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Abstract: Raman spectroscopy has the advantages of multi-component detection, with a simple
device and wide concentration ranges, and it has been applied in environmental monitoring and gas
logging. However, its low sensitivity has limited its further applications. In fact, the Raman signal is
not weak, but the utilization efficiency of the Raman signal is low, and most of the signal is wasted.
Given this, in this paper we report a cavity-enhanced multi-channel gas Raman spectrometer with an
eight-sided cuvette. First, we simulated the Raman scattering intensity at angles from 30 degrees to
150 degrees. The simulation results showed that the signal intensity at an angle of 45◦ is 1.4 times
that observed at 90◦. Based on the simulation results, we designed a three-channel sample cell for
higher sensitivity. The results of these experiments showed that the sensitivity could be increased by
adding all signal together, and the limit of detection (LOD) for CO2 was 75 ppm, which is better than
that of each channel. This paper thus presents a new method to enhance the Raman signal, which
can be used in field applications.

Keywords: cavity-enhanced Raman spectrometer; gas Raman spectra; multi-channels

1. Introduction

Raman spectroscopy has been widely used in environmental monitoring [1], gas
logging [2] and other fields [3]. Although the traditional Raman system can only detect the
components with high concentrations because of its low sensitivity, some Raman signal
enhancement methods have been developed to improve the system’s sensitivity, such
as surface-enhanced Raman spectroscopy (SERS), aiming to enlarge the scattering cross
section [4,5]. However, this has rarely been used for the Raman scattering enhancement of
gas detection [6]. The development of cavity-enhanced Raman spectroscopy (CERS) [7]
aimed to increase the effective optical path or increase the laser power. CERS is widely
applied in the enhancement of the Raman signal of gases.

Raman spectroscopy systems can be categorized as follows. (1) In the multiple reflec-
tion cavity [8] system, the laser oscillates in the multiple-reflection cavity and excites gases
in the sample cell. The Raman signal intensity is increased with repeated excitations. The
cavity types involved in this system include ellipsoidal cavities [9], right angle reflection
cavities [10], near confocal cavities [11], concentric cavities [12] and near-concentric cavi-
ties [13]. (2) The laser resonator system combines a laser resonator with the sample cell to
improve the Raman signal intensity [14,15]. (3) In the hollow fiber [16–18] system a hollow
fiber is used as a sample cell, and the laser is coupled into the hollow fiber at the same time.
The Raman signal generated in the fiber is transferred into the spectrometer for analysis.
In summary, the hollow fiber method has the highest sensitivity due to its long effective
distance and high collection efficiency. The multiple reflection cavity setup has a high level
of robustness, although its sensitivity is lower than that of hollow fiber methods. The mean
reason for this is its lower collection efficiency.

The detector of a Raman spectroscopy system includes either a charge-coupled device
(CCD) [19] or a photomultiplier (PMT) [20]. The setup with a mounted CCD is able to
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detect multi-components simultaneously, and the detection cycle takes several minutes.
The setup with a PMT exhibits a quick response (several seconds) and high sensitivity,
although this system can only detect one component in one channel. It can be made to
detect more components by adding channels. Most CERS systems use a mounted CCD
to detect the Raman signal through one channel, and the radiation characteristics of the
Raman scattering in this system are not yet clear.

In recent years, the use of CERS as a gas measurement tool has seen a rise in publi-
cations. In our preliminary work, we reported a limit of detection (LOD) of 52 ppm for
CO2 based on a near-concentric cavity [13]. Li et al. have reported an LOD of 16 ppm for
CO2 based on a near-confocal cavity [21]. Wang et al. achieved an LOD of 17.4 ppm for
CO2 with the optical feedback frequency locking method [22]. Because of the various com-
ponents (different detectors and lasers) and different acquisition parameters (integration
times and number of accumulations), the LOD of each setup was different. Thus, it is quite
meaningful to carry out the study of LOD enhancement based on CERS methods.

Therefore, with the aim of studying the radiation characteristics of Raman scattering in
a CERS system and improving collection efficiency, we have simulated the scatting intensity
at different angles. Furthermore, we invented a three-channel sample cell to enhance the
collection efficiency. Based on this, the detection sensitivity will be further improved.

2. Principles and Experiments
2.1. The Simulation of the Near-Concentric Cavity

According to the classical theory, the most efficient source of electromagnetic radi-
ation is an oscillating electric dipole. The radiation of an oscillating dipole is shown in
Equation (1) [23]. The amplitude E0 of electric field intensity (E) of the radiation produced
by the oscillating dipole at a distance r is given by

xE0 =
πν2µ0 sin θ

ε0r
E0 =

πν2µ0 sin θ

ε0r
(1)

where υ is the wavenumber of the radiation, µ0 is the magnitude of the oscillating dipole,
ε0 is the permittivity of the medium and θ is the angle between the dipole and the direction
of propagation. The radiant intensity, I, of the dipole within the given element of solid
angle dΩ in a particular direction, defined by the angle θ (see Figure 1), is

I(θ) =
dΦ
dΩ

=
π2cν4µ2

0 sin2 θ

2ε0
(2)
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Figure 1. (a) Simulation result of angular distributions of the radiant intensity, IR; (b) simulation 
result of angular distributions of Raman scattering intensity with a single laser beam (red line) and 
multi-laser beam (blue line). 

2.2. Experimental Setup 
Based on the simulated results, we adopted the near-concentric cavity to enhance 

Raman signals, as shown in Figure 2. The laser in this system was a diode-pumped solid-
state laser (DPSS) with a wavelength of 532 nm and a power of 300 mW; the stability of 
the laser power was about 3%. The laser beam was reflected into a near-concentric cavity 
after beam shaping and polarization control. The telescope compressed the laser beam 
diameter to half (a planoconvex lens with a focal length of 100 mm and a planoconcave 
lens with a focal length of −50 mm). A half-wavelength plate (P) rotated the laser beam 
from P polarization to S polarization. The near concentric cavity was composed of two 
identical spherical mirrors with 25.4 mm diameter and 25 mm focal length. An eight-sided 
cuvette was mounted at the center of the cavity. The Raman signal was collected in three 
directions, and the signal collector was composed of two achromatic lenses with focal 
lengths of 30 mm and diameters of 25.4 mm. the spectrometer we used was an Andor 
SR500i (Abingdon, UK).equipped with 1200 g/mm grating. The Raman spectra were rec-
orded using a CCD (Andor iVac 316, Abingdon, UK). 

The eight-sided cell, with a size of 40 × 40 × 30 mm3, is shown in Figure 2b. The cell 
was made of aluminum alloy 6061; the surface of the cell was black-oxide-coated to de-
crease the stray light. An image of the cell is shown in Figure 2c. Two gas tubes, inlet and 
outlet, were mounted at the top and bottom of the chamber. Eight separate optical win-
dows were mounted on the other eight sides of the chamber, respectively, for optical 
alignment; the optical windows were made of k9 glass with high anti-reflecting coating. 
The temperature was 25 degrees and the pressure in the cell was one bar. 
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The distribution of the energy density has axial symmetry with the rotation axis run-
ning along the dipole. As can be seen in Figure 1a, the radiation intensity I is proportional
to sin2θ. The radiation intensity parallel to the electric field is zero and the intensity perpen-
dicular to the electric field direction is at the maximum. Therefore, in order to collect more
Raman signal, we need to set the collection direction perpendicular to the polarization
of laser.

The signal collection component (see in Figure 2a) is an f4 optical system, consisting
of two identical achromatic lens with a focal length of 30 mm. The signal is coupled into
a fiber bundle, consisting of 19 fibers with a 200-µm core diameter. The diameter of the
effective aperture of the fiber bundle is about 1.5 mm. According to imaging principle of
the f4 optical system, the effective length of 1.5 mm in the focus point could be collected
into the optical fiber. When the angle between the collection direction and the optical
axis direction is α, the effective length is equivalent to 1.5/sinα, as shown in Figure 1b.
The signal intensity is weakest when the angle is 90◦ and the backward scattering signal
intensity is strongest. The signal intensity at an angle of 30◦ is twice that at an angle of 90◦,
and the signal intensity at an angle of 45◦ is 1.4 times that at an angle of 90◦.

As for the multiple reflection cavity, there are about 40 laser rays in the cavity, each
of which has a different angle with respect to the collection direction. The relationship
between the collection signal strength and the collection direction is represented by the
blue line in Figure 1b. The signal intensity at 30 degrees is 2.23 times that of 90 degrees,
and the signal intensity at angle of 45 degrees is 1.47 times that of 90 degrees. Therefore,
the collection angle should be reduced when designing the collection light path.

2.2. Experimental Setup

Based on the simulated results, we adopted the near-concentric cavity to enhance
Raman signals, as shown in Figure 2. The laser in this system was a diode-pumped solid-
state laser (DPSS) with a wavelength of 532 nm and a power of 300 mW; the stability of
the laser power was about 3%. The laser beam was reflected into a near-concentric cavity
after beam shaping and polarization control. The telescope compressed the laser beam
diameter to half (a planoconvex lens with a focal length of 100 mm and a planoconcave
lens with a focal length of −50 mm). A half-wavelength plate (P) rotated the laser beam
from P polarization to S polarization. The near concentric cavity was composed of two
identical spherical mirrors with 25.4 mm diameter and 25 mm focal length. An eight-sided
cuvette was mounted at the center of the cavity. The Raman signal was collected in three
directions, and the signal collector was composed of two achromatic lenses with focal
lengths of 30 mm and diameters of 25.4 mm. the spectrometer we used was an Andor
SR500i (Abingdon, UK).equipped with 1200 g/mm grating. The Raman spectra were
recorded using a CCD (Andor iVac 316, Abingdon, UK).

The eight-sided cell, with a size of 40 × 40 × 30 mm3, is shown in Figure 2b. The
cell was made of aluminum alloy 6061; the surface of the cell was black-oxide-coated to
decrease the stray light. An image of the cell is shown in Figure 2c. Two gas tubes, inlet
and outlet, were mounted at the top and bottom of the chamber. Eight separate optical
windows were mounted on the other eight sides of the chamber, respectively, for optical
alignment; the optical windows were made of k9 glass with high anti-reflecting coating.
The temperature was 25 degrees and the pressure in the cell was one bar.
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Figure 2. (a) Schematic of cavity-enhanced Raman spectrometer (CERS) prototype; (b) engineering 
drawing and cutaway view of the eight-sided cuvette; (c) image of the eight-sided cuvette. 
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(1122) and 135 degrees (1517). Although the peak intensity of CO2 at 90 degrees was lower 
than the others, its noise intensity was the smallest among the three spectra. 

Figure 2. (a) Schematic of cavity-enhanced Raman spectrometer (CERS) prototype; (b) engineering drawing and cutaway
view of the eight-sided cuvette; (c) image of the eight-sided cuvette.

The samples used in this study were purchased from Yantai Deyi Gas Co. Ltd., China.
Their concentrations were measured by means of the gas chromatograph analysis method.
The acquisition parameters of the CCD were as follows. The exposure time was 10 s, the
accumulate cycle time was 10 s and the number of accumulates was 10 s. The Raman
scattering signal was collected sequentially by channels 1, 2 and 3.

3. Results and Discussion
3.1. The Distribution of Signal Intensity with Scattering Angle

According to the simulation results, we measured the intensity of gases’ Raman signals
at different collection angles (shown in Figure 3). The sample was a mixed gas composed
of CO2 and N2, and the concentration of CO2 was 50,134.3 ppm. The black line, red line
and blue line in Figure 3a represent the Raman spectra of CO2 at the collection angles of
45 degrees, 90 degrees and 135 degrees, respectively. Two obvious Raman peaks of CO2
were located at 1289 cm−1 and 1387 cm−1. The Raman peak at 1387 cm−1 was stronger than
the other one. Therefore, we use the stronger peak for quantitative analysis. Comparing
the three spectra, the peak intensity of CO2 at 90 degrees was the smallest, and that at
135 degrees was strongest. In order to distinguish the differences in these spectra, the
spectra were displayed at an offset of 60,000, as shown in Figure 3b. The green line in
Figure 3b indicates the mean value of these three spectra. Moreover, the signal-to-noise
ratio (SNR) was used to indicate the ratio of peak intensity to noise intensity, and the noise
intensity of each spectrum is shown in Figure 3c. The signal intensity collected at 45 degrees
was 1.42 times that collected at 90 degrees, which is almost equal to the theoretical value.
The SNR of the mean spectrum was the largest (1773) among these four spectra, and the
SNR of the spectrum at 90 degrees (1650) was larger than those at 45 degrees (1122) and
135 degrees (1517). Although the peak intensity of CO2 at 90 degrees was lower than the
others, its noise intensity was the smallest among the three spectra.
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Figure 3. (a) The Raman spectra of CO2 at different collection angles. (b) Comparison of the signal-
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Figure 3. (a) The Raman spectra of CO2 at different collection angles. (b) Comparison of the signal-to-noise ratios (SNRs) of
the four spectra; the three at the bottom are the spectra at different collection angles and the one at the top (in green) is the
mean value of these three spectra. (c) The noise intensity of the four spectra.

3.2. The Spectra with Different Concentrations

Basis on this setup, we measured mixtures of gases with different concentrations of
CO2 and O2 (shown in Figure 4). The components of the samples are shown in Table 1;
the minimum concentration of CO2 was 98.8 ppm, and the maximum concentration of
CO2 was 9.96%. The acquisition parameters of the CCD were as follows. The exposure
time was 10 s, the accumulation cycle time was 10 s and the number of accumulates was
10. The peak intensities of CO2 and O2 became stronger as the concentrations increased.
Figure 4b shows the spectra of CO2 and O2 at lower concentrations (100–2000 ppm). It is
worth noting that the Raman peak of CO2 could be recognized at a low concentration of
98.8 ppm.
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Table 1. The components of samples.

Components CO2 O2 N2

Sample 1 98.8 ppm 102.0 ppm other
Sample 2 511.0 ppm 508.2 ppm other
Sample 3 2028.7 ppm 1996.0 ppm other
Sample 4 50,134.3 ppm 0 other
Sample 5 9.96% 28.00% other

3.3. The Limit of Detection (LOD) of This System

According to the relationship between the peak intensity of CO2 and its concentrations,
the calibration curve is shown in Figure 5a. The hollow circles in that figure represent the
peak intensity of CO2 at different concentrations, and the red line is a linear fitting curve.
There is a good linear relationship between the peak intensities and the concentrations, and
a correlation coefficient R2 = 0.9999. According to the 3σ standard, the standard deviation
of the noise is 23.3, and the slope of the calibration curve is 0.93; the limit of detection
(LOD) is 3σ/S = 75 ppm.
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In addition, we created calibration curves based on the spectra collected at 45 degrees,
90 degrees and 135 degrees, respectively. These are shown in Figure 5b. In order to show the
results more clearly and reduce the impact of overlapping areas, the four sets of data were
shifted longitudinally and arranged in a picture. Comparing these four calibration curves,
improvements in the following three aspects can be observed. (1) The linear correlation
coefficient is improved, and the correlation coefficient of the calibration curve with three
angles is up to 0.9997. After averaging the three curves, the correlation coefficient was
increased to 0.9999. (2) The averaged data are closer to the point (0, 0), indicating that the
averaged result is closer to the true value. (3) The detection limit is improved. According
to the noise intensity of the three sets of spectra, the detection limits of the spectral data
with the noise intensity of the collected signals at 45 degrees, 90 degrees and 135 degrees
are 37.4, 40.7 and 37.0, respectively, and the detection limits are 116.9. ppm, 138.8 ppm
and 93.3 ppm. Compared with the results of a previous report (16 ppm) [22], the LOD
of this study was not prominent. This was mainly due to the different components of
this setup and the different acquisition parameters. Even so, this study presents a further
enhancement of the Raman scattering method on the basis of the CERS setup. The LOD
could be further decreased to 80.4% of the original value (75.0 ppm/93.3 ppm) by using an
eight-sided cell.
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3.4. The Stability of This System

In order to evaluate the stability of this system, we carried out a one-hour measurement
using channel 2. The experimental conditions were as follows: the sample was air, the
integration time was 10 s and the number of accumulations was one. The peak intensities of
N2 and O2 are shown in Figure 6. The stability of this system was equal to (Imax-Imin)/Iavg,
in which Imax, Imin and Iavg are the maximum, minimum and average values, respectively.
The measurement time could be divided into three parts. The first part was the time before
2.3 min, during which the stability of O2 and N2 were 4% and 3.3%, respectively. The
second part was the time from 2.3 min to 30 min, during which the stability of O2 and
N2 were 3.4% and 2.1%, respectively. The third part lasted from 30 min to 60 min, during
which the stability of O2 and N2 were 1.5% and 1.4%, respectively. This stability was
mainly related to the stability of the laser power (about 3%). Therefore, the final stability of
the system could reach 1.5% after half an hour of warming up. In this case, we extracted
the signals from 30 to 60 min to calculate the Allan standard deviation. Before that, the
data from 30 to 60 min were removed the background, and the results of this process are
shown in Figure 6b. Based on this, the Allan standard deviation was calculated, as shown
in Figure 6c.
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4. Conclusions

Raman spectroscopy systems have been used as gas sensors in environmental monitor-
ing, gas logging and gas detection. However, the sensitivity of commercial Raman systems
is too low, and needs to be improved for further applications. In fact, the Raman signal is
not weak, but the utilization efficiency of the Raman signal is low, and most of the signal is
wasted. Given these facts, in this study we have developed and analyzed a multi-channel
Raman system with an eight-sided cuvette. First, we simulated the relationship between
the intensity of the Raman scattering signal and the scattering direction. The simulation
results showed that the signal intensity at 30 degrees was 2.23 times that at 90 degrees, and
the signal intensity at an angle of 45 degrees was 1.47 times that at an angle of 90 degrees.
On this basis, a set of eight-sided sample cells was designed and processed. Two windows
were used as laser transmission windows, and the other six windows served as signal col-
lection windows to increase the efficiency of the signal collection. The experimental results
showed that the intensity of the Raman signals collected in the 45-degree or 135-degree
directions were about 1.4 times that of the lateral collection signal. After averaging the
signals collected in the three directions, the resultant Raman signal exhibited the highest
signal-to-noise ratio. The eight-sided sample cell can thus attain a signal intensity that is
sufficient to achieve a limit of carbon dioxide detection as low as 75 ppm.
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