 85.27 89.94 84.58 0.58 0.850

1:3 46.87 98.59 85.66 91.72 84.77 0.59 0.863

’ 3 49.37 97.28 85.31 85.83 85.22 0.576 0.858
mean + SD 47.49 + 1.35 98.05 + 0.56 85.41 + 0.18 89.16 + 2.47 84.86 + 0.27 0.58 + 0.01 0.86 + 0.01

Sn: sensitivity, Sp: specificity, Acc: accuracy, PPV: positive predictive value, NPV: negative predictive value, MCC: Matthews correlation coefficient, and AUC:

the area under the ROC curve.

TaBLE 2: Comparison of different combinations of features in 10-fold cross validation of SVM model.

Features Sn (%) Sp (%) Acc (%) PPV (%) NPV (%) MCC AUC
F1 81.66 97.02 89.34 96.48 84.10 0.796 0.916
F2 69.75 85.11 77.43 82.41 73.78 0.555 0.849
F3 87.78 97.81 92.79 97.56 88.89 0.860 0.965
F1+F2 80.88 95.61 88.24 94.85 83.33 0.773 0.925
F1+F3 88.56 97.34 92.94 97.08 89.48 0.862 0.966
F2+F3 87.46 96.87 92.16 96.54 88.54 0.847 0.961
F1+F2+F3 88.24 97.34 92.79 97.07 89.22 0.859 0.963

F1: sum of squared length of single amino acid repeats in the entire protein sequence, F2: maximum of the sum of squared length of single amino acid repeats
in a window of 6 residues, F3: composition of amino acids in 5 partitions of the protein sequence, Sn: sensitivity, Sp: specificity, Acc: accuracy, PPV: positive
predictive value, NPV: negative predictive value, MCC: Matthews correlation coefficient, and AUC: the area under the ROC curve.

TaBLE 3: Results of 10-fold cross validation of SVM model on different combinations of the three features we used in our method.

F1 and F2 F3 Sn (%) Sp (%) Acc (%) PPV (%) NPV (%) MCC AUC
SAR 5 partitions 88.24 97.34 92.79 97.07 89.22 0.859 0.963
SAR 7 partitions 88.24 97.96 93.10 97.74 89.29 0.866 0.965
SAR 9 partitions 89.19 96.08 92.63 95.79 89.88 0.855 0.962
DAR 5 partitions 84.80 94.51 89.66 93.92 86.14 0.797 0.937
DAR 7 partitions 85.42 94.51 89.97 93.97 86.64 0.803 0.938
DAR 9 partitions 85.27 94.20 89.73 93.63 86.47 0.798 0.940

SAR: single amino acid repeats for F1 and F2, DAR: double amino acid repeats for F1 and F2, Sn: sensitivity, Sp: specificity, Acc: accuracy, PPV: positive
predictive value, NPV: negative predictive value, MCC: Matthews correlation coeflicient, and AUC: the area under the ROC curve.

with different partitions of a protein sequence. As shown in
Table 3, SAR resulted in a better performance than DAR.
For feature F3, we tried several different partitions of
a protein sequence in several datasets. Table 4 shows the
performance of our SVM model in three different datasets of
virus-host PPIs. All the results shown in Table 4 were ob-
tained by using SAR for features F1 and F2, but with dif-
ferent partitions for feature F3. On average, partitioning
a protein sequence into 5 segments showed the best per-
formance in all performance measures except sensitivity. In
addition to the performance gain, partitioning a protein
sequence into 5 segments is more advantageous than 7 or 9
segments with respect to the size of a feature vector that
represents the sequence. When we partition a protein se-
quence into 5 segments, every pair of virus and host proteins
is encoded in a feature vector with 280 elements (20 elements

for F1, 20 elements for F2, and 20 x 5=100 elements for F3
for each of the virus and host proteins). If we partition
a protein sequence into 7 or 9 partitions, a feature vector will
require 360 elements (20 elements for F1, 20 elements for F2,
and 20 x 7=140 elements for F3 for each of the virus and
host proteins) or 440 elements (20 elements for F1, 20 el-
ements for F2, and 20 x 9 =180 elements for F3 for each of
the virus and host proteins). However, the larger feature
vectors did not result in performance improvement in
predicting virus-host PPIs.

3.3. Results of Independent Testing on PPIs of New Viruses.
As discussed earlier, we trained the SVM model with the
training dataset TR1 consisting of PPIs of human with
+ssRNA viruses except hepatitis C virus (HCV) and SARS



TaBLE 4: Results of testing our SVM model with different partitions
of a protein sequence on three datasets.

Our dataset

Sn Sp Acc PPV NPV

" %) %) %) 0 (g MCC AUC
5 partitions  88.24 97.34 92.79 97.07 89.22 0.859 0.963
7 partitions  88.24 97.96 93.10 97.74 89.29 0.866 0.965
9 partitions  89.19 96.08 92.63 95.79 89.88 0.855 0.962
DeNovo dataset

Sn Sp Acc PPV NPV
" %) ) %) 0 (o MG AUC
5 partitions  86.35 86.59 86.47 86.56 86.39 0.729 0.926
7 partitions  83.60 81.18 82.41 8230 82.54 0.648 0.907
9 partitions  84.27 79.53 81.95 81.17 82.84 0.639 0.902

Barman dataset

Sn Sp Acc PPV NPV
3 %) ) %) 0 (e MEC AUC
5 partitions  73.72 83.48 78.60 81.69 76.06 0.575 0.847
7 partitions  78.55 78.55 78.55 7855 78.55 0.571 0.858
9 partitions  78.16 79.81 78.99 79.47 78.52 0.580 0.860

Average of the above three results

Sn Sp Acc PPV NPV
3 %) %) (%) 0 (e MCC AUC
5 partitions  82.77 89.14 8595 88.44 83.89 0.721 0.912
7 partitions  83.46 85.90 84.69 86.20 83.46 0.695 0.910
9 partitions  83.87 85.14 84.52 85.48 83.75 0.691 0.908

All the results were obtained by commonly using SAR for features F1 and F2.

TaBLE 5: Training (TR) and test (TS) datasets for assessing the
applicability of the SVM model to new viruses and to new hosts.
The average sequence similarity between proteins in TR and those
in TS was analyzed using EMBOSS Needle tool [20].

Proteins in T . Average
.. arget proteins
training in test datasets sequenice
datasets similarity (%)
11 HCV proteins in TS1 5.03
25 virus 12 SARS virus proteins in TS2 5.20
proteins 10 HINI1 virus proteins in TS3 5.03
in TR1 11 HPV-16 proteins in TS4 3.12
46 HIV-1 proteins in TS5 3.56
522 141 Mus musculus proteins in TS6 9.20
human 87 Bos taurus proteins in TS7 9.07
proteins 79 Rattus norvegicus prote?ns in TS8 9.76
in TR2 38 Sus scrofa proteins in TS9 8.70

64 Escherichia coli K-12 proteins in TS10 8.04

virus and tested it on PPIs of new viruses which were not
used in training the model. The test datasets include PPIs of
five viruses (HCV, SARS virus, HIN1 virus, HPV-16, and
HIV-1) with human. HIN1 virus is a negative-sense single-
stranded RNA (-ssRNA) virus, and HPV-16 is a double-
stranded RNA (dsDNA) virus. HIV-1 is a retrovirus, which
is a +ssRNA virus with a DNA intermediate.

In addition to species difference, we also analyzed the
sequence similarity between the training datasets and test
datasets using EMBOSS Needle tool [20] to assess the in-
dependence of the test data from the training data. As shown
in Table 5, target virus proteins in the test datasets showed
a very low average sequence similarity in the range (3.12% to
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TaBLE 6: Results of independent testing our SVM on PPIs of new
viruses with human.

Sn Sp Acc PPV NPV

Virus (%) (%) (%) (%) (%) MCC AUC
HCV 94.37 52.04 7320 66.30 90.24 0.512 0.925
S.ARS 96.67 73.33 85.00 78.38 95.65 0.720 0.970
virus

H.INI 90.72 6790 79.31 73.87 87.97 0.602 0.938
virus

HPV-16 81.82 94.04 87.93 9321 83.80 0.764 0.938
HIV-1 87.83 64.64 7624 71.30 84.16 0.539 0.882
Average 90.28 70.39 80.34 76.61 88.36  0.627 0.930

Sn: sensitivity, Sp: specificity, Acc: accuracy, PPV: positive predictive value,
NPV: negative predictive value, MCC: Matthews correlation coefficient, and
AUC: the area under the ROC curve.

5.20%) to the virus proteins in the training dataset (see
Additional file 4 for the similarity of every sequence pair
between the training and test datasets).

Table 6 shows the results of testing the prediction model
on 5 independent datasets of PPIs of new viruses. Despite
such a low sequence similarity and species difference, the
SVM model showed a high performance in independent
testing. In particular, the SVM model showed a higher
sensitivity (94.37% and 96.67%) for HCV and SARS virus,
which are +ssRNA viruses. It is interesting to note that HPV-
16, which is a dsDNA virus, showed the highest specificity of
94.04% and accuracy of 87.93%. Figure 4 shows the ROC
curves of independent testing of the SVM model on PPIs of
five new viruses.

3.4. Results of Independent Testing on PPIs of New Hosts.
In order to examine the applicability of the SVM model to
new hosts, we tested it on PPIs of viruses with new hosts,
which were not used in training the model. As described
earlier, the model trained with PPIs of human with +ssRNA
viruses was tested on PPIs of five new hosts (Mus musculus,
Bos taurus, Rattus norvegicus, Sus scrofa, and Escherichia coli
K-12) with the viruses. As shown earlier in Table 5, the
average sequence similarity of the human proteins in the
training dataset to the new hosts is low, ranging between
8.04% and 9.76%. Despite the low sequence similarity and
species difference, testing the model on PPIs of new hosts
showed a relatively good performance (Table 7). Figure 5
shows the ROC curves of independent testing of the SVM
model on PPIs of five new hosts.

It is interesting to note that proteins of new hosts have
a higher average sequence similarity to those in training
datasets than proteins of new viruses, but the SVM model
showed a lower performance for new hosts. This can be
explained by the number of partner proteins of the target
proteins shared by training and test datasets. As shown in
Table 8, the number of common proteins between the test
datasets for new viruses (TS1-TS5) and their training
dataset TRI is larger than the number of common proteins
between the test datasets for new hosts (TS6-TS10) and
their training dataset TR2. Thus, the SVM model showed
a better performance for new viruses than for new hosts.
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F1GURE 4: ROC curves of independent testing of the SVM model on
PPIs of new viruses with human. The SVM model showed the
largest area under the ROC curve (AUC) of 0.970 for the PPIs of the
SARS virus with human.

TaBLE 7: Results of independent testing our SVM on PPIs of new
hosts with viruses.

Sn Sp Acc PPV NPV
Host %) (%) (%) (%) (%) MCC AUC

Mus

8586 61.78 73.82 69.20 81.38 0.491 0.887
musculus
Bos taurus 9840 2720 62.80 57.48 9444 0.365 0.926
Rattus 91.86 27.90 59.88 56.03 77.42 0257 0.828
norveglcus
Sus scrofa 100.00 526 52.63 51.35 100.00 0164 0.952
Escherichia o1 o7 9103 92.95 9136 94.67 0.860 0.959
coli K-12
Average 92.02 5423 7313 67.80 86.86 0.501 0.911

Sn: sensitivity, Sp: specificity, Acc: accuracy, PPV: positive predictive value,
NPV: negative predictive value, MCC: Matthews correlation coefficient, and
AUC: the area under the ROC curve.

These results corroborate the known problem with pair-
input methods, which was first reported by Park and
Marcotte [21]. According to their study [21], prediction
methods that operate on pairs of objects such as PPIs
perform much better for test pairs that share components
with a training set than for those that do not. Thus, our
prediction model showed a better performance in testing
for new viruses which share more partner proteins
(i.e., host proteins) with training datasets than in testing for
new hosts which share fewer partner proteins (i.e., virus
proteins) with training datasets.

3.5. Comparison to Other Methods. For a comparative
purpose, we ran our SVM model on the datasets of two other
methods for virus-host PPIs: Barman’s method [22] and
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F1GUre 5: ROC curves of independent testing of the SVM model on
PPIs of new hosts with viruses. The SVM model showed the largest
area under the ROC curve (AUC) of 0.959 for the PPIs of E. coli
K-12 with viruses.

DeNovo [9]. In Barman’s study [22], three machine learning
methods (SVM, Naive Bayes, and Random Forest) were used
to predict virus-host PPIs using several features such as
domain -domain association in interacting protein pairs and
composition of methionine, serine, and valine in virus
proteins. In a 5-fold cross validation with virus-host PPIs
from VirusMINT [23], their Random Forest (RF) and SVM
showed a better performance than Naive Bayes. Thus, we
tested our SVM model on the same dataset used in Barman’s
study, which contains 1,035 positive and 1,035 negative
interactions between 160 virus proteins of 65 types and 667
human proteins. As shown in Table 9, our SVM model
outperformed Barman’s SVM model in all performance
measures and our SVM model outperformed Barman’s RF
model in all performance measures except specificity and
PPV. The dataset used for comparison of our SVM model
with Barman’s SVM and Random Forest models is available
in Additional file 5.

For comparison with DeNovo’s SVM model, we tested
our SVM model on DeNovo’s SLiM testing set, which
contains 425 positive and 425 negative PPIs (Supplementary
file S12 used in DeNovo’s study ST6). As shown in Table 10,
our SVM model was better than DeNovo in all performance
measures (sensitivity of 86%, specificity of 87%, and accu-
racy of 86%). The dataset used for comparison of our SVM
model with DeNovo is available in Additional file 6.

4. Conclusions

Amino acid repeats are prevalent in a variety of proteins but
are rarely used in predicting PPIs. We developed a new
method that predicts potential interactions between virus
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TaBLE 8: The number of host proteins shared by training (TR) and test (TS) datasets used for assessing the applicability of the SVM model to

new viruses and to new hosts.

Dataset TR1 TS1 TR1 TS2 TR1 TS3 TR1 TS4 TR1 TS5
#PPIs 638 515 638 30 638 377 638 319 638 1578
#Virus proteins 25 11 25 12 25 10 25 11 25 46
#Host proteins 499 424 499 27 499 307 499 298 499 1056
#Host proteins common to TR and TS 63 (14.9%) 5 (18.5%) 68 (22.1%) 22 (7.4%) 122 (11.6%)
Dataset TR2 TS6 TR2 TS7 TR2 TS8 TR2 TS9 TR2 TS10
#PPIs 689 191 689 125 689 86 689 57 689 78
#Virus proteins 35 116 35 34 35 24 35 10 35 27
#Host proteins 522 141 522 87 522 79 522 38 522 64
#Virus proteins common to TR and TS 9 (7.8%) 1 (2.9%) 4 (16.7%) 0 (0.0%) 0 (0.0%)

The numbers in parentheses represent the proportion of common proteins to proteins in test datasets.

TaBLE 9: Results of 5-fold cross validation of our SVM and Barman’s SVM [22] with Barman’s dataset of 1,035 positive and 1,035 negative

PPIs.

Method Sn (%) Sp (%) Acc (%) PPV (%) NPV (%) MCC AUC F1 (%)
Our SVM 73.72 83.48 78.60 81.69 76.06 0.575 0.847 77.50
Barman’s SVM 67.00 74.00 71.00 72.00 — 0.440 0.730 69.41
Barman’s Random Forest 55.66 89.08 72.41 82.26 — 0.480 0.760 66.39

Sn: sensitivity, Sp: specificity, Acc: accuracy, PPV: positive predictive value, NPV: negative predictive value, MCC: Matthews correlation coefficient, AUC: the
area under the ROC curve, F1 =2 x (SN x PPV)/(SN + PPV), and “—”: not available.

TaBLE 10: Results of testing our SVM and DeNovo’s SVM [9] on DeNovo’s dataset of 425 positive and 425 negative PPIs.

Method Sn (%) Sp (%) ACC (%) PPV (%) NPV (%) MCC AUC
Our SVM 86.35 86.59 86.47 86.56 86.39 0.729 0.926
DeNovo’s SVM 80.71 83.06 81.90 — — — —

Sn: sensitivity, Sp: specificity, Acc: accuracy, PPV: positive predictive value, NPV: negative predictive value, MCC: Matthews correlation coefficient, AUC: the

area under the ROC curve, and “—”: not available.

and host proteins using global and local compositions of
amino acids as well as amino acid repeat patterns.

We tested the prediction model on independent datasets
of virus-host PPIs, which were not used in training the
model and have a very low sequence similarity to any protein
in training datasets of the model. Despite a low sequence
similarity between proteins in training datasets and target
proteins in test datasets, the prediction model showed a high
performance comparable to the best performance of other
methods for single virus-host PPIs. In comparison of our
method with others using same datasets, our method out-
performed the others. Experimental results demonstrate that
the repeat patterns and composition of amino acids are
simple, yet powerful features for predicting virus-host PPIs.
The method can be used to find potential PPIs of new viruses
or hosts, for which little information is known.
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