
fmicb-13-828254 May 5, 2022 Time: 12:30 # 1

ORIGINAL RESEARCH
published: 05 May 2022

doi: 10.3389/fmicb.2022.828254

Edited by:
Guojun Wu,

Rutgers, The State University
of New Jersey, United States

Reviewed by:
Noelle Robertson Noyes,

University of Minnesota Morris,
United States

Yiqi Jiang,
City University of Hong Kong,

Hong Kong SAR, China

*Correspondence:
Yaowen Chen

achenge07@163.com
Xiaomin Ying

yingxmbio@foxmail.com

Specialty section:
This article was submitted to

Microorganisms in Vertebrate
Digestive Systems,

a section of the journal
Frontiers in Microbiology

Received: 03 December 2021
Accepted: 25 March 2022

Published: 05 May 2022

Citation:
Liu P, Hu S, He Z, Feng C,

Dong G, An S, Liu R, Xu F, Chen Y
and Ying X (2022) Towards

Strain-Level Complexity: Sequencing
Depth Required for Comprehensive

Single-Nucleotide Polymorphism
Analysis of the Human Gut

Microbiome.
Front. Microbiol. 13:828254.

doi: 10.3389/fmicb.2022.828254

Towards Strain-Level Complexity:
Sequencing Depth Required for
Comprehensive Single-Nucleotide
Polymorphism Analysis of the
Human Gut Microbiome
Pu Liu1, Shuofeng Hu1, Zhen He1, Chao Feng1, Guohua Dong1, Sijing An1, Runyan Liu1,
Fang Xu2, Yaowen Chen1* and Xiaomin Ying1*

1 Center for Computational Biology, Beijing Institute of Basic Medical Sciences, Beijing, China, 2 Yongkang First People’s
Hospital, Yongkang, China

Intestinal bacteria strains play crucial roles in maintaining host health. Researchers
have increasingly recognized the importance of strain-level analysis in metagenomic
studies. Many analysis tools and several cutting-edge sequencing techniques like single
cell sequencing have been proposed to decipher strains in metagenomes. However,
strain-level complexity is far from being well characterized up to date. As the indicator
of strain-level complexity, metagenomic single-nucleotide polymorphisms (SNPs) have
been utilized to disentangle conspecific strains. Lots of SNP-based tools have been
developed to identify strains in metagenomes. However, the sufficient sequencing
depth for SNP and strain-level analysis remains unclear. We conducted ultra-deep
sequencing of the human gut microbiome and constructed an unbiased framework
to perform reliable SNP analysis. SNP profiles of the human gut metagenome by
ultra-deep sequencing were obtained. SNPs identified from conventional and ultra-
deep sequencing data were thoroughly compared and the relationship between
SNP identification and sequencing depth were investigated. The results show that
the commonly used shallow-depth sequencing is incapable to support a systematic
metagenomic SNP discovery. In contrast, ultra-deep sequencing could detect more
functionally important SNPs, which leads to reliable downstream analyses and novel
discoveries. We also constructed a machine learning model to provide guidance for
researchers to determine the optimal sequencing depth for their projects (SNPsnp,
https://github.com/labomics/SNPsnp). To conclude, the SNP profiles based on ultra-
deep sequencing data extend current knowledge on metagenomics and highlights the
importance of evaluating sequencing depth before starting SNP analysis. This study
provides new ideas and references for future strain-level investigations.
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INTRODUCTION

In recent years, metagenomic studies have deepened our
understanding of the relationships between the human gut
microbes and diseases. Intestinal microbes have been reported
to be closely related to digestive tract diseases (Sun et al.,
2017), cardiovascular diseases (Li et al., 2017), metabolic diseases
(Maruvada et al., 2017), immune diseases (Fujimura and Lynch,
2015), neurological diseases (Qian et al., 2020) and even tumors
(Jin et al., 2019). In metagenomic studies, strain-level analysis
has attracted more and more attention. Different strains within
a species may exhibit high variability in pathogenicity, antibiotic
resistance and interactions with the host in response to the
environmental stress (Anyansi et al., 2020), despite that they
are similar in genomic content (Van Rossum et al., 2020).
For example, Escherichia coli O157:H7 has caused water-borne
and food-borne disease outbreaks in many countries (Manning
et al., 2008), while Escherichia coli sequence type 95 strains are
antibiotic resistant (Stephens et al., 2017). Strain-level variation
in the microbiome of diabetic wounds has also been proved to be
associated with clinical outcomes and therapeutic efficacy (Kalan
et al., 2019). Therefore, in metagenomic studies, it is far from
enough to conduct a coarse-grained research at species level,
especially in studies on infectious disease (Yan et al., 2020).

Metagenomic single-nucleotide polymorphisms (SNPs) have
been utilized to disentangle conspecific strains to facilitate
strain-level investigations such as strain identification and
tracking (Costea et al., 2017; Anyansi et al., 2020). As the
indicator of strain-level complexity, several SNP-based tools
have been developed to identify strains in metagenomes. For
example, StrainFinder uses SNP-based methods to calculate
abundances for all the genomes in the reference database
(Smillie et al., 2018). StrainEST is based on co-occurring SNPs
within samples to predict abundances of strains (Albanese and
Donati, 2017). By using different tools, substantial associations
between metagenomic SNPs and host phenotypes have been
uncovered. Schloissnig et al. first described the genomic variation
landscape of the healthy human gut microbiome and found that
subjects exhibited more individuality and temporal stability of
metagenomic SNP variation patterns than composition changes
of their gut microbiota (Schloissnig et al., 2012). Chen et al.
found that there is a close relationship between type 2 diabetes
and human intestinal metagenomic SNPs (Chen et al., 2017).
Li et al. found that gut microbial SNPs induced by high-
fiber diet dominate nutrition metabolism and environmental
adaption of Faecalibacterium prausnitzii in obese children (Li
et al., 2021). Besides, Chen et al. found that the SNPs and
structural variations (SV) of multiple bacterial species in the
human intestinal tracts are stable to build microbial fingerprints
for people (Chen L. et al., 2021).

Although next generation sequencing data greatly accelerates
metagenomic discoveries, few works have studied the impact of
sequencing depth on the identified SNP profile and strain-level
composition of the gut microbial community. This cannot be
ignored because sequencing depth directly impacts the result of
read assignments and SNP calling. Two sequencing strategies,
ultra-deep sequencing and shallow sequencing, can be adopted

in metagenomic SNP studies. Ultra-deep sequencing represents
the sequencing strategy to obtain whole genome sequences at
very high depths, whereas shallow sequencing represents the
strategy to obtain genomes at relatively lower depths. A shallow
sequencing depth may lead to miss of important information
and result in biased results. The sufficient sequencing depth for
strain-level analysis remains unclear.

Hence, we explored the human intestinal metagenomic SNP
profiles by using ultra-deep sequencing. We investigated the
impact of sequencing depth on identification of metagenomic
SNPs and downstream strain-level analysis. We hope to provide
new ideas and references for future metagenomic SNP researches.

MATERIALS AND METHODS

Description of the Dataset
In total, three ultradeep sequenced fecal samples were utilized
in this study. Of which, one from a healthy Chinese person
named D1 was sequenced by our group with a sequencing
size of 437 GB (Gigabases), and the other two samples that
named D2 (BioSample: SAMEA5669780) and D3 (BioSample:
SAMEA5669781) from the United States were downloaded from
the European Nucleotide Archive (ENA) with the accession ID
PRJEB24152 (Hillmann et al., 2018). The sequencing sizes of D2
and D3 are 786 GB and 754 GB, respectively.

Metagenome DNA Extraction and
Shotgun Sequencing
Microbial genomic DNA from stool of the Chinese sample
was extracted using Tiangen Fecal Genomic DNA Extraction
Kit (Tiangen Biochemical Technology Co., Ltd.) in line with
the standard procedure, and was stored at −80◦C. The
purity and concentration of DNA was measured with agarose
gel electrophoresis and an optical density (OD) analysis
with NanoDrop spectrophotometer (Thermo Fisher Scientific,
United States). The DNA concentrations were also measured
with QubitTM 4.0 Fluorometer (Thermo Fisher Scientific,
United States). Shotgun DNA sequencing was performed on the
Illumina NovaSeq 6000.

Quality Control of Reads
FastQC (Andrews, 2010)1 was used to check the quality of
raw data. We then implemented a customized quality control
strategy by combining Trimmomatic (parameters: -phred33
ILLUMINACLIP:adaptors.fa:1:0:7 TRAILING:20 SLIDING-
WINDOW:5:10 MINLEN:45 AVGQUAL:20) (Bolger et al.,
2014) with in-house scripts.2 Briefly, the quality control
was carried out with the following criteria: (1) Adaptors
are removed; (2) Bases with qualities smaller than 20 are
trimmed from 3’ end; (3) In a 5mer sliding window of a read,
if the average quality within the window falls below 10, the
read is clipped; (4) Reads containing less than 45 bases are
dropped; (5) Reads are also dropped if the average quality

1http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
2https://github.com/labomics/SNPsnp/tree/main/SNP_calling/step1_qc
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is blow 20; (6) For each site of all reads in each sample,
a mean number of base calls (f ) and a standard deviation
(SD) were calculated. Sites whose bases call number deviated
from its 2 standard deviations were cut. Steps (1) – (5) are
performed by Trimmomatic and step (6) is performed by
our custom script.

Downsampling
Each of the three samples was randomly down-sampled to 1,000,
10,000, 1,00,000, 1 million, 10 million, 20 million, 30 million,
40 million, 50 million, 60 million, 80 million, 100 million, 200
million, 300 million, 400 million, 500 million, 1 billion and 2
billion sequencing reads as subsamples using BBMap (Bushnell,
2014), respectively.

Computation of Relative Strain
Abundance
If a strain s with genome length ls has ns uniquely mapped reads
assigned to its genome, we defined the relative abundance of
strain rs as follows:

rs =
ns/ls∑
t∈S nt/lt

where, S denotes the whole strains set.

Single-Nucleotide Polymorphism Calling
First, MetaPhlAn2 (Truong et al., 2015) with default setting
was used to profile the microorganisms in each of these three
samples. The identified microorganisms of each sample were
collected as the microbial reference genomes of these three
samples, respectively.3 Genome sequences of these microbial
reference genomes were downloaded from the NCBI assembly
database. Samples were mapped to their corresponding reference
genomes with BWA (Li and Durbin, 2009). Only unique
mapped reads were retained to increase the accuracy of SNP
calling. Note that retaining only the unique mapped reads in
the alignment process can avoid multiple gene copies issue.
The sorted bam files were marked duplicates and filtered
by Picard (Picard Toolkit, 2019). We combined Samtools (Li
et al., 2009) and VarScan2 (Koboldt et al., 2012) together
to reduce false positive results. Results from Samtools were
filtered by VCFtools (Danecek et al., 2011) with parameters
“+/d = 10/a = 4/Q = 15/q = 10/” and parameters for VarScan2
were “–min-coverage 10 –min-reads2 4 –min-var-freq 0.2 –p-
value 0.05.” SNPs detected by both Samtools and VarScan2 were
selected as tentative credible SNPs.

Filtration Based on a Mixture Model of
Depth Distribution
Noisy reads occurred in the sequencing process are primarily
from substitution errors in Illumina platforms and lead to false
positive SNPs. Considering general filtering thresholds of depth
may not be applicable as sequencing depths increase, especially
in ultra-deep sequencing data, we therefore attempted to set a

3https://github.com/labomics/SNPsnp/tree/main/SNP_calling

variable threshold to filter false positive SNPs based on base
depth distribution of strains (Supplementary Figure 1). Ideally,
base depth distribution of a strain follows a normal distribution.
Bases following other distributions except normal distribution
may originate from sequencing errors or wrong matches due to
homologous genes.

Hence, we constructed a mixture distribution model
composed of an exponential distribution and a normal
distribution to fit a sequenced base depth distribution of each
strain. Genome depth is defined as the ratio of the total number
of genome-mapped bases to the size of the corresponding
genome (Sims et al., 2014). Python package Pomegranate was
used to fit the corresponding mixture distribution model to
data (Schreiber, 2017). Bases following the normal distribution
were regarded to be derived from reads that mapped correctly
to the strain genome, and bases following the exponential
distribution were regarded to be derived from reads introduced
by sequencing errors and homologous gene mismatches among
different strains. To retain truly mapped reads as more as
possible, we chose to keep at least 90% bases following the
normal distribution. To exclude noisy reads, we chose to discard
50% bases following exponential distribution. To make a balance
between keeping the majority of true assigned bases and filtering
noise-derived bases, we determined to choose the smaller one of
the two thresholds as the final filter threshold to retain at least
90% of bases following normal distribution. Furthermore, in
the multiple sub-samples’ scenario, if the chosen threshold at
one subsampling level is smaller than that at an adjacent lower
subsampling level, we continued to use the threshold of the
previous lower subsampling point, which actually only occurs in
rare circumstances.

Acquisition of Single-Nucleotide
Polymorphism Function Profiles
Whether the SNPs are located in the coding region or non-
coding region of the genome was determined according to the
Gff file of the corresponding genome downloaded from NCBI.
SNPs were annotated by SnpEff (Cingolani et al., 2012). Non-
synonymous variants include “missense variant,” “start lost,”
“stop gained” and “stop lost” types. Synonymous variants include
“start retained variant,” “stop retained variant” and “synonymous
variant.” The dN/dS ratio was calculated as an indicator of
selection pressure acting on protein-coding DNA sequences
(Mugal et al., 2014). Python package JoyPy4 was used to draw
the mutation frequency distribution of dominant strains in
each sample. The gene functions with enriched SNPs were
also obtained by the gff file of the genome. Python package
wordcloud (Oesper et al., 2011) was used to draw word cloud
plots of gene functions with enriched SNPs. R package lmerTest
was used to construct linear mixed effects models to test the
relationship between relative abundance and SNPs. The models
take sample as random effect and relative abundance as fixed
effect (Kuznetsova et al., 2017).

4https://github.com/leotac/joypy
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Strain-Level Population Genomics
Analysis
To explore differences between SNPs identified from ultra-
deep sequencing and that from conventional sequencing (6
GB), StrainPhlAn2 (Truong et al., 2017) was used to perform
metagenomic strain-level population genomics analyses and
phylogenetic analyses of major strains from metagenomic
samples. In addition to the 6 GB subsamples and ultra-deep
sequencing samples, we also used subsamples of 10 million, 50
million and 100 million reads as the input of StrainPhlAn2 to
track the changes of the representative strain under different
sequencing depths.

Regression Models for Predicting Strain
Single-Nucleotide Polymorphism
Saturation
Cornell et al. proposed a term “damped increase” to account for
the rate of diversification decreases to approach its upper limit
(Cornell and Harrison, 2014). Hence, based on their perspectives,
we used the ratio of SNP numbers (normalized to the interval
[0,1]) to sequencing depth (normalized to the interval [0,1]) to
determine whether a strain was saturated in ultra-deep samples.
The ratio R is defined as follows:

Ri =
|Yi − Yi−1|

Xi − Xi−1

Where, Xi represents the normalized depth of ith subsampling
points, and Yi represents normalized SNP numbers of ith
subsampling points. For a strain to be considered saturated, two
conditions must be met: (1) as the sequencing depth deepens, Rs
between two adjacent sub-sampling points gradually decreases;
(2) R between the last two points is less than 0.1.

In order to predict the SNPs number of strains at their
SNP saturation state, the sequencing coverage, sequencing depth,
relative abundance, genome length, SNP number, SNP density
and saturated SNP number of strains in the aforementioned
subsamples and ultra-deep samples were used to construct a data
set. Only saturated strains in our data were used here. The data
set is divided into training set and test set according to the ratio
of 4:1, and the python package scikit-learn (Pedregosa et al., 2011)
was used to train a linear regression model and a random forest
regression model, respectively. A grid search with 5-fold cross-
validation strategy was utilized to achieve the best performances.
The relative square error (RSE), relative absolute error (RAE) and
coefficient of determination R-squared were used to evaluate the
performance of models.

RESULTS

A Framework to Obtain Reliable
Metagenomic Single-Nucleotide
Polymorphisms
To obtain highly reliable SNPs by ultra-deep sequencing, we
established an accurate and effective framework to eliminate

noisy and erroneous information when processing the data.
The framework consists of three major parts, involving
data pre-processing, preliminary processing and SNP analyses
(Figure 1A). The data pre-processing part is mainly to
control the quality of raw data to obtain clean data and
appropriate reference genomes. The preliminary processing
part contains several steps of sequence mapping to obtain
unique alignments. The SNP analyses part contains SNP
calling and filtering steps. Besides a two-way SNP calling
procedure to acquire high-quality SNPs, we also utilized
a bimodal distribution of base depths to remove potential
false positive SNPs. The bimodal distribution consists of an
exponential model for noisy reads and a normal model for
truly assigned reads (Figure 1B and “Materials and Methods”).
To check the performance of our framework, we benchmarked
several SNP-calling strategies on simulated datasets. The
results show that our framework exhibits the optimal result
with the highest precision and the second highest sensitivity
(Supplementary Material and Supplementary Figure 2). By
using our framework, we can obtain highly reliable SNPs for the
subsequent analysis.

Ultra-Deep Sequencing Data and
Metagenomic Single-Nucleotide
Polymorphism Profiles of the Human Gut
Microbiome
In total, three ultradeep sequenced fecal samples were utilized
in this study. They were labeled as D1, D2, and D3, with
sequencing sizes of 437 GB (Gigabases), 786 GB and 754
GB, respectively. We identified the dominant strains (relative
abundance >1%) of each sample (10 dominant strains in
sample D1, 21 dominant strains in sample D2 and 19
dominant strains in sample D3). Details of the taxonomic
levels of these strains are shown in Figure 2A. Among
these 43 different dominant strains, 18 strains (41.86%) are
shared by the three samples, which are prevalent strains
in the human guts (Figure 2A). Community structures
of the three samples are convergent at high taxonomic
levels, but more diverse at low levels such as species level
(Supplementary Figure 3).

Then, we identified reliable metagenomic SNP profiles of the
dominant strains, namely, 693,338 SNPs in sample D1, 1,558,472
SNPs in sample D2, and 1,258,485 SNPs in sample D3. To
investigate whether there exists any different SNP preference
among difference microbes, we counted SNP numbers for each
microbe as well as for higher taxonomic levels. The SNP
proportions of microbial genomes within different taxonomic
levels, namely the percentage of SNPs at different taxonomic
levels, are shown in Figure 2B. Firmicutes have the most
SNPs at the phylum level in all the three samples. Note that
different taxonomic level contains different number of genomes,
we therefore compared the average SNP number of genomes
at certain taxonomic levels in the three samples. Firmicutes
still have the most average SNPs in two of the three samples
(D1, D3, Supplementary Figure 4). Firmicutes with relative
abundance of about 30% contribute to 58.17, 75.85, and 71.93%
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FIGURE 1 | Workflow of reliable SNP calling. (A) A representation of the reliable SNP calling workflow, which contains three major parts: data pre-processing,
preliminary processing and SNP analyses. The data pre-processing part is mainly to obtain clean data and appropriate reference genomes. The preliminary
processing part contains several steps of sequence mapping to obtain unique alignments. The SNP analyses part contains SNP calling and filtering steps. (B) The
mixture distribution model in the SNP analyses part is composed of an exponential distribution and a normal distribution fitting depth distribution of each strain to
determine the filter threshold. The model was constructed to fit a sequenced base depth distribution of each strain, in which bases following the normal distribution
were regarded to be derived from reads that mapped correctly to the strain genome, and bases following the exponential distribution were regarded to be derived
from reads introduced by sequencing errors and homologous gene mismatches among different strains. The gray shaded part represents the true distribution of
depth. The crimson line represents the fitting exponential distribution and the dodger blue line represents the fitting normal distribution. The medium orchid dashed
line represents the fitting result of the mixture model.

SNPs of the dominant strains in the three samples, respectively.
We conclude that as the common dominant bacteria in the
human gut, Firmicutes’ long-term and continuous evolutionary
pressure for adapting to the environment have led to a
large number of SNPs.

As the taxonomic classification level varies from phylum
to species, the differences of SNP proportions in the three
samples further expand, which shows the heterogeneity
among samples. In addition, we also studied the relationship
between the number of SNPs and relative abundances
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FIGURE 2 | Relative abundances and SNP profiles of dominant strains in ultra-deep sequenced samples. (A) Relative abundances of major strains and their
corresponding taxonomies. The right part is the relative abundance (%) heatmap of these dominant strains in the three samples. The deeper the color, the higher the
relative abundance. The left part of the panel shows the taxonomy structure of the dominant strains. (B) Bar plot depicting the proportions of SNPs (in percentage)
identified from microbes at different taxonomic levels. The proportions of SNPs equal the number of SNPs at a particular taxonomic level divided by the number of
total SNPs. At one taxonomic level, the proportions in each sample sum to one.
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FIGURE 3 | SNP function profiles of dominant strains in ultra-deep sequencing samples. (A) Proportions of the CDS-SNPs and the non-CDS-SNPs in each sample.
For each dominant strain in samples, the proportion of the CDS-SNPs represents the proportion of SNPs located in the coding region, and the proportion of the
non-CDS-SNPs represents the proportion of SNPs located in the non-coding region. (B) Relationships between the dN/dS ratio and relative abundances of
dominant strains in each sample. The dN/dS ratio equals the number of non-synonymous SNPs divided by the number of synonymous SNPs. (C) Proportions of
different types of the cumulative SNPs from all dominant strains in the ultra-deep sequencing samples. (D) Allele frequencies of SNPs of dominant strains in sample
D1. The X-axis represents the allele frequencies of SNPs, and Y-axis shows the name of dominant strains. (E) Venn diagrams of SNPs of strain Alistipes putredinis
DSM 17216 in the three samples. Black numbers represent the number of SNPs, and white numbers represent the dN/dS ratio of these SNPs.

of the dominant strains. As shown in Supplementary
Figure 5, no significant correlation is indicated (Pearson
correlation coefficient: 0.05, p-value = 0.74), suggesting
that the number of SNPs and abundances of microbes
might be independent. Linear mixed effects models using
sample as random effect also support the non-correlation
(p-value = 0.74).

Metagenomic Single-Nucleotide
Polymorphism Function Profiles by
Ultra-Deep Sequencing in the Human
Gut
To evaluate the functional impacts of metagenomic SNPs, we
checked whether the SNPs are located in the coding region (CDS-
SNPs) or the non-coding region (non-CDS-SNPs) of genomes.
As shown in Figure 3A, for each strain, most of the SNPs
are located in the coding region. After sorting the strains

by proportions of SNPs in non-coding regions, the top nine
strains (Roseburia intestinalis M50/1, Roseburia inulinivorans
DSM 16841, Ruminococcus sp. SR1/5, Ruminococcus torques L2-
14, Lachnospiraceae bacterium 5_1_63FAA, Eubacterium siraeum
V10Sc8a, Ruminococcus bromii L2-63, Bacteroides pectinophilus
ATCC 43243 and Coprococcus sp. ART55/1) with relatively high
proportions of SNPs in non-coding regions, all originate from the
order Clostridiales. Clostridiales are considered to be the most
active microbial components in the intestinal environment of
healthy adults, including polysaccharide-decomposing bacteria,
which contribute greatly to the production of short-chain fatty
acids in the intestine (Chinda et al., 2004).

In order to further study the functional changes, SNPs
were annotated and classified into non-synonymous variants,
synonymous variants and other variants. The dN/dS ratio of each
strain was also calculated, which is an indicator of the selective
pressure acting on protein-coding DNA sequences (Mugal et al.,
2014). In addition, the relationship between the dN/dS ratio
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FIGURE 4 | Comparison of SNPs identified from ultra-deep sequencing and conventional sequencing data (6G). Relative abundances, sequencing coverages,
depths, and SNP numbers of dominant strains are compared in sample D1 (A), D2 (B) and D3 (C). Orange bars represent the ultra-deep sequencing data and blue
bars represent the conventional sequencing data. (D) The proportion of the cumulative CDS-SNPs and the non-CDS-SNPs of dominant strains from ultra-deep
sequencing (Ultra-deep) and conventional sequencing data (Conventional).

and strain relative abundance was also analyzed, as shown in
Figure 3B. The dN/dS ratio of most of the strains varies between
0 and 0.5; the correlation between the dN/dS ratio and relative
abundance is low (Pearson correlation coefficient = −0.05,
p-value = 0.75). Further, the cumulative SNPs from all dominant
strains in the three samples were calculated. As shown in
Figure 3C, synonymous variants accounted for the vast majority
(D1: 76.06%, D2: 61.70%, D3: 65.25%), and non-synonymous
variants accounted for a small proportion (D1: 15.73%, D2:
18.09%, D3: 19.73%); the dN/dS ratio of sample D1, D2, and D3
are 0.21, 0.29, and 0.30, respectively.

Subsequently, we further investigate genes with enriched
SNPs, namely genes have more SNPs compared to background.
A word cloud of these gene functions is shown in Supplementary
Figure 6. For sample D1, the top five SNP-enriched functions
are TonB-dependent receptor, ATP-binding cassette (ABC)
transporter ATP-binding protein, ABC transporter permease,
and major facilitator superfamily (MFS) transporter. Among
them, the ABC transporter uses the energy of ATP binding
and hydrolysis to transport various substrates across the cell
membrane. In prokaryotes, it mediates the absorption of
nutrients into cells. Substrates that can be transported include
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FIGURE 5 | The trend of SNP number (A) and dN/dS ratio (B) changes of dominant strains from sample D1 caused by the sequencing depth increasement. The
dN/dS ratio is plotted on the log scale to show the changing trend of dN/dS more clearly. (C) The trend of cumulative SNP numbers from all dominant strains in
sample level as sequencing size increases.

ions, amino acids, peptides, sugars, and most other hydrophilic
molecules. The bacterial ABC transporter is essential for cell
viability, virulence and pathogenicity. ABC transporter permease

is also involved in transmembrane transport (Schneider and
Hunke, 1998; Davidson et al., 2008). In addition to these proteins
related to ABC transport, the SNP-enriched functions in sample
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FIGURE 6 | SNP saturation prediction of strains using machine learning models. (A) Correlation heatmap among sequencing coverage, sequencing depth, relative
abundance, genome length, SNP number, and SNP density of dominant strains. The SNP density equals the SNP numbers of a strain divided by the covered length
of the genome. The predicted outcomes of linear regression (LR) model (B), and random forest (RF) regression model (C) are presented. The X-axis represents the
SNP saturation number of strains, and the Y-axis represents the predicted SNP saturation number. (D) The relative square error (RSE), relative absolute error (RAE)
and coefficient of determination R-squared values from LR and RF models are compared.
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D1 are mainly focused on basic processes of life activities
related to transmembrane transport, ATP binding and DNA
binding. Interestingly, we found that the functions of SNP-
enriched genes in sample D2 and D3 have high similarities with
D1, both involving ABC transporter ATP-binding protein, ABC
transporter permease, MFS transporter, AAA family ATPase,
etc. SNPs are enriched in genes associated with basic life
activities, which might indicate that the genes are related to
the adaptation to environment and have strong interaction with
the environment.

Furthermore, we studied the allele frequencies of SNPs by
ultra-deep sequencing (Figure 3D and Supplementary Figure 7).
The allele frequencies of most SNPs from different strains
are near 1.0, indicating that most of the mutation sites are
homozygous. A few sites are heterozygous, which might be a
result of genetic drift in the community.

Since the three samples are from two different continents,
a deep comparison needs to be performed to investigate the
SNP differences among samples under the ultra-deep sequencing
scenario. Because only one dominant strain was found present
in all the three samples, namely Alipipes putredinis DSM 17216,
we conducted an in-depth study on this strain and compared
SNPs of it in different samples. Among the SNPs of A. putredinis
DSM 17216, synonymous variants accounted for the vast majority
(D1: 65.38%, D2: 63.86%, D3: 66.02%), and non-synonymous
variants accounted for a small portion (D1: 19.98%, D2: 19.86%,
D3: 23.15%); the dN/dS ratios of A. putredinis DSM 17216 in
sample D1, D2, and D3 are 0.31, 0.31, and 0.35, respectively
(Figure 3E). As shown in Figure 3E, the three samples have only
490 SNPs in common for the shared strain, and most of the
remaining SNPs are unique to each sample, which may imply
that the same strain has different mutation responses towards
different environmental pressures.

We divided the SNP sites of the strain into different
categories according to whether they are shared among samples
(at least two samples) or not. Interestingly, the dN/dS ratio
of the shared SNPs is relatively high, especially the dN/dS
ratio of the 490 three-samples-shared SNPs (0.49) greatly
exceeds that of two-samples-shared (0.30, 0.40 and 0.32)
SNPs and each sample’s exclusive SNPs (0.29, 0.35 and
0.31, respectively) (Chi-square test, p = 1.24e-5). The 490
SNPs are mainly located in genes with functions of catalytic
enzymes, transferases, recombination integrases, and others.
Note that these genes are related with DNA recombination
(Kwon et al., 1997), DNA integration, DNA binding processes
(Esposito and Scocca, 1997), ATP binding, potassium ions
binding and sodium ions binding (Miyauchi et al., 2013),
which indicates the response of these important genes to
environmental pressures.

Comparison of Single-Nucleotide
Polymorphisms Identified From
Ultra-Deep Sequencing and
Conventional Sequencing Data
In order to investigate whether additional sequencing depth will
contribute to new discoveries of SNPs analysis, we compared

the SNPs from ultra-deep sequencing data with those from
conventional sequencing data. The conventional sequencing size
of 6 GB of one sample was recommended when studying
the human intestinal metagenomics (Liu et al., 2021). We
randomly down-sampled the three ultra-deep metagenomic
sequencing samples into 6 GB sequencing subsamples, and
studied the dominant strains’ relative abundances, sequencing
coverages, depths, and SNPs amounts, as shown in Figures 4A–
C. We found that the relative abundance of dominant strains
did not change much on the whole, which shows that the
conventional sequencing size is suitable for the study of species
composition of the gut microbe community. The sequencing
coverage of these dominant strains by ultra-deep sequencing
has increased to varying degrees and the sequencing depth
of strains by ultra-deep sequencing has significantly improved
compared with that by conventional sequencing size. As
the sequencing depths increases, the numbers of SNPs also
increase to varying degrees, and increases in certain strains are
particularly huge.

For strains with particularly high increases in SNPs in
ultra-deep sequencing data, we suspected that additional
strains are detected due to the increased sequencing content.
Hence, we used StrainPhlAn2 to track the changes of the
representative strain under different sequencing depths (see
“Materials and Methods”). For sample D1, we identified
much more SNPs of Megasphaera elsdenii (relative abundance:
1.63% from 6G data, 1.70% from ultra-deep sequencing data)
from ultra-deep sequencing data than from conventional
sequencing data. From the phylogenetic tree in Supplementary
Figure 8A, the representative strain from 6 GB data is closer
to the reference genome, whereas the strain from ultra-deep
sequenced D1 is farther from the reference genome. Results
of sample D2 and D3 are also shown in Supplementary
Figures 8B,C with Ruminococcus obeum (relative abundance:
1.08% from 6G data, 1.22% from ultra-deep sequencing
data) and Roseburia intestinalis (relative abundance: 0.93%
from 6G data, 1.23% from ultra-deep sequencing data)
as examples, respectively. These results suggest that deep
sequencing of metagenomic samples could lead to detection
of more strains, which could be overlooked by conventional
shallow sequencing.

We also found that the SNPs from ultra-deep sequencing data
has a lower proportion of CDS-SNPs and a higher proportion
of non-CDS SNPs, compared to those from conventional
sequencing data (Figure 4D, p = 3.2e-3, Mann–Whitney U
rank sum test). To further investigate the increased SNPs
due to the deeper sequencing, we checked the functions
of the genes where newly detected SNPs locate. More
functional genes with SNPs detected in the deep sample
were involved, as shown in Supplementary Figures 8D–
F. The newly involved genes are mainly concentrated in
plasmid replication initiator protein, phage integration
family enzymes, kinases, transferases and phosphatases, etc.
These proteins participate in essential activities such as ATP
binding, mismatch repair, methylation process, catalysis of
inorganic salt water hydrolysis and lipid metabolism. The
results indicate deeper sequenced data could detect more
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functionally important SNPs. This also implies that the
conventional sequencing size is not enough to support a
comprehensive study of SNPs.

Single-Nucleotide Polymorphism Profile
Variations Caused by Sequencing Depth
Difference
Besides the conventional sequencing size of 6 GB, we also studied
the SNP profiles in data with varying depths (see “Materials
and Methods”). We first focused on SNP profile changes of
single strains as the sequencing depth increases. As shown in
Figure 5A, as the sequencing depth of the strain increases, the
number of SNPs rises up quickly at first and then tends to be
stable (Supplementary Figure 9A). We also studied the changes
of the strain’s dN/dS ratio as the sequencing depth increased.
Similarly, the dN/dS ratios fluctuated greatly at the beginning,
and gradually stabilized with the sequencing depth increasing
(Figure 5B and Supplementary Figure 9B). This indicates that
in metagenomic SNPs studies, the dN/dS ratio inferred from the
data cannot reflect the true selection pressure when the sequence
depth is not enough. We also checked the trend of cumulative
SNPs from all dominant strains as the sequenced read counts
increase in sample level (Figure 5C).

Furthermore, we investigated whether we can use machine
learning models to predict the overall SNP numbers of
strains given sequencing depths and other parameters from
an under-sequenced sample (see “Materials and Methods”).
We used current sequencing coverage, current sequencing
depth, current relative abundance, genome length, current SNP
number, and current SNP density of strains in subsamples
to predict the final saturated SNP number for each strain.
Data from subsamples were collected. First, the correlations
between different variables were compared. The SNP saturation
number has high correlations with current SNP number
and current SNP density, while having low correlations
with current sequencing coverage, current sequencing
depth, current relative abundance, and genome length
(Figure 6A). Then we used linear regression (LR) model
and random forest (RF) regression model to predict the
saturated SNP number, and the prediction results are shown in
Figures 6B,C.

Relative square error (RSE), relative absolute error (RAE),
and coefficient of determination R-squared were used to evaluate
the performance of models. The smaller the RSE and the
RAE, the better the model predicts; the higher the R-squared,
the better the model fits the data. As shown in Figure 6D,
the random forest regression model fits better, with R-squared
coefficient reaching 0.99. Variable feature importances in the
RF regression model is 0.12, 0.01, 0.09, 0.04, 0.31 and 0.43,
respectively, which are in consistence with the correlations
among parameters. We can use this model named SNPsnp
(SNP saturation number prediction) to predict the saturated
SNP number of a strain, given its sequencing coverage,
sequencing depth, relative abundance, SNP number and SNP
density in a shallow-sequenced sample. A test sample could
be sequenced in an affordable depth first to determine if

more data is needed. The model SNPsnp is available on
GitHub.5

DISCUSSION

This research is a deep study of metagenomic samples by
ultra-deep sequencing in the human gut. We investigate the
gut microbial communities of the shallow-sequenced and ultra-
deep sequenced samples, provides a framework for reliable SNP
identification by ultra-deep sequencing, conducts SNP analysis
and obtains SNP profiles by ultra-deep sequencing. SNP profiles
from ultra-deep sequencing and conventional sequencing data
were compared. Also, SNP changes with sequencing depth
increasing were investigated and a machine learning model was
constructed to guide researchers determine the optimal and
affordable sequencing depth for their projects.

According to our results, the conventional sequencing
sizes of 6 GB for metagenomics studies for the human gut
microbiome is not enough to support a comprehensive study
of metagenomic SNPs and related downstream analysis.
We found that compared with that from conventional
sequencing size, SNPs identified from ultra-deep sequencing
involved more important genes and functions. The results by
StrainPhlAn2 suggest that deep sequencing of metagenomic
samples could lead to detection of rare strains, which
might be overlooked by conventional shallow sequencing.
Further work is needed to solve the limitation of our
work. The limitations include the sensitivity reduction
of SNP calling caused by unique mapping, and the cost-
intensive preliminary sequencing requirement for sequencing
depth’s determination.

Nowadays, metagenomic research has moved from species
level to the high-resolution strain level, in which SNP
identification plays an important role. By using our predictive
model, the appropriate sequencing depths could be estimated
using test samples prior to metagenomic variations investigation.
Sufficient depth of sequencing can promote accurate analysis of
metagenomic SNPs and further facilitate discovering accurate
associations between metagenomic SNPs and diseases. Though
more experiments need to be conducted to validate our work, our
findings could provide valuable perspectives for future studies on
metagenomic variations of the human gut or other environments,
and further promote strain-level researches.
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