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Deciphering H3K4me3 broad domains associated with
gene-regulatory networks and conserved epigenomic
landscapes in the human brain
A Dincer1,2,3, DP Gavin4, K Xu2, B Zhang2, JT Dudley2, EE Schadt2 and S Akbarian1,3

Regulators of the histone H3-trimethyl lysine-4 (H3K4me3) mark are significantly associated with the genetic risk architecture of
common neurodevelopmental disease, including schizophrenia and autism. Typical H3K4me3 is primarily localized in the form of
sharp peaks, extending in neuronal chromatin on average only across 500–1500 base pairs mostly in close proximity to annotated
transcription start sites. Here, through integrative computational analysis of epigenomic and transcriptomic data based on next-
generation sequencing, we investigated H3K4me3 landscapes of sorted neuronal and non-neuronal nuclei in human postmortem,
non-human primate and mouse prefrontal cortex (PFC), and blood. To explore whether H3K4me3 peak signals could also extend
across much broader domains, we examined broadest domain cell-type-specific H3K4me3 peaks in an unbiased manner with an
innovative approach on 41+12 ChIP-seq and RNA-seq data sets. In PFC neurons, broadest H3K4me3 distribution ranged from 3.9 to
12 kb, with extremely broad peaks (~10 kb or broader) related to synaptic function and GABAergic signaling (DLX1, ELFN1, GAD1,
IGSF9B and LINC00966). Broadest neuronal peaks showed distinct motif signatures and were centrally positioned in prefrontal gene-
regulatory Bayesian networks and sensitive to defective neurodevelopment. Approximately 120 of the broadest H3K4me3 peaks in
human PFC neurons, including many genes related to glutamatergic and dopaminergic signaling, were fully conserved in
chimpanzee, macaque and mouse cortical neurons. Exploration of spread and breadth of lysine methylation markings could
provide novel insights into epigenetic mechanism involved in neuropsychiatric disease and neuronal genome evolution.
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INTRODUCTION
More than 100 amino-acid residue-specific histone post-
translational modifications (PTMs) exist in the vertebrate cell.1

These PTM include mono (me1), di (me2)- and tri (me3)
methylation, acetylation and crotonylation, polyADP-ribosylation
and small protein (ubiquitin, small ubiquitin-like modifier)
modification of specific lysine residues, as well as arginine (R)
methylation and citrullination, serine (S) phosphorylation, tyrosine
(T) hydroxylation and several others.1–3 Different combinations of
the site- and residue-specific PTMs show differential enrichment
across the genome, and some of the best-studied histone PTM are
defined in the context of transcriptional regulation. For example,
many active promoters show high levels of histone H3 lysine-4
methylation.4 In particular, the trimethylated form, H3-trimethyl
lysine 4 (H3K4me3), with the lysine residue’s side chain carrying
three methyl groups, is primarily distributed in the form of sharp
peaks, extending in neuronal chromatin on average only across
1000–1500 base pairs or less, with the large majority of peaks, or
at least 70–80%, positioned within 2 kb of annotated transcription
start sites (TSSs).5 However, in some tissues, a subset of sequences
epigenetically decorated with H3K4me3 tend to stretch across
several kilobases, with the broadest domains measuring up to
60 kb in length.6,7 Recently, it was proposed that these broader
H3K4me3 peaks show strong association with genes expressed in
a cell-type-specific pattern, and could have an important role for

transcriptional regulation by controlling RNA polymerase-II paus-
ing as a critical variable for general elongation efficiency, and by
reducing transcriptional noise.7 Furthermore, the finding that
aspects of transcription including H3K4me3 breadth at TSS are
linked to cell identity is extremely interesting. This is because until
now, epigenetic signatures that critically distinguish between
different cell types and tissues otherwise sharing the same
genome were mostly confined to distant-acting cis-regulatory
enhancer elements (p300, CBP, H3K4me1 and H3K27ac),8,9

including exceptionally large enhancer domains called super-
enhancers, which distinguish from the traditional enhancer
concept by the very high occupancy of transcription apparatus
such as the mediator complex and cell-type-specific transcription
factors to drive expression of associated genes.10–14

However, currently very little is known about the regulation of
the broadest H3K4me3 peaks in the human brain. This is
surprising, given that regulators of H3K4 methylation significantly
contribute to the genetic risk architecture of autism15 and to
epigenomic alterations in autism and schizophrenia brain.16,17

H3K4me3 landscapes in human cerebral cortex are subject to
highly dynamic regulation throughout a broad window of
development, extending deep into or even beyond childhood.18

The goal of the present study was to characterize the broadest
H3K4me3 peaks from human prefrontal cortex (PFC), with
comparative analyses in non-human primate and rodent, in the
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context of cell-type-specific regulation, association with neuronal
and non-neuronal gene expression and potential implications for
neurodevelopmental disease. Our study employs a broad range of
bioinformatics approaches on next-generation sequencing-based
transcriptomes and epigenomes from sorted neuronal and non-
neuronal nuclei from PFC gray and white matter and, for
comparison, peripheral blood mononuclear cells.

MATERIALS AND METHODS
Human subjects
All human subject work was approved by the Institutional Review Board of
the University of Illinois at Chicago. Forty milliliter blood samples were
collected from three male non-psychiatric control subjects (Supplementary
Table 1), using a previous published protocol19 with minor modifications.
Whole blood was diluted 1:1 with Hanks balanced salt solution (Invitrogen,
Grand Island, NY, USA), then peripheral blood mononuclear cells were
isolated using Ficoll-Paque Plus (GE Healthcare Lifesciences, Pittsburgh, PA,
USA). Peripheral blood mononuclear cells, of which a large majority are
lymphocytes, were then washed with Hanks balanced salt solution, and
once more with phosphate-buffered saline. Samples were then flash frozen
and stored at − 80 °C until shipping on dry ice.

Human postmortem brain samples and demographics
Human postmortem PFC brain tissue from 25 controls without known
neurological or psychiatric disease (male = 18, female = 7, mean± s.d. age
= 30.8 ± 29 years, postmortem interval = 14.75 ± 9 h, pH=6.5 ± 0.3) were
obtained from different brain banks including the University of Maryland
Brain and Tissue Bank for Developmental Disorders, the Harvard Brain
Tissue Resource Center, the Department of Psychiatry at the University of
California at Irvine, and the Maryland Psychiatric Research Center in
Baltimore (see Supplementary Table 1 for additional information for each
specimen, including age of death, gender and postmortem interval and
tissue pH). Each brain bank obtained the consent to use brain tissue for
research from each individual or their guardian before his/her death, and
their protocols were approved by their respective Institutional Review
Boards. No individual-specific identifiable information was obtained by the
investigators of this study.

Animals
All animal experiments were approved by the Animal Use and Care
Committee of the Icahn School of Medicine at Mount Sinai. Cerebral cortex
from two adult wild-type mice was included in this study. Chromatin
immunoprecipitation and next-generation sequencing (ChIP-seq) data sets
from seven non-human primates (four chimpanzees and three
macaques)20 were reanalyzed and included in this study (see
Supplementary Table 1 for additional information for each specimen,
including age of death, gender and postmortem interval). All non-human
primate work was conducted on brain specimens collected after death.

NeuN sorting via FACS and H3K4Me3 chromatin
immunoprecipitation
Nuclei extraction was carried out as previously described.5,21 Nuclei from
freshly frozen (never fixed) tissues (250mg per sample) of postmortem PFC
from 25 healthy control subjects were extracted in hypotonic lysis buffer
that causes the cells to swell to liberate nuclei. Nuclei were purified by
ultracentrifugation and resuspended in 1x phosphate-buffered saline.
Neuronal nuclei were immunotagged with anti-neuronal nucleus antibody
(Millipore 377, Billerica, MA, USA) and sorted into NeuN(+) and NeuN(− )
populations using a FACS Vantage SE flow cytometer. Chromatin was
prepared by micrococcal nuclease (MNase) digestion of isolated neuronal
nuclei (from minimum 1×106 sorted nuclei), because MNase-treated
chromatin is more efficient for subsequent immunoprecipitation with
specific anti-methyl histone antibodies than crosslinked and sonicated
chromatin in brain tissue. Purified mononucleosomal DNA were pulled
downed using anti-H3K4me3 antibody (Upstate/Millipore 07473) with
chromatin immunoprecipitation assay and then purified. ChIP-seq libraries
were prepared from the immunoprecipitated DNA by blunt-ending,
A-tailing and ligation to adaptors and PCR amplification for single-end
sequencing (36-bp reads). All libraries were sequenced by an Illumina
Genome Analyzer II (GA II, San Diego, CA, USA) platform.

H3K4me3 chip-seq analysis pipeline
The ChIP-seq data analysis was performed using several bioinformatic tools
and in-house python and perl scripts. Sequencing read quality was
evaluated using FastQC (version 0.10.1 http://www.bioinformatics.bbsrc.ac.
uk/projects/fastqc/). A low-quality read filter was then applied in which no
reads with more than six bases with a minimum phred quality score of 20
were retained. Supplementary Table 2 reports summary alignment
statistics for the total set of 41 ChIP-seq libraries (n= 39 H3K4me3 ChIP-
seq plus two input libraries (nucleosomal DNA prepared by micrococcal
nuclease digest). Unique alignment percentages were between 63 and
96% of all total reads across all samples (Supplementary Table 2). Single-
end 36-bp sequencing reads from the ChIP and input control libraries were
aligned to the Human Reference Genome (National Center for Biotechnol-
ogy Information build 37 (UCSC hg19)) using Bowtie (version 0.12.7) with
parameters specified to report the best alignment allowing no more than
one mismatch and excluding reads that aligned to more than one location
in the genome. H3K4me3 broad peaks were identified using MACS version
2.0.10.20131216 (tag:beta)22 with --broad-cutoff = 0.1 --mfold = 10,30
--qvalue= 0.01 parameters on pooled data. Reads were pooled across
cell-type-specific samples, cohort 1 NeuN+ (n= 11), cohort 2 NeuN+
(n=14), NeuN− (n= 2), blood (n= 3), for each cell type separately. Peaks
were annotated to genes and TSSs using HOMER annotatePeaks.pl script
with UCSC refGene.23 All aligned read files were corrected for sequencing
depth using the signal extraction method proposed by Diaz et al.24 and
normalized to the cell-type-specific input to visualize in Integrative
Genome Viewer browser.25 For Gene Ontology (GO) term analyses, we
used two approaches: gene- and peak-based coordinates by using the web
interface of DAVID, Stanford’s Genomic Regions Enrichment of Annotations
Tool26 and the R package ChIPEnrich (http://sartorlab.ccmb.med.umich.
edu/chip-enrich). Additional annotation and analysis including general
assessments of overlaps between bed-files and to extract signal intensity
scores for defined regions was performed using BEDTools v2.17,27

Pybedtools,28 SAMTools,29 UCSC tools,30 BSGenome, GenomicFeatures,
rtracklayer and ChIPpeakAnno packages in R (http://www.bioconductor.
org). The snapshots of the H3K4me3 epigenomic profiles were obtained
with Integrative Genome Viewer browser.25 Heatmaps displaying
normalized read densities of ChIP-seq samples were generated with
the deepTools package.31 This ChIP-seq pipeline was applied to
the other species, by aligning reads for the chimpanzee to the panTro4,
the macaque monkey to rheMac2 and the mouse to the mm9 genome,
respectively.

RNA-seq
RNA was extracted from ∼ 75 mg of gray and white matter dissected from
seven adult control PFC specimens (Supplementary Table 1) using the
RNeasy Lipid Tissue Mini kit (catalog #74804, Qiagen, Hilden, Germany),
treated with DNase I, purified and diluted to 20 ng μl− 1. Sequencing
libraries were prepared according to the NuGen Ovation RNASeq version 2
protocol, and run on the paired-end 50-bp module in Illumina HiSeq 2000
(Eurofins MWG; Operon). RNA-sequencing (RNA-seq) raw reads that passed
the quality control metric, which is referred to as the ‘chastity filter’ by
Illumina, were aligned to the UCSC Homo sapiens reference genome build
19 using the STAR aligner32 and were visualized using the Integrative
Genome Viewer.25 A raw read-count table was generated using HTSeq
python framework.33 Alignment percentages were between 74 and
86% of all total reads across all samples (Supplementary Table 2).
Expression of genes and transcripts of the resulting aligned bam files
were quantified with Cufflinks v1.3.0, which assembles transcripts and
estimates their abundances in RNA-seq samples34 by using UCSC gene
annotation file (hg19 in GTF format) as a guiding gene model set. After all
short read sequences were assembled into transcripts, their relative
expression levels were measured in fragments per kilobase of exon per
million fragments mapped (FPKM) unit, where read counts are normalized
by the transcript length (exon only) as well as the total number of
mappable reads in the sequencing library. Box plot of FPKM distributions
for each gene was plotted with the R package ggplots2. To validate
neuronal (NeuN+)-specific and non-neuronal (NeuN− )-specific broadest
H3K4me3 peaks within the 4-kb window of TSSs of the associated genes,
we further investigated differentially expressed genes quantified by
DESeq2, limma-voom and edgeR, in subcortical white (n= 6) and cortical
gray matter (n= 6).
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Functional enrichment
We employed the Genomic Association Test35 to examine whether the
broadest neuron-specific H3K4me3 genomic intervals are associated with
functional elements more than expected by chance via simulation within a
genomic context including corrections for gene density, chromosomal
segments and isochore structure to prevent confounding effects due to
different G+C content and provide unbiased measures of the null
expectation.30 Before the association analysis, a custom perl script was
used to query the public instance of the UCSC MySQL database of the
human genome version hg19 at the host genome-mysql.cse.ucsc.edu and
created a set of non-overlapping intervals of RefSeq transcripts covering
the full genome including promoter, intergenic, intron, CpGislands
Centromeres, microRNA, noncoding RNA and exonic regions. Using the
bioinformatic analysis tool ROSE Rank Order of Super-Enhancers software
(http://younglab.wi.mit.edu/super_enhancer_code.html), 357 super-
enhancers and 5120 typical enhancer loci were ranked from H3K27Ac
ChIP-seq data of the brain middle frontal lobe. Other brain-related
genomic intervals were downloaded from Fantom5 (refs 36,37) nd
published data sets on PFC neurons.16,18 We computed an expected
count using 10 000 randomized simulations of the 523 top 5% broadest
neuron-specific H3K4me3-binding intervals taking into account the
observed segment length distribution. Supplementary Table 3 shows the
fold enrichment as the ratio of observed and expected overlap with an
empirical P-value for associations of the respective brain genomic features
with 523 top 5% broadest neuron-specific H3K4me3-binding intervals.
Overlap of genomic intervals was assessed using BEDTools.27

De novo motif analysis and comparison with known motifs
For motif analyses, including enrichment and comparative matching of de
novo sequences, five databases were combined, Transfac,38 Jaspar,39

Uniprobe,40 hPDI41 and Taipale.42 De novo motifs were compared against a
total of 3764 motifs by EPIGRAM43 using k-mer features with lasso
regularization to characterize motifs associated with H3K4me3 in NeuN+
nuclei. TOMTOM (version 4.9.1) tool from the MEME suite was used to
identify nearest matches of the discovered de novo motifs identified from
EPIGRAM against a total of 3764 motifs.

Construction of PFC weighted gene co-expression network
The absolute Pearson correlation matrix S ¼ Sij

� �
for all possible pairwise

genes were converted into an adjacency matrix A ¼ aij
� �

by power
function, that is, aij ¼ power sij ; β

� �� sij
�� ��β . The value of the power

adjacency function's exponent (β) was chosen using the scale-free
topology criterion proposed in the study by Zhang and Horvath44 to
ensure the resulting weighted network exhibited an approximate scale-
free topology and a high mean number of connections. To explore the
modules of the co-expression network, the adjacency matrix was further
transformed into a topological overlap matrix to filter very weak
connections and to provide more cohesive and biologically meaningful
modules. Topological overlap matrix-based dissimilarity measure between
all possible pairwise genes was used as input in average linkage
hierarchical clustering, followed by a Dynamic Tree cut algorithm to
define modules as branches of the resulting cluster tree.45 Each module
was assigned a unique color identifier and gray color representing poorly
connected genes. Highly co-expressed genes have a small dissimilarity.
With the biologically motivated data reduction scheme, we wanted to
explore and identify modules of highly co-regulated genes from the 475
broadest H3k4me3 domains within the 4-kb window of refseq genes.

Construction of Bayesian gene networks
A Bayesian network is used to construct gene networks based on a
previously described data set of gene expression profiles from 173 PFC
samples from non-demented healthy individuals using a Bayesian network
reconstruction algorithm implemented in the RIMBANET package.46–48 The
resulting PFC control network was visualized by Cytoscape 3.1.1 (ref. 49)
and integrated with 475 NeuN+-specific peaks that annotated to the
± 4 kb-window of TSS of respective genes. Network Node statistics are
computed by treating as undirected network using Cytoscape 3.1.1.

Accession
ChIP-seq and RNA-seq data sets newly generated for this manuscript are
deposited in the National Center for Biotechnology Information, accession
no. GSE71238. For previously published data sets, see accession no.

GSE21172 and additional links provided in the study by Shulha et al.16,18,20

(for: Shulha et al.16,18 https://zlab.umassmed.edu/zlab/publications/Shulha
PLOSGen2013.html; https://zlab.umassmed.edu/zlab/publications/Shul
haAGP2011.html). For Shulha et al.,20 sequences are accessible through
http://www.umassmed.edu/zlab/publications/).

RESULTS
We isolated nuclei from the rostral PFC for separation and
fluorescence-activated sorting (FACS) based on immunolabeling
with the NeuN antibody (which binds to the overwhelming
majority of neuronal nuclei in the cerebral cortex), followed by
ChIP-seq for genome-scale mapping of the H3K4me3 mark in
neuronal and non-neuronal chromatin.5 Altogether, our study was
comprised of H3K4me3 ChIP-seq data sets from 30 subjects,
including 25 NeuN+ and 2 NeuN− samples from the PFC of 25
postmortem brains, and three additional samples of peripheral
blood mononuclear cells obtained by venipuncture from living
subjects. Two of the NeuN+ samples and all blood-derived
samples were newly generated for this study, whereas the
remaining samples from brain nuclei had been included in
previous publications on cell-type-specific5 and developmental
regulation18 of H3K4me3 peaks in the PFC.
We first examined cell-type-specific regulation of the broadest

H3K4me3 peaks (top 5% broadest H3K4me3 peaks (length in base
pairs) that were longer than the 95th percent of all H3K4me3) in a
cohort of 11 PFC NeuN+ samples (‘cohort 1’ in Supplementary
Table 1). To characterize the cell-type specificity of these top 5%
broadest methylation peaks, we compared the data set from
cohort 1 with the two non-neuronal samples from the PFC, and
with the three blood samples. We identified H3K4me3 peaks that
were specific to each cell type in our data set and then verified the
NeuN+ specific peaks in an independent set of 14 additional NeuN
+ PFC samples (‘cohort 2’ in Supplementary Table 1).
As a quality control and validation of ChIP-seq experiments, we

compiled the H3K4me3 epigenomic landscape patterns for
RefSeq-annotated genes across all samples and computed the
pairwise Spearman’s rank correlation coefficients as a measure of
similarity. The Spearman’s rank correlation coefficients between
PFC neuronal samples (ranging from 0.88 to 0.92) were
consistently higher, compared with the correlations observed
between neuronal and non-neuronal PFC cells (ranging from 0.82
to 0.87) or blood (0.74–0.76). In fact, across these different cell
types, the intra-cell-type correlations were systematically higher
than inter-cell-type correlations, each cell type clustering together
in an unsupervised pattern (Figures 1a–c). Although the Spearman
correlation heatmaps showed clustering based on read coverage
at REFSEQ genes, we performed a principal components analysis
on the fingerprints of the samples based on peak loci identified by
MACS, in which a binding affinity matrix containing a normalized
read count for each subject at every potential H3K4me3-binding
site, comparing PFC NeuN+ neurons from cohorts 1 and 2
separately, with the non-neuronal PFC samples and blood
(Figures 1b and c). Strikingly, for both cohort 1 and 2, all neuronal
samples, ranging in age from 0.5 to 81 years, are located at one
end of the graph, far from the space occupied by the non-
neuronal NeuN- samples from the same tissue (PFC) and from
blood (Figures 1b and c). For two subjects, both NeuN+ and
NeuN− PFC nuclei were examined by ChIP-seq. Nonetheless,
H3K4me3 landscapes in the NeuN+ samples from these two
subjects were much more similar to the profiles of other NeuN+
samples, as compared with the non-neuronal (NeuN− ) nuclei that
had been extracted in parallel (to the NeuN+ sample) from the
same PFC donor tissue (Figures 1b and c). Therefore, our
Spearman correlation analyses reveals that H3K4me3 in brain
cells is heavily regulated in a cell-type-specific manner, which on a
genome-wide scale is much more prominent than any subject-
specific signatures.
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Cell-type-specific enrichment for broadest H3K4me3 peaks
H3K4me3 breadth had been implicated in cell identity in various
cell lines in a recent study.7 Therefore, we wanted to explore
whether the broadest H3K4me3 peaks in our data sets show

numerical evidence for cell-type-specific regulation. To this end,
we first calculated the average H3K4me3 peak length in our NeuN
+ sample, which was ~ 1.5 kb both in cohort 1 and cohort 2 across
all 28573 H3K4me3 peaks and 25212 H3K4me3 peaks identified,

H3K4me3 ChIPseq on Prefrontal Cortex NeuN+ nuclei
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respectively (Supplementary Figure 1C). We then selected the
broadest 5% of H3K4me3 peaks, which on average extended
across 5.2 kb (cohort 1 = 1428 top 5% broadest H3K4me3 peaks)
and 5.4 kb (cohort 2 = 1259 top 5% broadest H3K4me3 peaks). The
absolute range of the top 5% peaks was 3.9–10 kb (Supplementary
Figure 1C). There were a total of 523 H3K4me3 peaks consistently
found among the top 5% widest peaks specifically present in all 25
PFC NeuN+ samples of cohorts 1 and cohort 2. These 523 peaks
represented the overlap between the top 5% (broadest) peaks of
cohort 1 (n= 743 peaks) and top 5% (broadest) peaks of cohort 2
(n= 606 peaks), indicating that a large majority of broad, neuron-
specific H3K4me3 peaks are highly reproducible (Figures 1d–f;
Supplementary Table 4). In order to test whether two sets of
intervals of NeuN+-specific peaks from cohort 1 and cohort 2 are
related spatially, we randomly shuffled the genome and checked
the observed versus simulated (shuffled) regions to calculate the
significance of overlaps by performing 1000 random permuta-
tions. This overlap between cohort 1 and cohort 2 was highly
significant (Po0.001) (permutation test, based on 1000 random
shufflings of H3K4me3 peaks genome-wide). Similarly, nucleated
blood cells and non-neuronal PFC cells harbored 297 (blood) and
867 (NeuN− in PFC) cell-type-specific peaks among the top 5%
broadest H3K4me3 peaks (Supplementary Tables 5 and 6). The
broadest (top 5%) H3K4me3 peaks, as a group, were 1.9- and 2.2-
fold more likely to be cell-type specific, compared with the total
set of H3K4me3 peaks (Figures 1d–f). These enrichments were
highly significant (Fisher’s exact test, Po2.2e− 16; cohort 1:
broadest 5% NeuN+ specific/total set of peaks, n= 743/28 573; all
NeuN+ specific/total set of peaks, n= 7879/28 573; cohort 2:
broadest 5% NeuN+ specific/total set of peaks, n= 606/25 212;
total NeuN+ specific/non-specific peaks, n= 5412/25 212)
(Figures 1e and f). Previous studies7 used the 5% threshold to
characterize the cell-type-specific nature of the broadest
H3K4me3 peaks. We examined more stringent cutoffs and this
resulted in even stronger effects by cell type. For example, top 1%
broadest peak cell-type-specific enrichments were cohort 1; 2.4-
fold (top 1%) versus 1.9-fold (top 5%) and cohort 2, 2.9-fold (top
1%) versus 2.2-fold (top 5%) (Supplementary Figures 1A and B).
We conclude that the majority of ‘extremely stretched’ H3K4me3
peaks in neurons are subject to cell-type-specific regulation.
In neurons, the overwhelming majority of broad H3K4me3

peaks were located within 4 kb of an annotated TSS in the REFseq
database (Figure 2a). Furthermore, at least 13 of the broad
H3K4me3 peaks called for ‘intergenic’ sequences (which com-
prised ~ 5% of the total pool of 523 broadest peaks) matched to
non-annotated (novel) transcripts in our RNAseq data sets (for
example: chr4: 565745-573996) (Supplementary Table 7). There-
fore, the broadest H3K4me3 peaks, as a group, are primarily
associated with the 5ʹ end of gene transcripts, with ~ 85% of
broad peaks within 4 kb from the nearest TSS (Figure 2a).
Furthermore, motif analysis, based on five independent databases
(see Materials and Methods section), revealed highest enrichment
(Po10− 7) for SMAD3, a member of the SMAD family of
transcription factors, and additional transcription factors with
weaker enrichments (Figure 2b; Supplementary Table 8). These
motifs were specific for the top 5% broadest neuronal peaks,

whereas the total pool of neuronal H3K4me3 peaks was defined
by differential enrichment of the ‘housekeeping’ transcription
factor SP1. Furthermore, the length of the 523 (top 5%) broadest
H3K4me3 neuron-specific peaks was highly consistent across each
NeuN+ sample from cohort 1 and cohort 2, and in addition,
showed consistently only very weak signals in non-neuronal PFC
cells and in blood (Figure 2c). Many genes with a prominent role in
neuropsychiatric disease were found among the group of
broadest peaks (Figure 2d; Supplementary Table 4). For example,
extremely broad (49 kb in length) H3K4me3 peaks were found at
KCNC3, encoding a voltage-gated potassium channel linked to
spinocerebellar ataxia, a neurodegenerative condition,50 and at
the site of multiple neurodevelopmental risk genes including
NMDA glutamate receptor subunit GRIN2B and transcription factor
SATB2 (refs 51–53) (Figure 2d). The two broadest H3K4me3 peaks
in PFC neurons, extending 412 kb, were ELFN1 (extracellular
leucine rich repeat fibronectin domain 1), implicated in epilepsy
and attention-deficit hyperactivity disorder and essential for
GABAergic signaling in subsets of cortical and hippocampal
interneurons54,55 and LINC00966, a poorly characterized
noncoding transcript that encodes within its sequence microRNA
124-2, targeting homeobox transcription factor Dlx5 (ref. 56)
with a critical role in cortical interneuron development57

(Figure 2d). Of note, the group of extremely broad peaks includes
additional key genes for GABAergic circuitry, including DLX1 and
GAD1 (refs 58,59) and IGSF9B60 (Figure 2d). This strong enrichment
and overrepresentation of neuronal genes was very specific for
the top 5% broadest NeuN+ H3K4me3 peaks. For example, we
calculated the tallest NeuN+ peaks for each cohort and identified
reproducible top 5% tallest NeuN+ peaks in cohorts 1 and 2
(Supplementary Tables 9 and 10). However, for this collection of
top 5% tallest peaks (n= 151 reproducible in cohorts 1 and 2),
enrichments (incl. cell type and function) were overall very weak
and modest, with no evidence for biological enrichment
(Supplementary Table 11).
In peripheral tissues, the broadest (top 5%) H3K4me3 peaks

reportedly are linked to cell-type-specific expression and ‘tran-
scriptional consistency’ contributing to steady-state RNA
production.7 Therefore, we hypothesized that RNA transcripts
associated with promoters from the top 5% broadest H3K4me3
peaks specific to neurons are more likely to show higher levels of
expression in PFC gray matter as compared with the adjacent
subcortical white matter. This is because neuronal densities are up
to 150-fold higher in gray versus subcortical white matter.61

Therefore, we hypothesized that RNA-seq from neuron-enriched
compartment (gray) will show much more robust expression for
many of the NeuN+ (neuron specific) H3K4me3 peaks, as
compared with RNA-seq from the neuron-depleted (white matter)
compartment. To this end, we first identified 475 (from total
n= 523 broadest top 5%) peaks that overlapped (±4 kb) with the
TSS of an annotated REFseq gene, then quantified for six
postmortem PFC specimens by RNA-seq the corresponding
transcripts separately for the PFC gray and for the underlying
white matter dissected from same tissue blocks. Indeed, the
majority of the 475 transcripts associated with broad H3K4me3
peaks in neurons expressed at much higher levels in PFC gray

Figure 1. Cell-type-specific histone methylation profiling in PFC. (a) Graphical outline of experiment starting with postmortem cerebral cortex
(PFC) to generate cell-type-specific H3K4me3 maps. (b, c) Heatmaps for Spearman's rank correlation coefficients comparing H3K4me3 profiles
for three peripheral mononuclear blood cells (blood), two sorted NeuN− PFC cells, compared with (b) 11 PFC NeuN+ samples (cohort 1) and
(c) 14 PFC NeuN+ samples (cohort 2) each from a different individual, showing much higher correlations between samples from the same cell
type as compared with sample correlations across cell types and tissues. Principal component analyses showing complete separation of NeuN
+ samples from other cell types with the first two principal components. (d, e) Venn diagrams showing absolute number of peaks for NeuN+,
NeuN− and blood, confirming for (d) cohort 1 and (e) cohort 2 the enrichment cell-type-specific peaks among the top 5% broadest H3K4me3
peaks, as compared with the total set of peaks. (f) Venn diagram confirming that large majority of neuron-specific peaks from cohort 1 are
confirmed in replication sample (cohort 2). ChIP-seq, chromatin immunoprecipitation and next-generation sequencing; H3K4me3, H3-
trimethyl lysine 4; PFC, prefrontal cortex.
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matter with its neuron-rich six cortical layers, compared with the
(neuron depleted) subcortical white matter (Po0.0001, Wilcoxon
matched-pairs signed rank test). These include multiple risk genes
associated with neuropsychiatric disease such as multiple genes
encoding various ion channels associated with synaptic signaling
(KCNC1, KCNC2, 5HTR2A and others, Figure 3a). In addition, we
noticed that 427 transcripts positioned within 4 kb of top 5%
broadest human NeuN+ H3K4me3 peaks matched transcripts in a
transcriptome database for mouse cortical neurons and six glial
and endothelial cell types.62 Indeed, expression for the large
majority of the 427 transcripts was much higher in cortical
neurons as compared with glia and endothelium (Supplementary
Figure 2), a finding that provides further support for the robust
association between top 5% broadest H3K4me3 peaks and cell-
type-specific regulation.

Having shown that many of the broadest neuron-specific
H3K4me3 peaks are associated with transcripts expressed at much
higher levels in the six-layered PFC gray matter as compared with
the underlying white matter (Figure 3a), we next wanted to
explore whether, conversely, RNA transcripts associated with
promoters from the top 5% broadest H3K4me3 peaks specific to
non-neuronal (NeuN− ) PFC cells are more likely to show higher
levels of expression in PFC white matter as compared with the
overlying gray matter. Indeed, the majority of 759 transcripts
associated with the 867 (top 5%) broadest peaks specific for non-
neuronal (NeuN− ) PFC chromatin showed higher expression in
PFC white as compared with gray matter (****P-valueo0.0001,
Wilcoxon matched-pairs signed rank test). These included OPALIN,
SEPT4, SOX10 and other key regulators for myelination and
oligodendrocyte differentiation and function (Figure 3b).

523 NeuN+ Specific H3K4me3 Peaks Annotation to Refseq transcripts 
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Figure 3. Transcripts associated with top 5% broadest NeuN+ and NeuN− -specific H3K4me3 peaks. (a) Box plots comparing for 36
representative gene transcripts the gray (G) and white matter (W) RNA-seq signal from PFC tissue blocks of six subjects, showing much higher
FKPM/expression in G compared with W. All transcripts are within 4 kb of a top 5% broadest H3K4me3 peak specific to PFC neurons. (b) Box
plot comparison of PFC gray (G) and (W) white matter expression for 25 representative transcripts associated with broad non-neuronal
H3K4me3 peaks (n= 6 (G) gray and n= 6 (W) white matter samples). FKPM, fragments per kilobase per million; H3K4me3, H3-trimethyl lysine 4;
PFC, prefrontal cortex.
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Figure 4. Conserved broadest H3K4me3 domains are associated with synaptic signaling and neuronal functions. (a) Number of H3K4me3
peaks, total and top 5% broadest in prefrontal neurons of chimpanzee, macaque and adult mouse cerebral cortex, before and after liftover
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Functional annotations and conservation of the broadest
neuron-specific H3K4me3 peaks
Using the Genomic Regions Enrichment of Annotations Tool26

with multiple pathways (GO Mouse Phenotype, PANTHER and
Pathway commons), we discovered for the 523 broadest top 5%
neuronal peaks a strong footprint for neuronal function. GO terms
enriched by binomial test for peak regions and hypergeometric
test for mapped genes with an false discovery rate o0.05 were
considered significant (Figure 4). For example, as it pertains to the
top GO biological process, molecular function and cellular
component categories, all were related to neuronal connectivity,
development and synaptic plasticity and learning (Figure 5;
Supplementary Table 12A). In contrast, the top three most specific
GO biological process categories for the broadest top 5%
H3K4me3 peaks from non-neuronal (NeuN− ) PFC cells were axon
ensheathment, myelination and oligodendroycte differentiation,
whereas the broadest peaks in blood cells were enriched for
immune system-related categories (Figure 5; Supplementary Table
12B). These findings, taken together, further affirm that the
broadest H3K4me3 peaks show strong, cell-type-specific regula-
tion in PFC neurons, with the majority of neuron-specific peaks
depleted or absent in non-neuronal PFC cells and blood.

Comparative epigenomic studies across different primate
species, reported species-specific regulation for a subset of
H3K4me3 peaks in PFC neurons20,63 and blood64 and furthermore,
the PR/SET domain containing H3K4-specific methyltransferase
Prdm9, regulating H3K4me3 in germline tissue, is thought to drive
speciation in multiple mammalian lineages, including
primates65,66 and rodents.67 Therefore, we wanted to explore
cross-species conservation of the top 5% broadest H3K4me3
peaks in cortical neurons, by comparing the PFC NeuN+ H3K4me3
ChIP-seq libraries from our human cohort with PFC NeuN+
H3K4me3 ChIP-seq libraries from four chimpanzees and three
macaques, and cerebral cortex H3K4me3 ChIP-seq libraries from
two adult C57Bl6 mice68 (Supplementary Tables 1 and 2). Of note,
for each of the four species, the top 5% broadest H3K4me3 peaks
were ~ 3.6-fold broader when compared with all H3K4me3 peaks
called for that species (Supplementary Figure 3). Interestingly, in
the human samples, overall H3K4me3 peak length appears to be
shifted to include longer sequence stretches/peak (Supplementary
Figure 3). These findings, taken together, would imply that the
average length of the top 5% broadest H3K4me3 peaks, in relation
to the overall population of H3K4me3 peaks, is constrained across
species.
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Figure 5. Cell-type-specific transcriptomics and epigenomics. (a) Browser tracks for eight genes subject to cell-type expression, showing (top
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seq, chromatin immunoprecipitation and next-generation sequencing; FDR, false discovery rate; H3K4me3, H3-trimethyl lysine 4; PFC,
prefrontal cortex.

Deciphering H3K4me3 broad domains
A Dincer et al

9

Translational Psychiatry (2015), 1 – 14



Next, for each animal sample, peaks (including broadest top 5%)
called for that species’ reference genome (macaque, MMul1.0;
chimpanzee, PanTro4; mouse, mm9) were lifted over to the human
reference genome HG19 (Supplementary Figure 2). Interestingly,
mouse, macaque and chimpanzee cortical neurons shared 544 of
their top broadest 5% of peaks of which 131, or 24%, matched the
top 5% broadest peak in human neurons (Supplementary Table
13). We performed pathway and upstream regulator analyses
using QIAGEN’s Ingenuity Pathway Analysis (IPA, QIAGEN Red-
wood City, www.qiagen.com/ingenuity) tools to detect molecular
pathways that are enriched among these loci. Our analyses
revealed dopamine-cAMP and glutamate receptor signaling were
the most affected canonical pathways (Supplementary Tables 14
and 15).69 Similarly, the top 25 pathways with strongest P-values
were overwhelmingly related to neuronal plasticity and signaling
(Supplementary Table 16). We conclude that some of the broadest
H3K4me3 domains show a high degree of epigenetic conservation
across different mammalian lineages, including many genes
regulating excitatory neurotransmission and monoaminergic
pathways as critical modulators of attention, motivation and
cognition.

Broadest neuron-specific H3K4me3 peak-associated genes harbor
special topological positions in a Bayesian and weighted gene
co-expression network of human PFC
As genes can interact with each other in a non-linear fashion,
networks are constructed to examine such interactions in a
systematic way. Here we constructed a Bayesian network based
on gene expression profiles from PFC samples from non-
demented individuals (see the Materials and Methods section).
We focus on the largest connected component, which includes
7040 genes. In all,158 out of the 475 broadest neuron-specific
H3K4me3 peak-associated genes (defined as annotated TSS within
4 kb from a top 5% broadest peak) are found to be within this
component of the network (Figure 6a; Supplementary Table 17).
These 158 broadest peak-associated network genes included key
regulators of inhibitory interneuron function, including DLX1,
GAD1 and the SLC32A1 vesicular GABA transporter, several
Neurexin genes (NRXN) as key regulators for neuronal connectiv-
ity, and NMDA receptor subunits and other genes associated with
glutamatergic signaling (Figure 6a; Supplementary Table 18). As
this epigenetically defined subtype of genes potentially have
important roles in PFC, we hypothesize that these genes could
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Figure 6. Integrative network-based analyses identify and prioritize key drivers associated with top 5% broadest neuronal H3K4me3 peaks.
(a) Mapping 475 genes associated with top 5% broadest neuronal H3K4me3 peaks in the constructed Bayesian network of human
prefrontal cortex revealed that only 158 genes (out of 475 genes) fell in the center of the network composed of about 7000 genes and 8000
edges. On the basis of the figure, there is not strong concentration in the center of the network; however, statistics show that the 158 neuron-
specific genes do have significant higher degree and significant smaller average path lengths than the other genes in the network. Network
statistics comparison suggesting that these genes actually tend to be located in the middle of the network (Supplementary Tables 17). The
purple nodes are representing genes that annotated to 4 kb TSS − 4 kb. Blue nodes representing a subset of genes, including the synaptic
vesicle gene SV2B and the NMDA receptor subunit GRIN2A were among the top three genes in multiple network categories (see
Supplementary Figure 18; SV2B in ‘average shortest pathway’, SV2B and GRIN2A in ‘between centrality’, SV2B in ‘degree’ and SV2B and GRIN2A in
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stand in crucial topological positions in a network such that many
different pathways pass through these genes. Indeed, broadest
neuron-specific H3K4me3-domain-associated genes outperformed
the remaining group of genes in all five network test statistics
(Supplementary Table 17). For example, we computed node

‘stress’, which measures how many shortest paths pass through a
specific node. We found that these broadest neuron-specific
H3K4me3 peak-associated genes have a median stress of 92 540,
which is more than fours times higher than that of other genes in
the network. We also computed node ‘betweenness’, which
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essentially measures the proportion of shortest paths passing
through a node when there are more than one shortest paths
between two nodes. We found that neuron-specific genes have a
median betweenness of 0.001136, which is six times larger than
that of other genes (Supplementary Table 17). These results
demonstrate that neuron-specific genes are involved in signifi-
cantly more critical pathways than genes that are not neuron-
specific in the PFC network (Po1e-3, Wilcoxon Rank-sum test). In
addition, we compared the average shortest path length and the
largest shortest path length (also known as ‘eccentricity’) between
the two groups of genes (Supplementary Table 17). The results
revealed that broadest neuron-specific H3K4me3 peak-associated
genes can reach all the other genes in the connected network in
significantly smaller number of steps than other genes (Po1e-3,
Wilcoxon Rank-sum test), suggesting that perturbations on these
broadest peak-related genes could have stronger effects on the
integrity of the network.70 Moreover, we found that neuron-
specific genes have a significantly larger degree than other genes
in the network (Supplementary Table 17). Finally, we constructed
weighted gene co-expression network analyses44,71,72 on RNA-seq
datasets from PFC of 173 subjects independent from the present
study,72 to identify modules of highly co-expressed genes
enriched with markers for neuronal cell type. We demonstrate
that significant overlap between top 5% broadest H3K4me3 peaks
in PFC neurons with gene co-expression networks related to
synaptic transmission and neuronal activity (Figure 6b).

Broadest PFC neuron peaks are sensitive to neurodevelopmental
disease mechanisms
Next, we employed the Genomic Association Test, a tool to assess
overlap and enrichment between multiple sets of genomic
intervals and includes corrections for gene density and chromo-
somal segments, among others.35 We wanted to examine the
potential overlap of the broadest neuron-specific H3K4me3 peaks
with functional elements including promoters and enhancers, and
with previously published data sets on developmentally regulated
H3K4me3-enriched loci in PFC neurons from controls18 and
subjects on the autism spectrum.16 These data sets were
particularly interesting from the viewpoint of the present study,
given that deleterious mutations in regulators of H3K4 methyla-
tion rank prominently in exome-sequencing studies on neurode-
velopmental disorders, including autism15 and schizophrenia.73

Indeed, there was a robust, 70- to 160-fold enrichment for
sequences matching dynamically regulated H3K4me3 peaks,
defined by extended age-related changes in PFC neurons, with
inclining (or declining) levels of H3K4 methylation from the
perinatal period to late childhood/early adulthood18,16 (Figure 7;
Supplementary Tables 3A–D). Thus, 22/208 H3K4me3 peaks that
were either missing or significantly decreased in a cohort of 16
autism cases (in comparison with control) were in the top 5%
(broadest) peak category of PFC neurons (Supplementary Table
3B), in addition to 17/503 peaks abnormally increased in autism
cases (Supplementary Table 3C). Furthermore, the top 5%
broadest peaks showed a 17- to 34-fold enrichment for the
promoter and brain-specific superenhancer sequences from the
UCSC genome browser and FANTOM5 databases (Figure 7;
Supplementary Tables 3E and F). Examples for disease-relevant
broad H3K4me3 peaks include DVL1 (Dishevelled Segment Polarity
Protein 1), the neurotrophic peptide VGF and genes encoding ion
channels and subunits such as CACNA1C and GRIN2D. To examine
whether the striking developmental enrichment of the top 5%
broadest H3K4me3 peaks was specific, we used to Genomic
Association Test tool to conduct similar types of analyses for the
top 5% tallest peaks. Strikingly, there was very little enrichment
for developmentally regulated H3K4me3 peaks for the extremely
tall peaks (Supplementary Table 19; Supplementary Figure 4),

suggesting that such enrichment was highly specific for the top
5% broadest peaks in cortical neurons.

DISCUSSION
In the present study, we characterized the broadest H3K4me3
peaks from human PFC in the context of cell-type-specific
regulation, association with neuronal and non-neuronal gene
expression and potential implications for normal and diseased
development. We first addressed the occurrence and the
biological significance of the broadest H3K4me3 peaks in three
different cell types, including NeuN+ PFC neurons, NeuN− PFC
cells and nucleated blood cells. We identified novel regulators of
these three different cell types by focusing on top 5% broadest
H3K4me3 peaks (length in base pairs). Of note, the broadest
H3K4me3 peaks, which in PFC neurons included 4500 peaks in
two different cohorts, showed a significantly stronger cell-type-
specific signature compared with the complete pool of H3K4me3
peaks. Thus, broadest NeuN+ H3K4me3 peaks in the present study
were enriched for genes regulating neuronal connectivity and
signaling, including many ion channels, and synaptic plasticity and
learning and memory. Broadest H3K4me3 peaks in non-neuronal
PFCs showed enrichment for oligodendrocyte and other glial-
related genes, in contrast to nucleated blood cells in which
broadest peaks were associated with immune functions. The
molecular regulators of the broadest H3K4me3 peaks remain to be
determined for each cell type. Interestingly, we found that in PFC
neurons, the DNA sequences of the top broadest 5% H3K4me3
peaks showed a significant enrichment for a set of motifs with
binding affinity for several transcription factors and transcription
factor families (Supplementary Table 8). These include, among
others, transforming growth factor-β signaling-associated SMAD3,
a nuclear protein associated with cell-type-specific master
transcription factors74 and critically important for neuronal
differentiation and morphogenesis,75,76 and the Meis1 homeobox
transcription factor highly expressed in developing the forebrain
including cortex.77 Interestingly, cross-species comparison of
broadest H3K4me3 peaks in NeuN+ neurons of the adult cortex
identified many genes regulating excitatory glutamatergic neuro-
transmission and dopaminergic pathways with a conserved
broadest peak profile in human, non-human primates and mouse.
It will be interesting to further explore in future studies the
underlying mechanisms that resulted in this high degree of
‘epigenetic’ conservation of glutamate- and dopamine-based
signaling genes. For example, we would predict that regulatory
sequences surrounding these genes are ‘exempt’ from regulation
by the H3K4-methyltransferase Prdm9 and other molecules that
remain functionally active in germline cells and are therefore
considered ‘drivers’ of mammalian speciation, including
primates65,66 and rodents.67 From a clinical perspective, the
present study is in good agreement with genetic and postmortem
brain studies implicating dysregulated H3K4 methylation to
neurodevelopmental disease,15,16 given that a significant portion
of the top 5% H3K4me3 peaks in PFC neurons enriched in
developmental data sets of H3K4me3 peaks. Therefore, at least
some of the top 5% broadest H3K4me3 peaks appear to be
sensitive to cellular mechanisms operating during an extended
period of prefrontal development and maturation from birth to
infancy to early and late childhood. Consistent with this
hypothesis, the broadest domain H3K4me3 peaks are, according
to our Bayesian network analysis, centrally located in a network of
7000 genes associated with PFC function in control (‘healthy’
because non-demented) subjects. On the basis of the results of
the present study, a more detailed analyses of specific histone
modification profiles, including spread and breadth of histone
H3K4 and other lysine methylation markings in specific cell types,
bears promising potential to deliver valuable insights into
epigenetic mechanism of normal and diseased brain development
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and aging. Such type of approaches, in the ‘Big data era’ of
functional genomics with NIH-sponsored consortia such as
PsychENCODE consortium (http://www.psychencode.org) charting
brain epigenomes and transcriptomes in hundreds of specimens
across the lifespan, are likely to provide critical insights into the
neurobiology of psychiatric disorders such as autism and
schizophrenia.79–81
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