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Abstract 

Sequencing technologies, in particular RNASeq, have become critical tools in the design, build, test and learn cycle of synthetic biology. 
They provide a better understanding of synthetic designs, and they help identify ways to improve and select designs. While these 
data are beneficial to design, their collection and analysis is a complex, multistep process that has implications on both discovery 
and reproducibility of experiments. Additionally, tool parameters, experimental metadata, normalization of data and standardization 
of file formats present challenges that are computationally intensive. This calls for high-throughput pipelines expressly designed to 
handle the combinatorial and longitudinal nature of synthetic biology. In this paper, we present a pipeline to maximize the analytical 
reproducibility of RNASeq for synthetic biologists. We also explore the impact of reproducibility on the validation of machine learning 
models. We present the design of a pipeline that combines traditional RNASeq data processing tools with structured metadata tracking 
to allow for the exploration of the combinatorial design in a high-throughput and reproducible manner. We then demonstrate utility via 
two different experiments: a control comparison experiment and a machine learning model experiment. The first experiment compares 
datasets collected from identical biological controls across multiple days for two different organisms. It shows that a reproducible 
experimental protocol for one organism does not guarantee reproducibility in another. The second experiment quantifies the differences 
in experimental runs from multiple perspectives. It shows that the lack of reproducibility from these different perspectives can place 
an upper bound on the validation of machine learning models trained on RNASeq data.
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1. Introduction
Synthetic design is often an iterative process, where components 
are improved over time. However, despite the improvement of 
components, controls can often stay the same across multiple iter-
ations (unless alterations are made to the base strain in such a 
way that the altered strain becomes the new control). As such, 
it is important to know whether or not changes are the result 
of design choices, experimental variability or other unintended 
perturbations due to inherent variability in the pipeline. Further-
more, researchers conducting experiments in synthetic biology 
often have combinatorial designs that test all conditions in repli-
cates, resulting in sample sizes in the 1000s or greater. It is not 
always feasible to run all of these samples at the same time, so it 
is important to consider how experiments change across batches 
(i.e. differences in the execution of the pipeline, differences in 
experiment conditions, different technicians running the pipeline, 
dilutions, culturing, etc.). It then becomes important to ensure 
that variability is low and that controls are repeatable across dif-
ferent batches to ensure that experiments can be aggregated and 
compared.

RNASeq has become a ubiquitous tool in the design, build, 
test and learn cycle for synthetic biology (1, 11, 14, 17, 18, 42). 
Applications include debugging design failures (13, 17, 33) and 
optimization of genetic designs (31). Transcriptional analysis pro-
vides an opportunity to measure chassis response holistically and 
identify differentially expressed genes (DEGs) (17), infer transcrip-
tional networks or co-regulated genes (22, 25, 32, 43), identify read-
through and unexpected expression in synthetic parts (13, 17, 33) 
and also infer the impacts on mechanistic pathways encompass-
ing a multitude of biomolecular ‘entities’ (‘transcripts’, proteins 
and metabolites) (15, 19, 35, 38).

Collection and processing of RNASeq data, however, is a com-
plex, multistep process (9, 14). Processing pipelines are highly 
parameterized, computationally intensive and often not compara-
ble across experiments without significant effort in normalization 
and harmonization of the output measurements (1, 11). Further-
more, these tools often require a significant amount of additional 
biological context to explain how and why the dataset was gener-
ated, which is often disconnected from the data itself (16, 36, 45). 
Collection and processing is one aspect of reproducibility, which 
can be more broadly delineated into three categories: (i) biological, 
(ii) experimental and (iii) analytical (21, 44).

Biological variability results from different responses to similar 
stimuli, either as a mechanism for survival, due to responses not 
being strictly regulated or due to experimental conditions being 
variable enough to elicit different biological responses. Experi-
mental variability is the result of imperfect tool precision, slight 
alterations in handling during cell growth, lysis, ribonucleicacid 
(RNA) extraction, library construction or data analysis. Experi-
mental variability can also impact biological reproducibility. To 
minimize the experimental variability, consistency of conditions, 
reagents, instruments and protocols used to grow organisms, 
extract RNA and process the sample are required. Finally, ana-
lytical variability arises from either an inconsistency in the use 
or a lack of information about processing pipelines, tools and 
parameterization used to analyze the data and extract conclu-
sions (7, 26, 28). While there are a number of consortiums that 
have provided guidance on methods to assess the reproducibility 
of RNASeq, a toolkit to enable that reproducibility for synthetic 
biology is seldom found (23, 47). The toolkit provided in this paper 
helps mitigate analytical variability by providing a clear and con-
sistent set of methodologies that can be applied across different 

RNASeq experiments. Given the pipeline provides a clear set of 
reproducible analytical methods, we are then able to explore bio-
logical and experimental reproducibility that can then impact 
analytical results.

Here, we seek to present the minimal set of information 
required from both the experimental conditions as well as the 
data processing pipelines to maximize the analytical reproducibil-
ity. We first present an overview of the software infrastructure 
required to make analyses reproducible across RNASeq experi-
ments. The tool outputs a set of consistently formatted datasets 
for downstream analyses and can be used by researchers that seek 
to analyze RNASeq at scale (100s to 1000s of sequencing runs). We 
then detail a configuration-driven pipeline that enables the repro-
ducible analysis of data that were utilized to analyze data from 
a large experimental condition space (e.g. many genetic designs 
and inducers) (12). We use these tools to measure the variability of 
controls in multiple experimental runs with perturbing controls of 
two popular model organisms: Escherichia coli MG1655 and Bacillus 
subtilis Marburg 168. After quantifying the variability in controls, 
we examine the impact of the variability on machine learning 
models built using two B. subtilis datasets collected using nearly 
identical protocols surveying a large space of growth conditions.

2. Materials and methods
2.1 Infrastructure to automate and track 
secondary analysis stages
Secondary analysis of the sequencing data involves a set of hier-
archical steps that depend on the experimental design, conditions 
and reference files to generate counts and normalized counts 
data. Given the scale of experimental conditions (e.g. genetic 
designs, organisms and induction conditions), software infras-
tructure is required to ensure the analytical reproducibility of an 
RNASeq pipeline to be parameterized and automated to process 
RNASeq data at scale. The software infrastructure we have devel-
oped has three main components: (i) applications, (ii) databases 
and (iii) actors.

Applications. Allow the software infrastructure to capture ver-
sions, any configuration parameters used during the alignment 
and quality control (QC) process and input/output data identi-
fiers. They ensure that the specific processing or analysis pipeline 
that was run by the application can be run again exactly the 
same way, in the same environment, on any system. Tools such 
as Docker containers provide an opportunity for researchers to 
ensure that their code is self-contained, shareable and repro-
ducible (20, 34). Applications are containerized versions for each 
stage in the pipeline. The main motivation behind modulariza-
tion was to provide us the flexibility to rerun specific stages, if 
needed, without rerunning the entire pipeline. Furthermore, the 
modularity has the added benefit of updating specific components 
and tracking versions of software and configurable parameters for 
every execution.

Databases. Allow the software infrastructure to store locations 
of raw data and processed data, metadata and full parameteri-
zations and provenance of processing pipelines that link the data 
together in a queryable manner. We had two databases used in our 
infrastructure, integrated together as part of a larger system for 
handling data, metadata and knowledge in the Defense Advanced 
Research Projects Agency SD2 program (6, 41). The first was a data 
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Figure 1. Diagram of the RNASeq processing pipeline. (A) The ingester monitors a metadata file uploaded to the data catalog to see if the experiment 
includes RNASeq data to trigger the processing pipeline. (B) The preprocessing actor triggers and stores the job ID and version of the preprocessing app 
to the data catalog. (C) The auditing actor receives notifications from applications to validate the outputs and triggers the next actor. The auditing 
actor will resubmit applications up to three times to handle stochastic failures. (D) The alignment actor queries the data catalog to determine the 
reference genome that is used for each preprocessed sample and triggers the alignment application. (E) The post-processing application annotates the 
alignments and aggregates samples into counts (raw, FPKM and TPM) dataframes. (F) The QC and metadata actor use metadata stored in the data 
catalog and information from the logs/outputs of each job to add experimentally relevant metadata and QC flags to the counts dataframes.

catalog that stored links to the raw data, universal identifiers and 
the experimental conditions. The second was a database specifi-
cally designed to store genetic parts known as SynBioHub. Some 
experimental conditions, such as strain and inducer names, stored 
links to SynBioHub (29) that led to more complete information 
about these materials.

Actors. Allow the software infrastructure to respond to events 
(e.g. file upload and completion of an intermediate stage) to auto-
mate the processing of data at scale. In our system, reads/writes 
to the data catalog and job submissions are managed by Abaco 
Actors (5). Actors are lightweight, containerized scripts that are 
triggered in response to events. Actors do not perform compu-
tationally intensive tasks but instead oversee and coordinate job 
processing throughout the pipeline. Computationally intensive 
tasks (trimming, alignment and aggregation) are performed by 
Tapis applications, a framework that provides a web-based appli-
cation programming interface (API) to manage computational 
workloads developed by the Texas Advanced Computer Center (8). 
Application jobs are triggered by actors and have a unique job 
identification number.

Given software for each stage of the secondary analysis 
pipeline (preprocessing, alignment, post-processing and QC), our 
emphasis was to use the software infrastructure to ensure that 
the pipeline is manageable and reproducible for the large datasets 
made available over time (Figure 1).

The applications used in our RNASeq pipeline consist of trim-
ming and quality filtering raw RNASeq data with Trimmomatic 
(v0.36) (3), and FastQC (2) is used to generate reports for paired, 
trimmed reads. Trimmomatic was chosen due to its high accu-
racy, although trimming methods had low overall impact on the 
overall RNASeq accuracy (10). Preprocessed reads are aligned to 

an indexed reference genome with BWA (v0.7.17) (8, 27). Burrows-
Wheeler Aligner (BWA) was chosen because, for short reads, it has 
high coverage and alignment rates, for minimal cost in run time 
efficiency (30). For alignment, there is the prerequisite that the 
relevant reference genome has been identified, FASTA and GFF 
have been provided and the linkage between sample and refer-
ence genome (strain) is enumerated in the provided metadata. 
After alignment, the resulting Sequence Alignment Map (SAM) 
files are sorted by Picard tools (v2.18.15) function SortSam (36, 4) 
and then AddOrReplaceGroups is run on the output of SortSam. 
Gene-level quantification of counts is performed using the fea-
tureCounts function of Rsubread (v1.34.4) (3). Annotations are 
performed using the General Feature Format (GFF) provided. For 
RNA-sequencing, we identify any coding sequence (CDS) feature 
type from the GFF and annotate these in the dataframe using 
the ‘Name=’ attribute. All annotated samples are aggregated into 
a dataframe, and outputs include both raw counts and rudi-
mentary normalization functions: transcripts per million (TPM) 
and fragment per kilobase per million mapped reads (FPKM). 
The following two Boolean metrics were used to measure sample
quality:

(i) Number of mapped reads ≥ 500 kb.
(ii) Replicate correlation of TPM values of a condition >0.8.

If any of these metrics did not pass, the sample would be 
flagged as a low-quality sample and not used for downstream 
analysis.

These applications can then be run individually on a high-
performance computing system. For each job that is run in the 
software infrastructure, an actor queries a centralized database of 
information (the data catalog) to identify the required metadata 
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Figure 2. Omics_tools facilitates the analysis of combinatorial design RNASeq by integrating metadata (inducers, growth conditions, genetic 
manipulations, etc.) to automatically calculate differential expression with edgeR across all conditions of interest. The tool kit allows for parallel 
processing of thousands of samples and comparisons in a high-throughput manner and utilizes a standardized schema to help facilitate 
reproducibility in analytical analysis.

for processing. For each job submission, there is also a record 
created in the data catalog enumerating the inputs, references, 
software versions and outputs for a given job. Tapis applications 
stage assets (inputs, references and container images) to a 
temporary working directory, submit resource requirements to a 
Simple Linux Utility for Resource Management (46) queue on a 
high-performance computing system, archive outputs to a pre-
defined location (aka storage system) and send a notification to 
an actor providing the exit status of a job (success/failure). By 
leveraging Tapis applications, Abaco Actors and the data cata-
log, an automated pipeline is constructed that responds to events 
(raw data and metadata uploads) and processes samples in par-
allel for trimming and alignment and serially for aggregation and 
annotation, without the need for human intervention. This serves 
both to increase efficiency and throughput and also reduce the 
probability for human error. Since the core components for pro-
cessing are containerized and the inputs/parameters for every job 
are stored in a centralized database, the results are reproducible 
across different machines.

2.2 Configurable tertiary analysis pipeline
A challenge often faced in synthetic biology is that experimen-
tal designs are often combinatorial in nature (multiple inducers, 
designs, timepoints, etc.); therefore, the number of differen-
tial expression comparisons can become unwieldy and unreli-
able to set up and analyze in a manual fashion. Additionally, 
when an experiment has hundreds to thousands of different com-
parisons, manual processing of differential expression is often 
impossible, so automated solutions are necessary to analyze the 
data. To help facilitate the automated calculation of differen-
tial expression between the different factors, we developed a 
Python-based configurable toolkit, which we call ‘omics_tools’ 
(Figure 2). Instead of having to write R scripts for every desired 
comparison, omics_tools automatically generates each R script, 
runs them and then generates consistently labeled output. The 
automated process increases repeatability/reliability by standard-
izing output and by reducing the risk of producing manual errors, 

such as mislabeling comparisons, mislabeling groups, including 
the wrong samples, etc. Standardizing output across multiple 
different experiments also allows for development and use of 
tools that analyze differential expression results without having 
to generate formatting scripts for each different experiment, facil-
itating cross-experiment comparisons. The tool aggregates the 
outputs from the parallelized runs and combines all the data into 
a single unified dataset where each row represents a gene, its dif-
ferential expression, statistical significance and the condition for 
downstream machine learning.

Omics_tools uses edgeR (39) with a generalized linear model 
(GLM) to conduct differential expression analysis (DEA) using 
trimmed mean of M-values (TMM) normalization across the set of 
design variables (40). EdgeR was chosen, specifically with GLM and 
TMM, because the combination is a well-known method that has 
a high accuracy across a variety of datasets (Corchete et al., 2020). 
Additionally, TMM normalization has a high accuracy irrespec-
tive of other components within the tool chain (such as trimmer, 
mapper, differential expression, etc.) (Corchete et al., 2020). Other 
methods can replace the aforementioned method by either replac-
ing omics_tools with another tool of your choice (starting with the 
counts data generated in previous steps) or modifying the R script 
generation of omics_tools to replace edgeR with another method 
that utilizes R to function.

3. Results and discussion
3.1 Automation enhances scale and processing of 
RNASeq data at scale
Data used for this experiment consisted of raw, gzipped RNASeq 
data of 2.4 TB in total that was processed into datasets that 
were 35 MB in total. The data included both metadata as well 
as data from sequencers for 1344 samples. Raw and processed 
data are available via the Gene Expression Omnibus (GSE206047). 
The infrastructure presented in Figure 1 was not available dur-
ing all of the experiments conducted with E. coli. During this time, 
it would typically take ∼3 months to process the data, where 
most of the time was spent by a developer finding, verifying 
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Table 1. Percentage of the total 4097 genes assayed that 
were significantly differentially expressed across comparisons 
(sample_time, FDR < 0.05 and log2FC > 2)

Timepoint 
Day 1: 
5 h

Day 1: 
8 h

Day 1: 
18 h

Day 2: 
5 h

Day 2: 
8 h

Day 2: 
18 h

Day 1: 5 h 0.0% 3.8% 29.4% 0.3% 4.6% 32.5%
Day 1: 8 h 3.8% 0.0% 20.2% 2.4% 0.3% 24.2%
Day 1: 18 h 29.4% 20.2% 0.0% 27.2% 20.1% 0.2%
Day 2: 5 h 0.3% 2.4% 27.2% 0.0% 2.2% 29.6%
Day 2: 8 h 4.6% 0.3% 20.1% 2.2% 0.0% 22.6%
Day 2: 18 h 32.5% 24.2% 0.2% 29.6% 22.6% 0.0%

and troubleshooting data processing and metadata integration 
issues. This included mismatches of number of files to metadata 
rows, incomplete strain references and gaps in inducer concen-
trations as well as timepoints. The infrastructure now checks for 
all of this with the auditing actor and can alert users immedi-
ately if there is a mismatch, gap or processing error in any stage. 
The experiments with B. subtilis were able to benefit from the 
complete infrastructure and took a ∼3-month process down to 
3 days, where the majority of the time was processing time. We 
also tested our infrastructure of Gene Expression Omnibus (GEO)-
derived datasets to ascertain the extendability of our pipeline to 
data that were not designed for internal purposes. For example, 
with the manual restructuring of the metadata associated with a 
Pseudomonas putida experiment (37), we were able to run their data 
through our pipeline to get gene counts. While the results are not 
published with this paper, details of this process can be found in 
our documentation.

3.2 Using omics_tools to analyze the 
repeatability of controls
To quantify the reproducibility of controls, we ran two experi-
ments involving E. coli MG1655 in media at three different time-
points (5, 8 and 18 h growth) on two different days. The timepoints 
were selected to represent common phases of growth in circuit 
characterization (17). Four replicates were used for each timepoint 
on each day. Our processing pipeline and omics_tools were used 
to analyze the data for all comparisons across all timepoints. The 
results from this comparison are presented in Table 1. 

Samples from the same timepoint on different days were found 
to be most similar (average 0.3% of the genome differentially 
expressed), and the least similar were the 5 h versus 18 h com-
parison (average 29.9% differential expression). The differences in 
5 h versus 8 h, 5 h versus 18 h and 8 h versus 18 h timepoints are 
as expected and can be largely attributed to differences in growth 
phase (log phase versus transition versus stationary), whereas the 
minor differences in the same hour comparison can be attributed 
to slight differences in the state of the bacteria and aggregate of 
error and variability across the pipeline.

We also compared different means of performing sample-to-
sample normalization and identifying DEGs. The sample similar-
ities can also be observed when using an FPKM normalization 
(Figure 3). We also utilized FPKMs to compute the differential 
expression of genes with t-test and Benjamini–Hochberg mul-
tiple testing correction, log2FC > 2 (fold change) and false dis-
covery rate (FDR) < 0.05 (Supplemental Table S1) and compared 
those to omics_tools. Despite having a similar number of DEGs 
between the two methods, the resulting significant differential 
genes have a subset of genes that is not shared between the two. 
Unsurprisingly, the Jaccard coefficients (Supplemental Table S1) 

Figure 3. Pearson’s correlations (upper right numbers) between log2 
FPKM of E. coli samples at each of the measured timepoints on both days. 
Samples taken on different days, at the same hour, are much more 
similar (average 0.99) than at different hours. The 5 and 18 h have high 
correlations (average 0.95), suggesting that they are in similar growth 
states, whereas the 5 and 18 h have the least similar expression profiles 
(average 0.64) due to their differences in growth states. Scatterplots are 
gene–gene log2 FPKM comparisons, with a red linear regression line. 
Histogram plots are for frequencies of gene FPKMs.

for the same timepoints across the 2 days averaged only 0.214 
(range, 0.083–0.308) due to the very low number of genes differ-
entially expressed (10.8 on average with a range of 1–21). The 
different timepoint and day comparisons had much higher sim-
ilarities in differential genes with an average Jaccard of 0.598 
(range 0.468–0.762) and an average percentage of 82.6% (range 
75.3–88.8%) of genes that were significant from both omics_tools 
and FPKM comparisons. The main difference between omics_tools 
and FPKM is from intersample normalization of TMM. While nor-
malization and differential strategy do matter, the majority of 
genes that are significant are shared between the methods.

To better understand how different species are affected by sim-
ilar experimental conditions, we also examined data collected for 
B. subtilis controls at 5 h on three different days. The data were 
processed through the same high-throughput sequencing pipeline 
and analyzed with omics_tools. Unlike the E. coli strain, B. subtilis
had much higher variability with an average of 4.87% significant 
differential expression (range 1.1–7.16%) (Supplemental Table S2) 
compared to 0.269% for the 5 h E. coli timepoint. The FPKM cor-
relations (Figure 4) have a similar pattern as the 5–8 h E. coli
comparison (Figure 3), suggesting that the growth rates may be 
different between the different days for B. subtilis. It is hypoth-
esized that B. subtilis was more impacted by overnight growth 
and recovery in wells as compared to E. coli. The differences in 
dilution potentially impact growth and sporulation as well. Fun-
damentally, we showed that experimental conditions that produce 
reproducible results for one organism do not necessarily produce 
reproducible results for different organisms.

3.3 The impact of reproducibility on the 
validation of machine learning predictions
One challenge associated with the validation of machine learn-
ing models for high-throughput experiments is regarding repro-
ducibility of the training data, specifically, if a model is built from a 
set of data that lacks or has underdeveloped biological and exper-
imental context (i.e. metadata). Despite the immediate accuracy 
concerns, there is no guarantee that the model will generalize to 
future runs of experiments with similar experimental/biological 
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Figure 4. Pearson’s correlations (upper right numbers) between log2 
FPKM of 5 h timepoints for B. subtilis on each of the three different days. 
Samples 2 and 3 have much more similar patterns compared to 1–2 and 
1–3. Additionally, these two comparisons have a lower correlation than 
the 5–8 h E. coli comparisons, suggesting greater variability in the 
growth/biological conditions for B. subtilis. Scatterplots are gene–gene 
log2 FPKM comparisons, with a red linear regression line. Histogram 
plots are for frequencies of gene FPKMs.

context. Furthermore, extensibility of a given model has an upper 
bound of the experimental reproducibility of the set of conditions 
being modeled.

Here, we evaluate the implications of reproducibility on a 
machine learning model trained with response from single induc-
ers to predict the transcriptional response to a combination of 
inducers. The test data were generated twice on different days 
to measure the impact reproducibility has on the evaluation of 
the model. The samples were prepared in 96-well plates using a 
combination of automation and manual liquid handling meth-
ods that benefited from consistent sample volume throughout the 
process. We noticed that optical density (OD) values varied from 
0.5 to 2.0 OD units across the replicates per condition with the 
first run of our experiment at 500 μl volume. Given the variability 
in OD, increasing the amount of culture collected allowed for more 
samples to meet the minimum material input criteria for concen-
tration in the starting volume of samples. Thus, the only difference 
between the two experimental runs was the increase in volume 
of cell culture used for RNASeq from 500 to 900 μl to increase 
the amount of RNA available. We hypothesized that the increase 
would improve the quality of the samples generated, which would 
result in data for conditions that would drop out. Upon increas-
ing the volume, we now observed a variability of 0.35–0.45 OD 
units. The decrease in variability with the increased volume was 
encouraging. Interestingly, cell culture volume is a factor that is 
often not used in downstream normalization, differential expres-
sion and pathway analyses directly, but as we will show, does have 
implications for sample quality that in turn impacts all other anal-
yses. Furthermore, the increase in volume did not unanimously 
increase the number of replicates/samples available for analysis 
either, which we found surprising. This comparison can be made 
at multiple levels:

Sample QC. (Figure 5A) Given the set of experimental parame-
ters, QC can filter out a set of different samples per condition. For 
example, a sample induced with xylose and vanillic acid measured 
at 18 h post-induction has lost all four replicates in the repeated 
test condition. This implies that the condition will not generate the 
data necessary to identify how reproducible the model is at that 
condition. A researcher could look to see if the model predicted 
any impact on essential genes or pathways that can be linked to 

dropout, especially if the sample failed in both experimental runs. 
This could help the researcher determine if the dropout is biolog-
ical in nature and not an experimental error. The more difficult 
scenario is when a set of samples pass QC in one run, but not the 
other. In total, there are 5/18 discrepancies across the two exper-
imental runs, which means that the day-to-day variability could 
cause upward of 27% difference depending on the experimental 
run that is used.

Gene QC. (Figure 5B) Tertiary analysis, such as DEA, uses expres-
sion levels across genes to identify outlying genes that do not 
fit a dispersion model. Genes that do not fit within a dispersion 
estimate are filtered out. Filtering out genes means that a model 
that is making gene-level predictions will not have predictions of 
those genes validated quantitatively. However, if the model pre-
dicts the gene is not differentially expressed, then its expression 
likely falls below a noise threshold and that could also be why the 
dispersion model filtered it out. Thus, it is necessary to choose 
a dispersion model that accounts for expression level changes 
across experiments. Here, we use a local regression dispersion 
method to determine if a gene is an outlier or not. Looking across 
the conditions, the impact of filtering out genes leads to a different 
set of genes being measured per condition. On average, there are 
93 out of 4267 genes that are different between each experimen-
tal run. Of the 93, there is an average of 67 unique genes or 1.6% 
of the transcriptome that are different between the experiments. 
Namely, these genes will have different responses given the day 
the experiment was run and thus place an upper bound on the 
repeatability of the model.

Gene quantitative response. (Figure 5C) The next question to 
address is if the response levels of the genes (differential expres-
sion) are consistent across experimental runs. Response is mea-
sured with a quasi-likelihood negative binomial generalized log-
linear model that outputs an FC as compared to a control. 
As mentioned in (2), the black and red lines are the genes that were 
filtered out as outliers by the dispersion model for a single exper-
imental run. Beyond the different set of genes, it is clear that the 
largest variabilities in response between the experimental runs 
are genes that have lower expression in both runs (those closer 
to the origin). Genes with low expression are inherently unreliable 
through traditional processing and analysis pipelines (24). These 
are genes that would not pass a threshold for subsequent analysis 
in either experimental run and so their responses are statistically 
insignificant. There are, however, 44 unique genes whose response 
falls above the noise threshold in both experiments but are out-
side the 95% confidence bounds of the experiment. Repeatability 
of a machine learning model with common metrics such as R2

should not take these genes into account as they fall below a noise 
threshold.

If a gene is differentially expressed. (Figure 5D) In some appli-
cations, such as pathway analysis, the quantitative response of 
a gene to a perturbation is not as important as whether or not 
the gene was dysregulated. In such instances, genes are labeled as 
DEGs if they satisfy magnitude (often in terms of log FC) and sta-
tistical significance (FDR) thresholds. DEGs are fed to downstream 
enrichment and pathway analysis tools to identify mechanistic 
and functional changes. Thus, evaluating whether the set of DEGs 
remains consistent is also an important aspect of reproducibil-
ity. Classification methods that are trained to predict if a gene is 
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Figure 5. Comparison of experimental conditions across test and test repeat experimental runs. The 0/1 indicates the absence/presence of inducers 
for Panels A/B and differentially expressed status (0 not DEG and 1 is DEG for D). Each comparison will have a different impact on the experiment’s 
ability to validate a machine learning model trained on single inducers (conditions not shown here). (A) Different sample dropouts for the two runs 
mean that if both experiments were not run, some predictions would not be validatable. (B) Different genes being filtered will impact the set of genes 
from a condition that can be validated. (C) Genes can have quantitatively different responses, which can further add complications to validation and 
the gene dropouts (horizontal black and vertical red lines) across the two experimental runs means different genes will be validated. (D) While the set 
of DEGs that are different between days are in the minority, these discrepancies can have mechanistic consequences on the inferences made.

differentially expressed should account for both class imbalance 
and the inconsistencies between runs. In our case, we see that the 
majority of genes across the experimental runs are consistently 
labeled as impacted (1) or not impacted (0). There are, on average, 
140 genes, or 3% of the transcriptome that is labeled differently 
(labeled as 0–1 or 1–0 in the bar plot). If these genes are essential 
genes, the set of mechanistic insights that are predicted by the 
model can be very different based on the experimental run used 
for validation.

4. Conclusion
Reproducibility is a cornerstone for utilizing RNASeq data to ana-
lyze and improve synthetic designs. One important aspect of 
reproducible designs is computation pipelines that help stan-
dardize files, metadata, analysis techniques and protocols in a 
high-throughput and easy to use environment. As such, we have 
developed and released both a secondary analysis pipeline and 
omics_tools to help facilitate analysis of synthetic biology RNASeq 
experiments. We have also utilized these two to better understand 
reproducibility in two different contexts: similarity of controls 
run on different days and the impact that reproducibility has 
on the test and training data utilized in machine learning tech-
niques. We identified that the experimental protocols utilized 
for E. coli MG1655 produced highly reproducible results. However, 
when those same protocols were applied to B. subtilis, the repro-
ducibility decreased in a manner that suggested the growth states 
(or some other biological phenomena) were not the same on dif-
ferent days. Given that we standardized the analysis through the 

analytical pipeline, any differences we observe are guaranteed to 
be biological or experimental in nature.

Additionally, when exploring induction conditions, we found 
that while the majority of induction conditions were reproducible 
across the different days/extraction volumes, some were different. 
The differences have an impact on the ability to validate a model 
to predict response to inducers if you only have one run to choose 
from (i.e. you were only able to run the experiment once). While 
the majority of genes were consistently present and consistently 
differentially expressed across the two days/volumes, some genes 
were not. Such differences limit the upper bound of accuracy of 
the model, as areas where the test data are inconsistent produce 
a response distribution versus a single response. A standardized 
analytical pipeline will enable researchers to identify areas of low 
reproducibility (either experimental or biological) and focus their 
experiments on reducing the variability of those response dis-
tributions. Ultimately, computation pipelines that help facilitate 
reproducibility will allow for more consistent analysis of the data.

Supplementary data
Supplementary data are available at SYNBIO Online.

Data availability
The data underlying this article and all subsequent analyses 
are publicly available on Figshare: https://figshare.com/projects/
RNASeq_Reproducibility_for_Synthetic_Biology/125005. The sec-
ondary analysis pipeline can be found at https://github.com/

https://academic.oup.com/synbio/article-lookup/doi/10.1093/synbio/ysac012#supplementary-data
https://figshare.com/projects/RNASeq_Reproducibility_for_Synthetic_Biology/125005
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