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Abstract

Introduction: An extensive battery of neuropsychological tests is currently used

to classify individuals as healthy (HV), mild cognitively impaired (MCI), and with

Alzheimer’s disease (AD). We used machine learning models for effective cognitive

impairment classification and optimized the number of tests for expeditious and inex-

pensive implementation.

Methods: Using random forests (RF) and support vector machine, we classified cog-

nitive impairment in multi-class data sets from Rush Religious Orders Study Memory

and Aging Project, and National Alzheimer’s Coordinating Center. We applied Fisher’s

linear discrimination and assessed importance of each test iteratively for feature selec-

tion.

Results: RF has best accuracy with increased sensitivity, specificity in this first ever

multi-class classification of HV, MCI, and AD. Moreover, a subset of six to eight tests

shows equivalent classification accuracy as an entire battery of tests.

Discussions:Fully automated feature selection approach reveals six to eight tests com-

prising episodic, semantic memory, perceptual orientation, and executive functioning

can accurately classify the cognitive status, ensuringminimal subject burden.
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1 BACKGROUND

Dementia, including Alzheimer’s disease (AD), is a neurological syn-

drome which currently affects more than 40 million people globally.1

These numbers have more than doubled from 1990 to 2016.2 More

and more cases are being reported from low- and middle-income

group countries, like India and China, in recent years.3 AD represents

the primary cause of neurodegenerative dementia. AD pathology is

defined by cognitive impairment, behavioral disturbance, and func-

tional disabilities, which have a great impact on the quality of daily
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life of the patient and are a major problem for families and caregivers,

too.4,5 Advancement in prevention of dementia is warranted; however,

this is challenging as widespread early detection or screening is neces-

sary. This is achievable partially by extensive assessment at population

level via research or community studies. One of the inexpensive ways

to do this is neuropsychological assessment, which plays a crucial

role in detecting loss of cognitive functions and change in behavioral

and functional state compared to normal conditions. Neuropsycho-

logical tests can measure different cognitive domains (eg, language,

learning, and memory) and subdomains (eg, long-term memory and
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recognition memory), and often there is a large battery of tests that

needs to be undertaken by the individual.6 However, the assessment

is time-consuming and exhausts the participant, and in this diagnostic

process the judgment is also subjective. In the past, there have been

studies to demonstrate how decision rules can guide the clinical

diagnosis of AD,7 considering neuropsychological assessments, and

pathological features, such as amount of tangles and plaques.

Our aim is to assess the potential of machine learning (ML)

approaches in classifying cognitive status. We also aim to identify the

best combination of a subset of neuropsychological tests to be used

for identifying individuals as cognitively healthy (HV), mild cognitively

impaired (MCI) or affected with AD that can be implemented accu-

rately, yet expeditiously in the community. Using ML algorithms on

training and testing data sets, we classify individuals as HV, MCI, and

AD, while considering demographic data, such as patient’s age and

education level, for the entire battery as well as the subset of tests.

This approach, when implemented successfully, would enable larger

community-based studies of aging at reduced costs.

ML models are extensively used to analyze large, complex medi-

cal data sets,8 and integrative analysis of biomedical data.9 ML algo-

rithms carefully learn the relationships between input variables (eg,

test scores) and response variables (eg, clinical diagnosis), and thereby

successfully detect disease status of individuals or classify data sets

based on their characteristic features. There have been studies on opti-

mizing the combination of neuropsychological tests using ML models,

but the studies have been done only for a small data set and involve

feature reduction guided by neuropsychologists.10 In this article, we

extensively used and compared different ML approaches to identify

individuals as HV, MCI, and AD on large data sets from different study

centers, while optimizing for the combination of a subset of signifi-

cantly decisive tests from the entire neuropsychological battery.

2 METHODS

2.1 Data sets used

We used neuropsychological tests and their scores from the Rush

Religious Orders Study (ROS) and Rush Memory and Aging Project

(MAP)11,12 and the National Alzheimer’s Coordinating Center

(NACC)13 for the purpose of our study. Both of these studies have

a well-defined dictionary to link the data sheet to the type of tests

administered along with the age at visit and years of education

information of the individuals at their baseline, which we included

in our working models. Moreover, we normalized the tests scores

according to the maximum score possible in a test as available from

their dictionaries.

2.1.1 Rush Religious Orders Study (ROS) and
Rush Memory and Aging Project (MAP) study data

We used the neuropsychological test scores and demographic data

(age at visit and years of education) of the individuals from their base-

RESEARCH INCONTEXT

1. Systematic review: Machine learning is popularly used

in neuroscience, especially neuroimaging, for detecting

signs of early neurodegeneration in longitudinal studies.

Earlier, a study used feature reduction, subsequently val-

idated by neuropsychologists, to identify four cognitive

tests out of twelve as frequent best predictors in binary

classifications for three-class Clinical Dementia Rating

scores.

2. Interpretation: Our findings demonstrate that 8 tests on

a battery of 24 accurately (95%) predict the cognitive sta-

tus of an individual. These tests span episodic, semantic

memory, perceptual orientation, and executive function-

ing domains. This is the first report of a fully automated

multi-class predictionwith unanimous results frommulti-

ple neuropsychological data sets.

3. Future directions: This manuscript depicts a framework

for the precise classification of healthy, mild cognitive

impairment, and Alzheimer’s disease individuals ensuring

minimal subject burden. Future studies could potentially

implement these automated tests in research or commu-

nity screening. These tests, in conjunction with genetic

and/or biological markers, could augment the classifica-

tion towards absolute accuracy.

line visit. These individuals were diagnosed with six different types of

outcome, which are the following: (1) NCI: no cognitive impairment;

(2) MCI: mild cognitive impairment, no other condition contributing

to cognitive impairment (CI); (3) MCI+: mild cognitive impairment

and another condition contributing to CI; (4) AD: Alzheimer’s disease

dementia, no other condition contributing to CI (probable AD); (5)

AD+: Alzheimer’s disease dementia and other conditions contributing

to CI (possible AD); and (6) Other dementia: other primary cause of

dementia, no clinical evidence of AD. From these, 1 was defined as

healthy, 2 and 3 were defined asMCI, and 4 and 5 were clubbed as AD.

Ultimately this yielded our study set of 1771 individuals, out of which

1287were healthy, 428wereMCI, and 56 belonged to the AD class.

Therewere 24 cognitive tests in total, out ofwhich 19 tests could be

divided into five cognitive domains, three tests were subsets of some

of the individual 19 tests, and two other tests couldn’t be categorized

into one of the five domains. The five cognitive domains were episodic

memory, perceptual orientation, perceptual speed, semantic memory,

and working memory which had effectively seven, three, four, five and

three tests, respectively. The two other tests were Mini-Mental State

Exam (MMSE) and an auditory comprehension test. The list of the

tests along with the domains is mentioned in Table S1 in supporting

information.

The data had 1771 individuals, so we could easily implement seven-

fold cross-validation with 253 individuals in each subset of our testing
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TABLE 1 Distribution of HV,MCI, and AD across seven training
and testing data subsets for ROSMAP studies

Distribution Values Percentage

Data set HV MCI AD HV MCI AD

1 187 54 12 73.91304 21.34387 4.74308

2 181 63 9 71.5415 24.90119 3.55731

3 185 63 5 73.12253 24.90119 1.97628

4 180 61 12 71.14625 24.11067 4.74308

5 192 53 8 75.88933 20.94862 3.16206

6 179 69 5 70.75099 27.27273 1.97628

7 183 65 5 72.33202 25.6917 1.97628

Total 1287 428 56 72.67081 24.16714 3.16206

Abbreviations: AD, Alzheimer’s disease; HV, healthy; MCI, mild cognitive

impairment; ROSMAP, the Rush Religious Orders Study and Rush Memory

and Aging Project

data. The distribution of individuals in each of these subsets was ran-

dom, and the percentage of each class in the subsets can be seen in

Table 1.

2.1.2 National Alzheimer’s Coordinating Center
(NACC)

The NACC data set comprises data collected from approximately 30

test centers, after which the data are unified and harmonized to

remove the differences. Nevertheless, data collected from several dif-

ferent centers introduce heterogeneity in the overall data set, and

therefore we should exercise caution if we want to consider the over-

all data set as a single sample. So, to remove this heterogeneity, we

can individually study each test center data or a combination of data

from a few similar test centers would also work. The NACC data were

diagnosed in two different ways. First, with a NACC-derived variable

describing the cognitive status of the individual at the visit and second

a NACC-derived variable described as presumptive etiologic diagno-

sis of the cognitive disorder—AD. In the first classification, the individ-

ual can be classified as healthy, MCI, having dementia, and cognitively

impaired with no signs of MCI or dementia. From the second classifi-

cation, the individual can be healthy, AD, or cognitively impaired with

no AD. So, we classified healthy from both ways as healthy (and in fact

the individuals who were healthy were the same from both methods),

MCI were classified as those which were MCI from the first method

but cognitively impaired with no AD from the second, and AD were

those who were AD under the second classification and people having

dementia from the first classification method. After defining the path

to classify the individuals as healthy,MCI, andAD,we selected the data

from test centers that can be used for our study. To maintain a well-

proportioned presence of all the three classes, we adopted the follow-

ing criteria. We defined the threshold that healthy volunteers should

be > 45% of the total volunteers studied, the numbers of MCI individ-

uals should be greater than ones with AD, and the representation of

AD should be at least 10 individuals in each data set.With this in mind,

data from only five testing centers qualified. Hence, we had 664 indi-

viduals comprising 449healthy, 128MCI, and87AD individuals. Unlike

ROSMAP, the neuropsychological tests were not divided according to

any cognitive domains. Thirty cognitive tests (Table S2 in supporting

information) were used for our study fromNACC data.

We implemented eight-fold cross-validation with 83 individuals in

each subset of our testing data. The distribution of individuals in each

of these subsets was random, and the percentage of each class in this

subset can be seen in Table S3 in supporting information.

2.2 Machine learning (ML) approaches

Broadly, we applied two supervised ML techniques to our data. They

were random forests (RF) and support vector machine (SVM), which

are widely acknowledged and accepted classification techniques. In

our study, supervised learning is a better approach than the unsuper-

vised learning becausewe are training a subset of data from the known

classes and testing it on the remaining data along with predicting its

class and supervised learning methods are known to outperform the

unsupervisedML techniques in this regard. In addition, approaches like

principal component analysis and factor analysis don’t preserve the

individual identity of the cognitive tests, which works opposite to our

aim of finding the optimal combination of neuropsychological tests for

better prediction accuracy.

We used packages available in the R programming language, which

is a free software environment for statistical computing and graphics

supported by the R Foundation for Statistical Computing14 for execut-

ing these supervisedML techniques.

Random forests are an ensemble learning method for classification,

regression, and other tasks that operate by constructing a multitude

of decision trees at training time and outputting the class that is the

mode of the classes (classification) or mean prediction (regression) of

the individual trees.15-17 Random decision forests correct for decision

trees’ habit of overfitting to their training set.18 For our study, we used

RF for classification purposes. In the R language using randomForest

library, we had parameters, like ntree representing the number of trees

to grow in the model, and mtry, which represents number of variables

or predictors randomly sampled as candidates at each split. We tuned

these parameters by calculating accuracy in prediction (the method

used to measure accuracy is mentioned at the end of this subsection)

for different testing data subsets as specified earlier. From the exhaus-

tive combinations of ntree andmtry, which ranged from {100–1000 (in

steps of 100), 2000,5000} and {1,3,6,9,12,18} respectively, we calcu-

lated themulti-class area under the curves (AUC) or receiver operating

characteristic (ROC) curves to find the values of ntree and mtry which

could optimize the ROC values. The multiclass ROC in R calculates the

mean of the AUC for different subsets of two classes.19 It is important

to note here that while a multitude of combinations of ntree and mtry

can be tested, after a certain point this leads to diminishing returns.

We observed that combination of ntree as 800 and mtry as 18 for our

study data led to best prediction accuracy for our RF model, as can be
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seen in Figure S1 in supporting information. So, these parameterswere

selected for comparing RFwith otherML approaches.

SVM20 are supervised learning models with associated learning

algorithms that analyze data used for classification and regression

analysis. Given a set of training examples, each marked as belonging to

one or the other of two categories, an SVM training algorithm builds a

model that assigns new examples to one category or the other, making

it a non-probabilistic binary linear classifier. An SVM can also be used

as a non-linear classifier by using a different kernel. Hence, for our case

we used linear kernel, which is parameterized by a linear polynomial

and radial kernel, which is parameterized by a Gaussian function, and

compared the accuracy in prediction from these two caseswith the one

obtained from the RF technique.We used both the kernels to see if our

data set can be separated linearly or not into HV,MCI, and AD classes.

We calculated accuracy for prediction for different testing data

subsets as specified earlier to evaluate the performance of each ML

approach studied here, using function confusionmatrix available in the

“caret” package in R, which relies on the one versus all approach for

accuracymeasurements formore than two classes. The accuracy is the

proportion of the total number of predictions that were correct and

from this function we can also obtain the sensitivity (true positive rate

or the proportion of positive cases that were correctly identified) and

specificity (true negative rate or the proportion of negative cases that

were identified correctly) values of each class for different models.

2.3 Optimizing the number of neuropsychological
tests

2.3.1 Fisher’s score

Fisher’s linear discriminant analysis (LDA) or Fisher’s score (F-score) is

generalized for three classes and defined as:

F (i) =

∑3
j=1

(
xjavg,i − xavg,i

)2

∑3
j=1

(
1

nj−1

)∑nj

k=1

(
xjk,i − xjavg,i

)2

where F(i) represents the F-score of ith feature, xjavg,i, xavg,i denote the

average of ith feature of jth class and whole data respectively, nj repre-

sents the number of jth class samples, xjk,i means the training vectors of

ith feature and jth class. The larger the value of F-score, the more likely

it is that this feature is discriminative. We used this behavior of the F-

score to assign importance to the individual tests in the battery and

therefore, as a preliminary method to rank the tests. The LDA formula

is extended for three classes using the two-way classifier LDA used by

Tan et al.21 in our in-house script.

2.3.2 Ranking of tests or feature selection

After obtaining the F-score, in each training data set, these tests (or

features) were added one by one according to their F-score in the

RF. The model was built using RF where we varied ntree from {100-

1200 (in steps of 100),2000,3000,4000,5000} for three different com-

monly used values of mtry, that is, p/2, p/3, and p/1.41422 where p

represents the number of tests or features in that particular itera-

tion. The minimum mtry was one for cases in which mtry on calcula-

tion from the above-mentioned formula was less than 1. The model

was then tested on the testing data and we calculated the accuracy

of prediction. The plots for this model are provided in Figure S2 in

supporting information. This approach is reliable because we could

observe all the tests or features whose addition resulted in signifi-

cant rise in accuracy of prediction and therefore can be selected as

an important test. From the selected important tests, we added each

test iteratively according to their F-score, to find out which least com-

bination of tests finally classified better or more similar compared

to the accuracy of prediction when the whole battery of tests was

used.

3 RESULTS

3.1 Machine learning approaches

We used ML algorithms to predict and classify the cognitive status of

an individual based on their scores in a battery of neuropsychological

tests by constructing training and testing data subsets. We were

blinded to the final outcome of the cognitive status of the individual

in the testing phase. We observed that, when averaged over different

training data sets, RFmodels can classify individuals as HV,MCI, or AD

with 95% accuracy, whereas linear and radial SVM are, respectively,

86% and 88% accurate for the same (depicted in Table 2 and Figure 1).

The sensitivity of prediction for individualswithAD ismodest (Table 2).

Also, Figure 1 explicitly depicts that for the second subset of ROSMAP

data, RF correctly predicts seven out of nine AD individuals and 52 out

of 63 MCI individuals; whereas linear SVM and radial SVM correctly

predict four and five AD individuals, and 44 and 42 MCI individuals,

respectively. It is evident from Table 2 that overall for all the data sub-

sets, RF is more accurate in distinguishing the healthy class from MCI

or AD group, because it does not predict a healthy person as MCI or

AD, whereas SVM does so, although for a few data subsets linear SVM

predicts the true AD cases (sensitivity) marginally more accurately.

Moreover, RF might predict AD less in number, but it predicts AD as

either AD or MCI whereas SVM can easily predict AD affected indi-

viduals as healthy in most of the cases. With that said, another aspect

we pondered was the follow-ups of the wrongly predicted individuals,

although the current premise of this work is the baseline assessments

of the study subjects. It is interesting to note that 17 MCI individuals

predicted as healthy were diagnosed as healthy out of 28 such cases in

the subsequent follow-ups. Moreover, six out of sevenMCI individuals

predicted as AD were found to have AD in the subsequent follow-ups.

Furthermore, 9 out of 18 AD patients predicted as MCI were seen as

MCI or healthy in subsequent follow-ups. We acknowledge that these

observations could also be due to true progression of MCI to healthy

or AD over a time period of 1 year. Nonetheless, this is an important
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TABLE 2 Accuracy, sensitivity, and specificity of predictionmodels for different data sets compared over threemachine learning approaches
namely, random forests (ntree= 800, mtry= 18), linear and radial support vector machines for ROSMAP data

Random forests

HV MCI AD

Data set Accuracy Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

1 0.9605 0.9947 0.9545 0.9444 0.9648 0.5 1

2 0.9407 0.989 0.875 0.8254 0.9789 0.77778 0.9918

3 0.9407 0.9838 0.8971 0.8413 0.9737 0.6 0.9879

4 0.9328 0.9944 0.863 0.8525 0.9635 0.41667 1

5 0.9644 1 0.918 0.8868 0.985 0.625 0.9959

6 0.9407 0.9944 0.8378 0.8261 0.9837 0.6 1

7 0.9605 0.9945 0.9143 0.8923 0.984 0.6 0.996

Linear support vector machine

1 0.8656 0.9358 0.7424 0.6667 0.9246 0.6667 0.9917

2 0.8538 0.9282 0.7361 0.6984 0.9105 0.44444 0.9959

3 0.8261 0.9027 0.6618 0.6032 0.9 0.8 0.9919

4 0.8617 0.95 0.726 0.6721 0.9219 0.5 1

5 0.8972 0.9583 0.7541 0.6981 0.95 0.75 0.9959

6 0.8656 0.9721 0.6486 0.6087 0.962 0.6 0.996

7 0.8538 0.9344 0.7286 0.6462 0.9255 0.6 0.9839

Radial support vector machine

1 0.8775 0.9572 0.7576 0.7037 0.9246 0.41667 1

2 0.8696 0.9558 0.7361 0.6667 0.9368 0.55556 0.9918

3 0.8854 0.9622 0.7059 0.6825 0.9526 0.6 1

4 0.8656 0.9722 0.7123 0.6557 0.9323 0.3333 1

5 0.8854 0.9531 0.7213 0.6792 0.94 0.625 1

6 0.8775 0.9888 0.6622 0.6377 0.9674 0.2 1

7 0.8775 0.9563 0.7286 0.6923 0.9415 0.4 0.996

Abbreviations: AD,Alzheimer’s disease;HV, healthy;MCI,mild cognitive impairment; ROSMAP, theRushReligiousOrders Study andRushMemory andAging

Project

observation that in the majority of our incorrect classifications, it

aligns with the follow-up diagnosis of the individuals’ cognitive status,

thus implying that our visible inaccuracy in prediction might be, in

part, due to the uncertainty in diagnostic procedures in the baseline

visit.

We implemented the same ML approaches on NACC data set. We

observed that RF, and linear and radial SVM perform similarly with an

accuracy of about 77% (averaged over different training data-sets) for

predictingHV,MCI, andAD individuals (Table S4 in supporting informa-

tion). Despite that, we observe that RF is a bettermulti-class classifica-

tion algorithm in this case too because RF is more sensitive in predict-

ing MCI individuals and it very rarely predicts a healthy person as AD.

Although radial SVM might predict AD individuals more sensitively, it

also predicts one healthy individual as AD whereas RF doesn’t predict

any healthy individual as AD (refer to Table S5 in supporting informa-

tion for a fourth data set contingency table of NACC data). For exam-

ple, in the fourth data set, RF correctly predicts 4MCI and 10 AD indi-

viduals whereas linear SVM and radial SVM correctly predict 3 and 1

MCI individuals, and 9 and 13 AD individuals, respectively. Both linear

and radial SVM denotesMCI individuals as healthy in the classification

more times compared to RF, which is not desired in such algorithms.

Thus, radial SVM can delineate AD versus other two classes well and

perform better as a two-way classifier, but not essentially HV,MCI, AD

as three different classes (Table S5).

Multi-class classification for biomedical or other kinds of data sets is

challenging, as multi-way classifiers usually perform poorly for unbal-

anced or high-dimensional data, whereas widely used binary classi-

fiers, like logistic regression, require collapsing themulti-class problem

into a binary design to resemble one versus one classification for ease

of execution. Our method is the first report of automated multi-class

classification of cognitive status based on neuropsychological tests

using ML approaches in R language and we found that RF performs

better for multi-class classification purposes in diverse study data

sets.
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F IGURE 1 Performance comparison of three different machine learning approaches. It shows the number of actual and correctly predicted
healthy (HV), mild cognitive impairment (MCI), and Alzheimer’s disease (AD) individuals for the second data subset out of the seven data subsets
for the Rush Religious Orders Study (ROS) and RushMemory and Aging Project (MAP) data set. ML, machine learning; SVM, support vector
machine

3.2 Subset of decisive tests

3.2.1 ROSMAP data

We can see the sequence of the neuropsychological tests based on

their discriminating power according to their F-scores in Figure 2A.

Imposing a threshold of 60% of the maximum F-score for a given study

data, we found that word list recall in episodic memory domain (wlii),

MMSE (mmse30), logical memory delayed recall in episodic memory

(delay), category fluency in semanticmemory (catflu), and logical mem-

ory immediate recall in episodic memory (story) pass this cut-off (F-

scores ≥ 1.5). Therefore, these tests could plausibly be decisive in

predicting the outcome of the entire battery when administered on

an individual. Change of accuracy brought in by removing each test

iteratively was also calculated to get the holistic view of ranking the

tests for the data set, which can be seen in Figure 2B for ROSMAP

data. For this calculation, we used the RF model with ntree = 800

and mtry as 18 based on the tuning of RF approach mentioned

earlier.

Even though tests like wordlist recognition (wliii), line orientation

(lopair), and nine-items progressive matrices (pmsub) were not impor-

tant by Fisher’s score from Figure 2B, their importance was directly

reflected as their removal resulted in notably more change in accu-

racy compared to other tests. These tests were, thus, very crucial and

removing any of them would drastically decrease the accuracy of pre-

diction from 95% to 90% if either one of the tests, for example, line

orientation or progressive matrices (subset), were removed (Figure S3

in supporting information). Combining the above two approaches, we

note that the eight tests: wlii, mmse30, delay, wliii, pmsub, lopair, cat-

flu, story could accurately predict and classify the cognitive status of an

individual as HV,MCI, or AD. Out of these eight tests, four belonged to

episodic memory, namely word list recall, word list recognition, logical

memory–immediate, and delayed recall; two belonged to perceptual

orientation, namely line orientation and subset of progressive matri-

ces; one belonged to semantic memory, namely category fluency; and

onewasMMSE.

Existing feature selection methods may seem handy; however, they

work on preliminary elimination and final variable selectionwhere fea-

tures eliminated from the first step are not used for the second step

and unlike our approach as we used preliminary ranking via F-score

and then assessed the change in accuracy by removing each test iter-

atively wherewe included all the tests. This is crucial because eliminat-

ing a subset of tests based on their low importance using just a single

statistical approach may lead to loss of important variables, for exam-

ple, while implementing an existing feature selectionmethod VSURF23

on the ROSMAP data, we found that line orientation never turned out

to be important for any of the training and testing data, but we clearly

observe fromour approach that this test is significant for accurate clas-

sification of the cognitive status. Moreover, our method is designed

such that each step is properly understood while being implemented,

which also adds to why we didn’t use any existing feature selection

methods.
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F IGURE 2 Ranking of 24 neuropsychological tests from the Rush Religious Orders Study (ROS) and RushMemory and Aging Project (MAP)
study. A, Fisher’s score for three classes classification. B, Average decrease in accuracy of prediction when a single test was removed iteratively

Using the feature selectionmethodsmentioned earlier, bywhichwe

usedRFwith ntree=800 andmtry as p/2where p represents the num-

ber of tests or variables in that particular iteration, we found that aver-

age accuracy of prediction for eight cognitive tests was roughly 95%

whereas for the whole battery of tests it was 94%. This slight increase

in prediction accuracy might be due to the fact that some cognitive

tests are redundant and somemight not be a goodmeasure for amulti-

class prediction. Figure 3 depicts the actual and correctly predicted

numbers of HV, MCI, and AD individuals for three subsets of data. For

example, in the second data subset in which only eight cognitive tests

were chosen, the number of correctly predicted HV, MCI, and AD indi-

viduals were 178, 54 and 7 out of 181, 63 and 8 individuals, respec-

tively, whereas the whole battery of tests correctly predicted 177 HV,

51 MCI, and 7 AD individuals, which also highlights the slight increase

in accuracy of prediction for subset of tests.We show that the accuracy

of prediction for two other combinations of tests (six from the above

eight, nine tests comprising symbol digits modality oral test in percep-

tual speeddomain [sdmt] alongwith the aboveeight) are comparable to

that of the earlier mentioned eight tests (Table S6 in supporting infor-

mation), thus again highlighting the fact that these tests are good pre-

dictors for cognitive status of an individual and accuracy of prediction

is equivalent to the entire battery of neuropsychological tests.

3.2.2 NACC data

We find that delayed recall verbatim (CRAFTDRE), delayed recall para-

phrase (CRAFTDVR),MontrealCognitiveAssessment (MoCA), delayed
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F IGURE 3 Performance comparison of subset of eight tests to the whole battery for the Rush Religious Orders Study (ROS) and RushMemory
and Aging Project (MAP) study. It shows the number of actual and correctly predicted healthy (HV), mild cognitive impairment (MCI), and
Alzheimer’s disease (AD) individuals for three testing data subsets comparing results for eight tests versus all 24 tests using random forests
(ntree= 800 andmtry= [number of tests/two] meaning 4 and 12, respectively)

52 52 

58 58 58 58 

50 50 52 51 
54 54 

15 15 16 16 17 17 

5 2 
5 5 6 5 

16 16 

9 9 8 8 
12 11 

6 6 7 7 

0 

10 

20 

30 

40 

50 

60 

70 

4th (7 tests) 4th (all tests) 7th (7 tests) 7th (all tests) 8th (7 tests) 8th (all tests) 

N
o

. o
f 

In
d

iv
id

u
al

s 

No. of tests for 3 data subsets

Actual HV Predicted HV Actual MCI Predicted MCI Actual AD Predicted AD 

F IGURE 4 Performance comparison of subset of seven tests to the whole battery for National Alzheimer’s Coordinating Center study. It
shows the number of actual and correctly predicted healthy (HV), mild cognitive impairment (MCI), and Alzheimer’s disease (AD) individuals for
three testing data subsets (which are fourth, seventh, and eighth data sets) comparing results for 7 tests versus all 30 tests using random forests
(ntree= 800 andmtry= [number of tests/two] meaning 4 and 15, respectively). ML, machine learning; SVM, support vector machine

copy of Benson figure (UDSBENTD), vegetable naming in 60 sec-

onds (VEG), trail making test (TRAILB), immediate recall verbatim

(CRAFTVRS), and immediate recall paraphrase (CRAFTURS) have F-

score > 0.8, which is greater compared to other tests which have F-

score< 0.6. Therefore, by preliminary F-score evaluation (roughly 60%

of the maximum F-score of the given study data) we have these tests

important as depicted in Figure S4A in supporting information. Further

performing our feature selection method, we obtained seven impor-

tant tests (excluding the CRAFTVRS in the above mentioned eight

tests) which yielded average prediction accuracy of 78% compared to

77% for that of the whole battery of tests as shown in Table S7 in

supporting information. Figure 4 depicts the numbers of actual and
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correctly predictedHV,MCI, and AD individuals for three data subsets

(fourth, seventh, eighth subsets) for NACC revealing how the combina-

tion of seven tests can be slightly better in prediction compared to the

whole battery; for example, in the fourth data subset, 5 and 12 individ-

uals are correctly predicted as MCI and AD, respectively, while includ-

ing only these seven tests whereas the whole battery of tests correctly

predicted only 2 MCI and 11 AD individuals. These seven important

testswereapart of the topeight tests according to theF-score.Here, F-

score played a pivotal role instead of the change in accuracy of predic-

tion by removing one test iteratively (unlike the case of ROSMAPdata),

which was calculated here too and can be seen in Figure S4B. This is

due to the fact thatNACCdata are considerably heterogeneous as they

tried to unify different tests and data from different disease centers. In

spite of the fact that the study data are heterogeneous, which affected

the overall accuracy in prediction value, our feature selection approach

performed well in identifying the important cognitive tests. Therefore,

our method of feature selection discerns the combination of tests that

could be decisive in predicting and classifying the cognitive status of

individuals into HV, MCI, or having AD, in population study as well as

with heterogeneous data from various AD clinics.

4 DISCUSSIONS

4.1 Conclusions

We have described in this work that RF performs better for predic-

tion and classification for our multi-class cognitive data set compared

to that of SVM with linear or radial kernel. Also, we can highlight from

our findings that a combination of eight tests can classify individuals

as HV, MCI, and AD with as much accuracy as using the whole battery

of 24 neuropsychological tests in the ROSMAP data and combination

of seven tests performs as good as all the 30 neuropsychological tests

taken together for NACC. It is striking to note here that the type of

tests which are important are similar and belong to the same domains

in both study data sets. They are not exact as they are performed by

different population studies and disease testing centers. For example,

comparing both the study sets we find that MMSE in ROSMAP is sim-

ilar to MoCA in NACC; wlii, delay, and wliii are delayed recall tests in

ROSMAP like CRAFTDVR, and CRAFTDRE in NACC. Similarly, pmsub

and lopair fromROSMAPare patternmaking and line orientation tests,

respectively, which can be related to UDSBENTD and TRAILB from

NACC which are, respectively, delayed copying of Benson figure and

trail making. Also, catflu (category fluency) of ROSMAP is like VEG

(vegetable naming) of NACC, and story, which is immediate story recall

in ROSMAP is equivalent to CRAFTURS in NACC. MMSE or MoCA

are very crucial tests in distinguishing AD from non-AD individuals and

are therefore very important in any kind of cognitive study. Our work

shows that, in conjunction with the other six or seven tests from the

neuropsychological battery, they can accurately classify individuals as

HV,MCI, or AD.

In previous such studies, the importance of delayed and immediate

recall along with some other features, and subjective guidance by neu-

ropsychologists have been highlighted in predicting AD individuals.10

Here we have more rigorously shown with multiple data sets how a

subset of eight neuropsychological tests could be decidedly used for

predicting individuals as HV, MCI, and AD, in a fully automated ML

model.

4.2 Future actions and description

As a generalizable application, we would encourage researchers to

adopt our feature selection approach for testing and implementation

in other feature selection and classification studies. This is because our

method involves a ranking approach combinedwith brute-force exami-

nation of the variables involved in the study datawhich isworth testing

in other types of data sets in addition to neuropsychological batteries.

Coming back to the field of AD research, it would be useful to test

our model on other AD study data sets or population studies aimed

at understanding cognitive decline. These results are promising, and

we look forward to its large-scale implementation in communities.

The National Institute on Aging–Alzheimer’s Association (NIA-AA)

framework treats cognitive impairment as a symptom/sign of AD

rather than the definition of the disease,24 but it is still the most

prominent, effective, inexpensive, and preliminary way to diagnose

cognitive impairment as a part of AD. However, more often than not,

the neuropsychological batteries are time-consuming and exhausting

for the study subjects. Implementation of our results will be beneficial

in reducing time taken to administer the tests while ensuring minimal

exhaustion and burden for the study individuals in addition to pro-

viding cost-effective measures for conducting large-scale research

studies tailored to classify individuals as HV, MCI, or AD. Every cohort

can begin with the whole battery of tests, and subsequently, this fea-

ture selection model can be implemented which will identify a subset

of neuropsychological tests for that particular study group and hence

facilitate expeditious and accurate classification of cognitive status

in research and community studies. We would also like to propose

an extended application of our results for neuropsychological tests

when they could be combined with AD pathology biomarkers in the

above-mentioned ML models and subsequently tested for accuracy of

prediction of cognitive status. This could help maximize the accuracy

of prediction and classification and obtain the best predictors for the

population.
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