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Abstract: Traditional food allergen identification mainly relies on in vivo and in vitro experiments,
which often needs a long period and high cost. The artificial intelligence (AI)-driven rapid food
allergen identification method has solved the above mentioned some drawbacks and is becoming
an efficient auxiliary tool. Aiming to overcome the limitations of lower accuracy of traditional
machine learning models in predicting the allergenicity of food proteins, this work proposed to
introduce deep learning model—transformer with self-attention mechanism, ensemble learning
models (representative as Light Gradient Boosting Machine (LightGBM) eXtreme Gradient Boosting
(XGBoost)) to solve the problem. In order to highlight the superiority of the proposed novel method,
the study also selected various commonly used machine learning models as the baseline classifiers.
The results of 5-fold cross-validation showed that the area under the receiver operating characteristic
curve (AUC) of the deep model was the highest (0.9578), which was better than the ensemble learning
and baseline algorithms. But the deep model need to be pre-trained, and the training time is the
longest. By comparing the characteristics of the transformer model and boosting models, it can be
analyzed that, each model has its own advantage, which provides novel clues and inspiration for the
rapid prediction of food allergens in the future.

Keywords: food allergens; allergenicity prediction; deep learning; ensemble learning; comparative
analysis

1. Introduction

Food allergy refers to inflammation of the human body caused by the body’s specific
immune response through ingestion, inhalation, or skin contact with specific types of
food proteins. It belongs to ones of allergic diseases. In recent years, people’s attention
to food allergy has been increasing because it will cause a series of complications [1]. For
example, the most common manifestations of extra-intestinal symptoms of food allergies
are angioedema, various skin rashes, and eczema. It can also cause rhinitis, conjunctivitis,
recurrent oral ulcers, bronchial asthma, allergic purpura, arrhythmia, headache, and dizzi-
ness, and even lead to systemic reactions of anaphylactic shock. Meanwhile, the increasing
prevalence of food allergies and the significant positive correlation between food aller-
gies and the respiratory tract are becoming one of the main problems threatening human
health [2,3]. Studies reveal that the occurrence rate of respiratory diseases in patients with
food allergies is significantly higher than that in patients without food allergies [4]. Food
allergies are mainly induced by food allergens, which are food antigen molecules that
can cause immune responses to the human body. Almost all food allergens are proteins,
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some of which are water-soluble glycoproteins, and there are certain differences in the
physicochemical properties of animal-derived and plant-derived allergens [5,6].

According to the report by the United Nations Food and Agriculture Organization,
more than 90% of the food allergens have existed in eight types of food: Fish, eggs, milk,
crustaceans, soybeans, peanuts, nuts, and wheat [7]. Although more than 180 kinds of
foods have been identified as containing allergens, there are still many food allergens that
have not been discovered. Therefore, the identification of food allergens are particularly
important. Traditional food allergen identification methods can be divided into two
categories: Serology and cytology. The serological methods judge whether a protein is an
allergen based on the binding ability of the test protein to the Immunoglobulin E (IgE)
in the positive serum. But it must be noted that a protein exhibited IgE-binding capacity
does not determined its allergenicity, which makes serological tests predictive of potential
sensitization capacity of a protein but not of its elicitation. The cytological methods
are based on the inflammatory mediators produced by the immune cells when they are
stimulated by the test protein to evaluate their sensitization. Instead, these methods are
more efficient in determining the allergenic capacity of a protein [5,6]. In addition, based on
the different locations where the detection method is performed, the allergy identification
method can also be divided into in vivo methods and in vitro methods. In vivo tests
include double-blind placebo-controlled food challenge test (DBPCFC), skin test (ST),
and animal models; in vitro tests include enzyme-linked immunosorbent assay (ELISA),
histamine release test, Western blotting, and allergen adsorption experiment. There is no
doubt that the results of the above traditional identification methods are relatively reliable.
However, they have the disadvantages of a long experimental period and high cost, leading
to difficulties in high-throughput and high-speed food allergen prediction.

At present, bioinformatics methods have been widely used in food allergen detec-
tion. The most typical one is the basic local alignment search tool (BLAST), BLAST can
discover and screen out similar sequences by comparing the tested sequences with various
nucleotide sequences and protein sequences in the National Center for Biotechnology
Information (NCBI) and other databases, which can be used to predict and analyze the
functional structure of proteins and nucleic acids. In [8], the author used BLAST to identify
potential food allergy cross-reactions and achieved the desired results. Goodman et al. [9]
employed bioinformatics tools including BLAST to identify allergens, proteins that are
very similar to allergens, and the allergic cross-reactions they may induce. It should be
emphasized that although BLAST has a higher efficiency in comparison of sequences and
is relatively convenient to conduct, there is a greater probability of false positives in the
comparison results [10]. Additionally, there are currently many online tools based on bioin-
formatics principles to predict food allergens [11], but most of them have the disadvantage
of insufficient reliability.

With the development of artificial intelligence technology, machine learning has been
gradually applied in the prediction of protein functions, and good results have been
obtained. Using a labeled protein database, researchers train neural networks to study
the primary or secondary structure of the protein, discover the in-depth relationship
between the sequence structure of physical and chemical properties of the proteins and
their functions. Then the well-trained neural network can be used to predict unknown
proteins. In the early years of research on allergenicity prediction, Soeria Atmadja et al. [12]
performed supervised learning on the extracted peptide sequence features and selected
support vector machines (SVM) with linear kernel functions for classification to obtain
relatively accurate results. In [13], classifiers, such as K-nearest neighbor (K-NN), were
adopted to predict the allergenicity of allergens. Besides, some researchers have extracted
the pseudo-amino acid composition (PseAAC) feature of the allergen and employed the
SVM classifier to predict the protein’s allergenicity [14]. In recent years, deep learning
models, such as deep neural networks (DNN), have also been used for the identification of
allergens [15], which behave better than traditional machine learning methods. Meanwhile,
online servers developed by using various machine learning algorithms are successively
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reported recently, which greatly improves the efficiency and facilitates high-throughput
prediction [16–18]. The efficiency of the prediction method based on machine learning
algorithms is much higher than in vivo and in vitro experiments. Furthermore, the accuracy
of the predictions is constantly breaking through with the improvement and optimization
of the model. DNNs have become the mainstream tool for food allergen prediction in the
future.

Bidirectional Encoder Representation from Transformers (BERT) is mainly used for
natural language processing (NLP) and currently is rarely applied for peptide or protein
function prediction [19]. We found that it can extract high-dimensional features between
peptides sequence for study, which is a novel prediction method. Convolutional Recurrent
Neural Network that (CRNN), that is used for end-to-end recognition of text sequences
of indefinite length. Instead of cutting out a single text first, it converts text recognition
into a sequence-dependent sequence learning problem. It has also been reported CRNN
plays a role in the function prediction of proteins [20]. The novel ensemble learning model
is becoming one of the mainstream methods to improve the performance of machine
learning, which has shown superior performance compared to traditional classifiers in text
classification [21], disease diagnosis [22], and other fields, and its application in the peptide
sequence classification has been rarely seen. The three methods above all provide novel
ideas to improve the accuracy and performance of machine learning algorithms into the
allergenicity prediction of food proteins.

In this paper, after obtaining the PseAAC feature of each protein sequence, which is the
efficient protein sequence feature representation methods, we originally introduced BERT,
a novel pre-training model in the field of natural language processing, into the allergenicity
prediction of food allergens. An independent attention mechanism in each layer was
adopted, so compared to traditional Recurrent Neural Networks (RNN), our network can
capture longer-distance dependencies more efficiently. Additionally, in order to make a
comparison on characteristics between the deep learning model and ensemble learning
model in this task, 2 novel ensemble learning models-LightGBM and XGBoost for 5-fold
cross-validation were employed. The results showed that for the dataset in this work, the
introduced ensemble learning models (LightGBM, XGBoost) were better than the baseline
classifiers, but did not perform as well as deep learning. However, the convenience brought
by its short training time makes it suitable for certain specific environments. The novel
self-attention mechanism of BERT with the superior performance has infinite potential in
larger-scale data training in the near future.

2. Materials and Methods

The whole method of this work is shown in Figure 1.

2.1. Construction of Datasets

The food allergen datasets adopted in this study are from Allergen Nomenclature
(http://www.allergen.org/index.php, accessed on 9 October 2020), Structural Database of
Allergenic Proteins (SDAP) (http://fermi.utmb.edu/ SDAP/, accessed on 21 October 2020),
and NCBI (https://www.ncbi.nlm.nih.gov/, accessed on 3 November 2020) three public
databases. This research has gathered 583 food allergens that were officially reported to be
allergenic and corresponding protein sequences as positive samples, and 600 food proteins
(not reported as allergens) and corresponding sequences as negative samples. The dataset
has been rigorously screened, and there is no duplication between positive and negative
samples.

http://www.allergen.org/index.php
http://fermi.utmb.edu/
https://www.ncbi.nlm.nih.gov/
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2.2. Representation of Sequences of Food Allergens

PseAAC was first proposed by Chou [23], and it is one of the classic protein sequence
feature representation methods. The type II PseAAC of a protein can be expressed as a
20 + iλ-dimensional feature vector, where the first 20 dimensions reflect the frequency
distribution of each amino acid on the protein, and i represents the number of amino acid
properties used when generating PseAAC (hydrophilicity, hydrophobicity, etc.), λ repre-
sents the sequence correlation factor. Therefore, PseAAC simultaneously contains amino
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acids’ composition and sequence information and the interaction information between
them. In this research, we considered six properties (hydrophobicity, hydrophilicity, mass,
pK1(a-CO2H), pK2(NH3) and pI (at 25 ◦C)), i was set to 6, λwas set to 5, and the weight
factorωwas set to 0.05. As a result, the fixed dimension of the PseAAC feature vector of
the input machine learning models (except for BERT, because it comes with a dictionary)
was 50 dimensions.

2.3. Artificial Intelligence Models

This section mainly introduces the artificial intelligence models adopted in this work.
Among them, the focus is on the deep model-BERT algorithm and the novel boosting
model-LightGBM, which highlights their superior mechanism.

2.3.1. Deep Learning Model

BERT is a self-supervised method for pre-training deep transformer encoders, which
can be finetuned for different downstream tasks after pre-training. BERT can be optimized
for two training objectives-mask language modeling (MLM) and next sentence prediction
(NSP), and only large unlabeled datasets are needed for its training. As a novel deep
learning model, BERT is commonly used in the field of NLP, and it is rarely applied in the
study of food allergen prediction.

The architecture of BERT is a multi-layer transformer structure. Transformer is an
encoder-decoder structure formed by stacking several encoders and decoders. The encoder
consists of Multi-Head Attention and a feedforward neural network, which is used to
convert the input protein sequence into a feature vector (Figure 2). The input of the decoder
is the output of the encoder and the predicted result, which is composed of Masked Multi-
Head Attention and a feedforward neural network. The decoder outputs the conditional
probability of the final result (Figure 2). The highlight of BERT is the use of Multi-Head
Attention, which divides a word vector into N dimensions. Since the allergen sequence
is mapped in the high-dimensional space in the form of multi-dimension vectors, the
mechanism of Multi-Head Attention enables the model to learn different characteristics of
each dimension. The information learned from adjacent spaces is similar, which is more
reasonable than mapping the entire space together.

In this study, we employed the pre-training model, protBERT (specially trained from
protein sequences) [24], which transferred a large number of operations deployed in specific
downstream NLP tasks to pre-training word vectors. After obtaining the word vector used
by BERT, a multi-layer perceptron (MLP) to the word vector was added. This experiment
separated each amino acid character with a space and cut the amino acid sequence so that
the amino acid chain formed a string with a certain length, which was used as a basic
structure input.

2.3.2. Ensemble Learning Models
Light Gradient Boosting Machine (LightGBM)

LightGBM was proposed by Microsoft in 2017. It is a novel Gradient Boosting Decision
Tree (GBDT) algorithm framework. It currently shows excellent results in economic forecast-
ing, disease diagnosis and other fields [25,26], but little information about its application in
food allergen predictions has been reported so far. In order to solve the time-consuming
problem of traditional GBDT when the training dataset is large and complicated, LightGBM
model uses two methods and further improves the accuracy of the model.
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Figure 2. Transformer structure.

One is GOSS (Gradient-based One-Side Sampling, gradient-based one-side sampling).
Instead of using the sample points to calculate the gradient, GOSS calculates the gradient
by sampling the samples. GOSS excludes most of the samples with small gradients, and
only employs the remaining samples in the calculation. Although GBDT does not have
data weights, each data instance has a different gradient. According to the calculated
definition of information gain, instances with large gradients have a greater impact on
information gain. Therefore, when downsampling, samples with large gradients should be
kept as much as possible (screened with predefined threshold or highest percentiles), and
samples with small gradients should be randomly removed. Experiments show that this
measure can obtain more accurate results than random sampling with the same sampling
rate, especially when the range of information gain is large.

The second is EFB (Exclusive Feature Bundling). Instead of using all features for
scanning to obtain the best segmentation point, some features are bundled together to
reduce the dimension of the feature. A Histogram algorithm is employed in LightGBM. The
basic idea is to discretize continuous eigenvalues into k integers, and construct a histogram
with the width of k. When traversing the data, the discretized value is used as the index
to accumulate statistics in the histogram. After traversing the data once, the histogram
accumulates the required statistics. Then according to the discrete value of the histogram,
an optimal split point can be found by traversing the data again (Figure 3). This mechanism
reduces memory usage and speeds up model training.



Foods 2021, 10, 809 7 of 15
Foods 2021, 10, x FOR PEER REVIEW 7 of 15 
 

 

 

Figure 3. Histogram algorithm flow. 

Furthermore, LightGBM adopts a Leaf-wise strategy to construct the tree models. 

Each time, the leaf with the largest split gain in all current leaves is chosen to split and the 

process is repeated. Compared with the traditional Level-wise strategy, this strategy can 

reduce more errors and get better accuracy with the same number splits. Meanwhile, the 

parameter max depth is introduced to limit the depth of the tree and avoid overfitting as 

shown in Figure 4. 

 

Figure 4. Comparison of Leaf-wise and Level-wise growth strategies. 

Extreme Gradient Boosting (XGBoost) 

XGBoost is one of the boosting algorithms. It employs the sum of the predicted value 

of each tree in the K samples (the total number of trees is K) (that is, the sum of the scores 

of the corresponding leaf nodes of each tree) as the prediction. A new function f is added 

to the prediction in each iteration to minimize the objective function. At present, as a novel 

ensemble learning algorithm, XGBoost presents great results and is widely used in disease 

detection and other fields [27], but there is no report about its application on allergenicity 

prediction of food proteins. 

Figure 3. Histogram algorithm flow.

Furthermore, LightGBM adopts a Leaf-wise strategy to construct the tree models.
Each time, the leaf with the largest split gain in all current leaves is chosen to split and the
process is repeated. Compared with the traditional Level-wise strategy, this strategy can
reduce more errors and get better accuracy with the same number splits. Meanwhile, the
parameter max depth is introduced to limit the depth of the tree and avoid overfitting as
shown in Figure 4.
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Extreme Gradient Boosting (XGBoost)

XGBoost is one of the boosting algorithms. It employs the sum of the predicted value
of each tree in the K samples (the total number of trees is K) (that is, the sum of the scores
of the corresponding leaf nodes of each tree) as the prediction. A new function f is added
to the prediction in each iteration to minimize the objective function. At present, as a novel
ensemble learning algorithm, XGBoost presents great results and is widely used in disease
detection and other fields [27], but there is no report about its application on allergenicity
prediction of food proteins.
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Random Forest (RF)

Random forest is a typical model of Bagging ensemble learning. It combines multiple
weak classifiers, and adopts voting methods to make the final decision, therefore having
higher accuracy and generalization. Random forest has been used in allergen prediction
research and is the representative of traditional ensemble learning in this field [28].

2.3.3. Previous Machine Learning Models

In order to compare the performance of the novel deep learning model and ensemble
learning proposed in this paper, we adopted the three baseline machine learning algorithms
(SVM, K-NN and Naive Bayesian (NB), which are often employed in previous similar
studies) [13,18,29]. SVM is a supervised learning algorithm that solves two or multiple
classification problems. After introducing the kernel method, it can also be used to solve
nonlinear problems. In this work, SVM with non-linear kernel was adopted. The principle
of K-NN is relatively simple. The classifier calculates the distance between the feature
values of the training data and new data, then selects K (K ≥ 1) closest neighbors for
classification or regression. NB performs well on small-scale data. It is usually applied
in multi-classification tasks because it is suitable for incremental training and has low
sensitivity.

2.4. Performance Evaluation of Models

In this study, accuracy (Acc), recall, precision (Prec), F1 score (The definition of these
indicators are shown as follows) and area under the receiver operating characteristic curve
(ROC and AUC) were selected to evaluate the performance of the model. It should be
noted that the classification threshold of the above indicators was uniformly set to 0.5.

Acc =
TN + TP

TN + TP + FN + FP
(1)

where TN is the true negative number, TP is the true positive number, FN is the false
negative number, and FP is the false negative number.

2.5. Experimental Set Up

The ensemble and baseline models calculations was deployed in Windows 10 system,
which was configured with CPU Intel Core I7-6700HQ, 3.5 GHz, 4 GB memory. Addition-
ally, the related experiment of the deep model was performed on another equipment with
better capability and the training process was powered by NVIDIA® Tesla T4 GPU, acceler-
ated by CUDA. NVIDIA T4 is a universal deep learning accelerator which is widely used
in distributed computing environments. The programming language used was Python
3.0 and Pytorch was chosen for the deep learning framework. In this study, each model
was trained separately (BERT has been pre-trained), and the GridSearchCV interface in
the scikit-learn third-party library was adopted for parameter optimization. Five-fold
cross-validation was used for verification: The training set and the test set were randomly
allocated at a ratio of 8:2 and repeated 5 times, and various evaluation indicators were
recorded during the training. In order to reflect the performance of the model in real
situations, we have calculated the mean value of each indicator 95.00% confidence interval
(CI) for each model.

3. Results
3.1. Performance of Deep Learning Models

By connecting left-to-right and right-to-left texts, a pre-processed deep two-way
expression model was designed. After parameter optimization, the key parameters
of the model were set as attention_probs_dropout_prob: 0.0, hidden_act: gelu, hid-
den_dropout_prob: 0.0, hidden_size: 1024, initializer_range: 0.02, intermediate_size: 4096,
max_position_embeddings: 40,000, num_attention_heads: 16, num_hidden_layers: 30,
type_vocab_size: 2, and vocab_size: 30. It can be found that the accuracy of the deep
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model reached 0.9310 (±0.0145), the recall was 0.9419 (±0.0163), the precision was 0.9262
(±0.0203), and the F1 score was 0.9344 (±0.0141), which showed great generalization ability.
Furthermore, the ROC curve of BERT and the corresponding AUC value are shown in
Figure 5. Its AUC reached 0.9578, showing the outstanding performance of our proposed
method.
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3.2. Performance of Ensemble Learning Models

Training and verification for the three ensemble learning models mentioned above
were conducted in the experiment, and each model has been optimized to a greater extent
after adopting the parameter adjustment methods proposed above. Table 1 shows the key
parameters of the ensemble models.

Table 1. The key parameters optimization results of the ensemble learning models. Notes: RF: Random Forest.

Model Key Parameters Names and Corresponding Values

LightGBM n_estimators = 400, learning_rate = 0.1, max_depth = 5, num_leaves = 32
XGBoost learning_rate = 0.0001, n_estimators = 1000, max_depth = 5, subsample = 0.8, seed = 27

RF n_estimators = 60, max_depth = 13, min_samples_split = 120, min_samples_leaf = 20, max_features = 7

The cross-validation results are shown in Table 2. It can be seen that LightGBM and
XGBoost performed best as novel ensemble algorithms. The average accuracy and F1 score
of the two models were 0.8686, 0.8186, and 0.8684, 0.7981 respectively. RF model performed
worse than the two. As a representative of Bagging ensemble models, the average accuracy
and F1 score were only 0.7797 and 0.7720.
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Table 2. Performance of the ensemble learning models in the task of predicting food allergens.

Model Acc Recall Prec F1

LightGBM 0.8686 ± 0.0132 0.8793 ± 0.0250 0.8571 ± 0.0388 0.8684 ± 0.0098
XGBoost 0.8186 ± 0.0248 0.7778 ± 0.0316 0.8426 ± 0.0491 0.7981 ± 0.0235

RF 0.7797 ± 0.0370 0.7586 ± 0.0449 0.7857 ± 0.0544 0.7720 ± 0.0182

In addition, the ROC curves and the corresponding AUC values of the models are
shown in Figure 6. LightGBM had the highest AUC value (0.9105), so its generalization
ability was the best. The second was XGBoost (0.8803). It can be seen from the ROC curves
and the corresponding AUC values that there were still some differences between the
XGBoost and the LightGBM. The AUC of RF was 0.8542, which was quite different from
LightGBM and XGBoost.
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3.3. Performance of Previous Machine Learning Models

As baselines for novel deep learning and ensemble learning models, the previously
widely used allergen identification machine learning models (SVM, K-NN, NB) were also
introduced in the experiment for comparison. This study extracted the pseudo-amino acid
composition characteristics of the protein sequence, then input them into the classifier
for training and optimization. The results of some parameters optimization are shown in
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Table 3. The 5-fold cross-validation results are shown in Table 4, and the ROC curve of each
model and the corresponding AUC value are shown in Figure 7.

Table 3. The key parameters optimization results of the previous machine learning models.

Model Key Parameters Names and Corresponding Values

SVM C = 1.0, kernel = ‘rbf’, gamma = 0.01
K-NN n_neighbors = 5, n_jobs = 1

NB alpha = 0.9

Table 4. Performance of previous machine learning models in the task of predicting food allergens.

Model Acc Recall Prec F1

SVM 0.7418 ± 0.0420 0.7032 ± 0.0443 0.7591 ± 0.0524 0.7303 ± 0.0389
K-NN 0.7722 ± 0.0234 0.7436 ± 0.0385 0.7838 ± 0.0410 0.7630 ± 0.0132

NB 0.7203 ± 0.0375 0.6293 ± 0.0466 0.7604 ± 0.0517 0.6891 ± 0.0221
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Compared with deep learning and ensemble learning models, the performance of
the baseline algorithms was generally more inferior. Among them, the SVM achieved an
accuracy of 0.7418 with an F1 score of 0.7303, and its AUC was 0.8457, which cannot make
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relatively accurate predictions for whether a test sequence is allergenic or not. In contrast,
K-NN performed the best accuracy, perhaps due to the architecture of the model itself.

4. Discussion

In order to break through the bottleneck of low accuracy encountered by traditional
allergen prediction methods, this work designed a deep learning model with novel self-
attention transformer structure and improved tree ensemble models to predict which was
superior to the machine learning methods employed in previous similar works for the
allergenicity of food proteins. The work provided new ideas for future food allergen
screening. As far as we know, this is the first reported work to introduce the BERT deep
model, LightGBM and XGBoost ensemble models into the food allergen prediction task. In
this section, we will compare and analyze the characteristics of the proposed models and
discuss their application scenes, which will definitely facilitate the future model selection.

In the deep learning model of BERT, the advantage of introducing self-attention is
that it can connect two long-term dependent features in the sequence. This may require
more time to accumulate and react for the recurrent neural network (RNN) structure, so
the self-attention mechanism can improve the parallelism of the network. The input of this
research is protein sequences of different lengths. Self-attention can ignore the distance
between amino acids and directly calculate their dependence relationship. It can help
learn the internal structure of protein sequences well, which is better than traditional
natural language processing algorithms and more efficient. Meanwhile, BERT model
employed in this work has been pre-trained, and a large number of operations done in
the downstream tasks of natural language processing are transferred to the pre-trained
word vector. This not only improves the efficiency of the allergen sequence recognition,
but also bestows it more powerful generalization ability. The architecture of BERT is based
on multi-layer two-way conversion and decoding, where "two-way" means that when the
model is processing a certain word (amino acid), it can use both of the previous word
(amino acid) and the following word (amino acid) at the same time, which is different
from traditional RNNs. The above advantages all highlight the great potential of BERT to
accurately predict food allergens. In this study, BERT’s AUC reached 0.9578, which was
better than all ensemble learning models, the best of which was 0.9105 and previously
reported machine learning models, the best of which was 0.8529. The high AUC value
shows its powerful predictive ability. In terms of recognition accuracy, BERT was 0.9310,
which was also obviously excellent, better than LightGBM (0.8686) and XGBoost (0.8186).
This benefits from the unique advantages of the transformer architecture, which surpasses
the boosting ensemble models in the task of food allergen prediction. However, it cannot
be ignored that pre-training requires a large amount of various types of protein sequences,
which leads to a high cost of transfer learning. It must be emphasized that the BERT model
has enormous hyperparameters and requires a long training time (the training time was
about 325 min in this study), which also puts forward strict requirements on computing
equipment.

The novel ensemble learning models also performed well in the task of food allergens
identification. For example, LightGBM is a novel GBDT algorithm framework that has
many advantages. One is GOSS, the algorithm does not adopt the sample points to
calculate the gradient, but samples the samples to calculate the gradient. The second is EFB,
which means that certain features are bundled together to reduce the dimensionality of the
features. In addition, using the Leaf-wise strategy for iteration can reduce errors as much
as possible and get better accuracy. Based on the above characteristics, LightGBM needs
a shorter training time and has better learning effect than traditional machine learning
algorithms for food allergen prediction. In this research, the average prediction accuracy
of the model was 0.8686, the F1 score was 0.8684, and the AUC reached 0.9105, which
showed that it has the ability to accurately predict the allergenicity of a test sequence under
small-scale training. Additionally, as a novel ensemble learning model, XGBoost has been
widely used in many fields. The study found that it has a relative excellent performance in
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food allergen prediction tasks through extensive experiment. As for RF, it has a relatively
large gap between its performance and the former two. Compared with the BERT deep
learning model, although the performance of the ensemble learning models was not as
good as the former, but the algorithms represented by LightGBM and XGBoost did not
require pre-training, and the training time lasted shorter (the training took about 1–2 min
in this paper). This means that they can complete the task of screening food allergens on
portable devices and obtain considerable results.

Table 5 compares the characteristics of deep model, ensemble models and the tra-
ditional models more clearly, including the prediction effect, time-consuming (5-fold
cross-validation) and corresponding computing equipment. Based on this, it can be con-
cluded that the BERT model with high training cost is more suitable for large-scale and
high-standard food allergen screening, and the boosting models proposed is more suitable
for rapid operation on simple equipment.

Table 5. Comparison of different types of models in this work.

Model Type Model Name Prediction Accuracy (%) Time-Consuming Computing Equipment

Deep Learning BERT 93.10 About 19 500 s NVIDIA® Tesla T4 GPU,
accelerated by CUDA

Ensemble Learning
LightGBM 86.86 About 100 s

CPU Intel Core I7-6700HQ,
3.5 GHz, 4 GB memory

XGBoost 81.86 About 125 s
RF 77.97 About 90 s

Previous Machine
Learning

SVM 74.18 About 75 s
K-NN 77.22 About 70 s

NB 72.03 About 60 s

In previous similar studies, AllerHunter [30] employed a self-designed coding scheme
and SVM algorithm as a classifier to predict allergens and achieved good results. The
highest AUC value reached 0.928, which was lower than the AUC (0.9578) of the BERT
deep model. Hassan et al. [14] used the PseAAC encoding method and selected the SVM
classifier to predict the allergenicity of allergen proteins with the highest AUC value,
which was lower than the novel machine learning algorithm proposed in this paper.
AllerTop [31] and AllerTop.v2 [32] received more approval for proposing convenient
online servers for allergen screening with optimal algorithm K-NN. After training and
optimization (5-fold cross-validation), the screening accuracy was 0.8530, which was lower
than the deep learning model we proposed. Furthermore, researchers have also utilized
the descriptor fingerprint method to classify allergens, achieving an identification accuracy
of 0.8800 in a large-scale dataset. Based on this, they developed an online service system
AllergenFP [17]. The deep model BERT employed in the study and the ensemble learning
models represented by LightGBM and XGBoost further improved the performance of
allergen prediction. In a relatively small dataset, it still achieved the highest AUC value of
0.9578 and the highest accuracy of 0.9310.

In addition to the prediction of allergenicity based on protein sequence characteristics
proposed in this paper, there are also other potential methods. For example, it is possible
to analyze a deduced proteome starting from a transcriptome or a genome to screen for
predicted allergenic proteins. This method analyzes the nature of allergens, and may
obtain more accurate prediction results through multi-omics data and machine learning
classification algorithms. It is worth trying in the future.

But it is undeniable that certain limitations still exist in this experiment. For example,
since we focused on the development of rapid prediction methods for the allergenicity of
food allergen, only food allergen sequences were considered in the establishment of the
dataset, and the scale was small than the overall allergen. Moreover, the negative samples
in the experiment are food proteins that have not been reported as allergens, so there is a
possibility of mixing a small amount of allergens. This may have a slight impact on model
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performance. It should be emphasized that strict allergenicity prediction studies need to be
verified by in vitro wet experiments (such as ELISA, etc.), which will be further improved
in the future.

5. Conclusions

This work proposed to adopt the pre-training BERT deep learning model and novel
ensemble learning models represented by LightGBM and XGBoost to predict the aller-
genicity of food proteins. Extensive experiments results in excellent results. They were
superior to the previous studies. In the results, the AUC value of BERT (performed best)
reached 0.9578, and the accuracy reached 0.9310. The experiments has been conducted to
compare and analyze the characteristics of the different models and provides a guidance
for the applicable scenarios. So as far as we know, this work is the first reported study of
using the above method to identify the allergenicity of food proteins, which will provide
an inspiration for food allergens prediction in the future. The online web developed with
related models will be used soon.

Author Contributions: Conceptualization, L.W. and D.N.; methodology, L.W. and X.Z.; software,
L.W.; validation, D.N. and X.W.; formal analysis, D.N.; data curation, X.W.; writing—original draft
preparation, L.W., H.C. and M.H.; writing—review and editing, L.W. and X.Z.; visualization, X.W.
and X.Z.; project administration, H.C.; funding acquisition, H.C. All authors have read and agreed to
the published version of the manuscript.

Funding: This work was funded by the National Natural Science Foundation of China (Grant No.
81773435).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The author reports no conflict of interest in this work.

References
1. NIAID-Sponsored Expert Panel. Guidelines for the Diagnosis and Management of Food Allergy in the United States: Report of

the NIAID-Sponsored Expert Panel. J. Allergy Clin. Immunol. 2012, 126, S1–S58.
2. Carrard, A.; Rizzuti, D.; Sokollik, C. Update on food allergy. J. Allergy Clin. Immunol. 2015, 70, 1511–1520. [CrossRef] [PubMed]
3. Dong, J.H.; Pan, C.; Wang, X.; Yuam, P.; Xia, K.; Han, X.F.; Liang, A.M. Research Advance in Food Allergy of Children and Dietary

Intervention Therapy. Sci. Technol. Food Ind. 2020, 41, 339–343.
4. Lee, E.; Jeong, K.; Shin, Y.S.; Nahm, D.H.; Lee, S. Causes of food allergy according to age and severity: A recent 10-year

retrospective study from a single tertiary hospital. Allergy Asthma Respir. Dis. 2020, 8, 80. [CrossRef]
5. Costa, J.; Bavaro, S.L.; Benedé, S.; Diaz-Perales, A.; Bueno-Diaz, C.; Gelencser, E.; Klueber, J.; Larré, C.; Lozano-Ojalvo, D.; Lupi,

R.; et al. Are Physicochemical Properties Shaping the Allergenic Potency of Plant Allergens? Clin. Rev. Allergy Immunol. 2020.
[CrossRef] [PubMed]

6. Costa, J.; Villa, C.; Verhoeckx, K.; Cirkovic-Velickovic, T.; Schrama, D.; Roncada, P.; Rodrigues, P.M.; Piras, C.; Martín-Pedraza,
L.; Monaci, L.; et al. Are Physicochemical Properties Shaping the Allergenic Potency of Animal Allergens? Clin. Rev. Allergy
Immunol. 2021. [CrossRef]

7. Arya, C.; Jantwal, C. A Review on Identified Major Food Allergens: Characteristics and Role in Food Allergy. Indian J. Nutr. Diet
2017, 54, 346. [CrossRef]

8. Guarneri, F.; Guarneri, C.; Benvenga, S. Identification of Potentially Cross-Reactive Peanut-Lupine Proteins by Computer-Assisted
Search for Amino Acid Sequence Homology. Int. Arch. Allergy Immunol. 2005, 138, 273–277. [CrossRef]

9. Goodman, R.E. Practical and predictive bioinformatics methods for the identification of potentially cross-reactive protein matches.
Mol. Nutr. Food Res. 2006, 50, 655–660. [CrossRef] [PubMed]

10. Lee, M.M.; Chan, M.K.; Ralf, B. Simple is beautiful: A straightforward approach to improve the delineation of true and false
positives in PSI-BLAST searches. Bioinformatics 2008, 24, 1339–1343. [CrossRef]

11. Hayes, M.; Rougé, P.; Barre, A.; Herouet-Guicheney, C.; Roggen, E.L. In silico tools for exploring potential human allergy to
proteins. Drug Discov. Today Dis. Models 2015, 17, 3–11. [CrossRef]

http://doi.org/10.1111/all.12780
http://www.ncbi.nlm.nih.gov/pubmed/26443043
http://doi.org/10.4168/aard.2020.8.2.80
http://doi.org/10.1007/s12016-020-08810-9
http://www.ncbi.nlm.nih.gov/pubmed/32876924
http://doi.org/10.1007/s12016-020-08826-1
http://doi.org/10.21048/ijnd.2017.54.3.11626
http://doi.org/10.1159/000088864
http://doi.org/10.1002/mnfr.200500277
http://www.ncbi.nlm.nih.gov/pubmed/16810734
http://doi.org/10.1093/bioinformatics/btn130
http://doi.org/10.1016/j.ddmod.2016.06.001


Foods 2021, 10, 809 15 of 15

12. Soeria-Atmadja, D.; Lundell, T.; Gustafsson, M.G.; Hammerling, U. Computational detection of allergenic proteins attains a new
level of accuracy with in silico variable-length peptide extraction and machine learning. Nucleic Acids Res. 2006, 34, 3779–3793.
[CrossRef]

13. Soeria-Atmadja, D.; Zorzet, A.; Gustafsson, M.G.; Hammerling, U. Statistical Evaluation of Local Alignment Features Predicting
Allergenicity Using Supervised Classification Algorithms. Int. Arch. Allergy Immunol. 2004, 133, 101–112. [CrossRef]

14. Mohabatkar, H.; Mohammad Beigi, M.; Abdolahi, K.; Mohsenzadeh, S. Prediction of Allergenic Proteins by Means of the Concept
of Chou’s Pseudo Amino Acid Composition and a Machine Learning Approach. Med. Chem. 2013, 9, 133–137. [CrossRef]

15. Behbahani, M.; Rabiei, P.; Mohabatkar, H. A Comparative Analysis of Allergen Proteins between Plants and Animals Using
Several Computational Tools and Chou’s PseAAC Concept. Int. Arch. Allergy Immunol. 2020, 181, 1–9. [CrossRef] [PubMed]

16. Sharma, N.; Patiyal, S.; Dhall, A.; Pande, A.; Arora, C. AlgPred 2.0: An improved method for predicting allergenic proteins and
mapping of IgE epitopes. Brief. Bioinform. 2020, bbaa294. [CrossRef]

17. Ivan, D.; Lyudmila, N.; Irini, D.; Ivan, B. AllergenFP: Allergenicity prediction by descriptor fingerprints. Bioinformatics 2014, 30,
846–851.

18. Dang, H.X.; Lawrence, C.B. Allerdictor: Fast allergen prediction using text classification techniques. Bioinformatics 2014, 30, 1120.
[CrossRef] [PubMed]

19. Vig, J.; Madani, A.; Varshney, L.R.; Xiong, C.; Rajani, N.F. BERTology Meets Biology: Interpreting Attention in Protein Language
Models. arXiv 2020, arXiv:2006.15222.

20. Long, H.; Liao, B.; Xu, X.; Yang, J. A Hybrid Deep Learning Model for Predicting Protein Hydroxylation Sites. Int. J. Mol. Sci.
2018, 19, 2817. [CrossRef] [PubMed]

21. Liang, D.; Yi, B. Two-stage three-way enhanced technique for ensemble learning in inclusive policy text classification. Info. Sci.
2020, 547, 271–288. [CrossRef]

22. Maeta, K.; Nishiyama, Y.; Fujibayashi, K.; Gunji, T.; Sasabe, N.; Iijima, K.; Naito, T. Prediction of Glucose Metabolism Disorder
Risk Using a Machine Learning Algorithm: Pilot Study. JMIR Diabetes 2018, 3, e10212. [CrossRef]

23. Chou, K.C. Prediction of protein cellular attributes using pseudo amino acid composition. Proteins 2001, 43, 246–255. [CrossRef]
24. Elnaggar, A.; Heinzinger, M.; Dallago, C.; Rihawi, G.; Wang, Y.; Jones, L.; Rost, B. ProtTrans: Towards Cracking the Language of

Life’s Code Through Self-Supervised Deep Learning and High Performance Computing. arXiv 2020, arXiv:2007.06225.
25. Sun, X.; Liu, M.; Sima, Z. A novel cryptocurrency price trend forecasting model based on LightGBM. Financ. Res. Lett. 2020, 32,

101084. [CrossRef]
26. Wang, Y.; Wang, T. Application of Improved LightGBM Model in Blood Glucose Prediction. Appl. Sci. 2020, 10, 3227. [CrossRef]
27. Pang, L.; Wang, J.; Zhao, L.; Wang, C.; Zhan, H. A Novel Protein Subcellular Localization Method with CNN-XGBoost Model for

Alzheimer’s Disease. Front. Genet. 2019, 9, 751. [CrossRef] [PubMed]
28. Westerhout, J.; Krone, T.; Snippe, A.; Babé, L.; McClain, S.; Ladics, G.S.; Houben, G.F.; Verhoeckx, K. Allergenicity prediction of

novel and modified proteins: Not a mission impossible! Development of a Random Forest allergenicity prediction model. Regul.
Toxicol. Pharmacol. 2019, 107, 104422. [CrossRef]

29. Chuan, T.J. Prediction of protein allergenicity using local description of amino acid sequence. Front. Biosci. 2008, 13, 6072–6078.
30. Cheng, M.H.; Chuan, T.J.; Tammi, M.T.; Fabio, R. AllerHunter: A SVM-Pairwise System for Assessment of Allergenicity and

Allergic Cross-Reactivity in Proteins. PLoS ONE 2009, 4, e5861.
31. Dimitrov, I.; Flower, D.R.; Doytchinova, I. AllerTOP—A server for in silico prediction of allergens. J. Mol. Modeling 2013, 14, S4.

[CrossRef] [PubMed]
32. Dimitrov, I.; Bangov, I.; Flower, D.R.; Doytchinova, I. AllerTOP v.2—A server for in silico prediction of allergens. J. Mol. Modeling

2014, 20, 2278. [CrossRef] [PubMed]

http://doi.org/10.1093/nar/gkl467
http://doi.org/10.1159/000076382
http://doi.org/10.2174/157340613804488341
http://doi.org/10.1159/000509084
http://www.ncbi.nlm.nih.gov/pubmed/32906141
http://doi.org/10.1093/bib/bbaa294
http://doi.org/10.1093/bioinformatics/btu004
http://www.ncbi.nlm.nih.gov/pubmed/24403538
http://doi.org/10.3390/ijms19092817
http://www.ncbi.nlm.nih.gov/pubmed/30231550
http://doi.org/10.1016/j.ins.2020.08.051
http://doi.org/10.2196/10212
http://doi.org/10.1002/prot.1035
http://doi.org/10.1016/j.frl.2018.12.032
http://doi.org/10.3390/app10093227
http://doi.org/10.3389/fgene.2018.00751
http://www.ncbi.nlm.nih.gov/pubmed/30713552
http://doi.org/10.1016/j.yrtph.2019.104422
http://doi.org/10.1186/1471-2105-14-S6-S4
http://www.ncbi.nlm.nih.gov/pubmed/23735058
http://doi.org/10.1007/s00894-014-2278-5
http://www.ncbi.nlm.nih.gov/pubmed/24878803

	Introduction 
	Materials and Methods 
	Construction of Datasets 
	Representation of Sequences of Food Allergens 
	Artificial Intelligence Models 
	Deep Learning Model 
	Ensemble Learning Models 
	Previous Machine Learning Models 

	Performance Evaluation of Models 
	Experimental Set Up 

	Results 
	Performance of Deep Learning Models 
	Performance of Ensemble Learning Models 
	Performance of Previous Machine Learning Models 

	Discussion 
	Conclusions 
	References

