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Prostate cancer (PCa) is one of themost commonmalignancies found inmales.The development of PCa involves several mutations
in prostate epithelial cells, usually linked to developmental changes, such as enhanced resistance to apoptotic death, constitutive
proliferation, and, in some cases, to differentiation into an androgen deprivation-resistant phenotype, leading to the appearance
of castration-resistant PCa (CRPCa), which leads to a poor prognosis in patients. In this review, we summarize recent findings
concerning the main deregulations into signaling pathways that will lead to the development of PCa and/or CRPCa. Key mutations
in some pathway molecules are often linked to a higher prevalence of PCa, by directly affecting the respective cascade and, in
some cases, by deregulating a cross-talk node or junction along the pathways. We also discuss the possible environmental and
nonenvironmental inducers for these mutations, as well as the potential therapeutic strategies targeting these signaling pathways.
A better understanding of how some risk factors induce deregulation of these signaling pathways, as well as how these deregulated
pathways affect the development of PCa and CRPCa, will further help in the development of new treatments and prevention
strategies for this disease.

1. Introduction

The long-term ineffectiveness of current treatments for
prostate cancer (PCa) has spurred an increasing interest
in understanding the molecular mechanisms that underlie
PCa tumorigenesis [1]. Currently, PCa is considered the
most common nonmelanoma neoplasia among men [2–4].
According to the current trends in population growth, the
incidence of PCawill exceed 1.7million new cases by 2030 [5].
In the United States, nearly 2.8 million men are potentially

living with this condition, and approximately 240,000
new cases were diagnosed in 2012 [3]. PCa predominately
affects elderly men with higher incidence [6], and it is more
prevalent in Western countries [7], where the average life
expectation is over 75 years old. In developing countries like
Brazil, PCa has recently surpassed the population incidence
of breast cancer, and it has become the most common tumor
malignancy, with approximately 50,000 new cases occurring
per year [4, 5]. Yet, there is a considerable heterogeneity in
the mortality rates and incidence among different countries,
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probably due to the variable penetrance of some risk
factors such as age, race, genetics (family history), diet
and environmental factors [8], and also behavioral factors,
like frequent consumption of dairy products and meat [9],
smoking, and sexual behavior [10].

Several agents such as diet, life habits, and exposure
to chemical agents have been correlated with risk of PCa
development [8]. For instance, a broad study performed
by a PCa prevention trial group (Seattle, USA) has found
high correlations between the intake of polyunsaturated fat
and the development of aggressive PCa [11]. Corroborating
this study, a strong correlation has been found (over 50%)
between obesity and aggressive PCa development in both
African and Caucasian men [12]. In Brazil, for instance, PCa
is more frequently related to higher socioeconomic classes
[13]. The increase in animal fat consumption and reduction
in fiber consumption, along with sedentarism, have been
suggested to be related to higher risks of PCa progression,
along other types for cancers [14]. Thus, fat consumption
appears to be a major risk factor for PCa. The association
between pesticide exposure and hormone-related cancers,
such as PCa, has been extensively debated since the late
1990s [15]. On the other hand, several studies have inversely
correlated mild exposure to sunlight to higher mortality or
PCa incidence [16]. However, the exact factors responsible
for a potential induction of PCa are still not fully understood.

The development of prostatic tumor in men is generally
slow, taking up to 4 to 10 years to develop a 0.4 inch-size
tumor [17]. PCa begins when the semen-secreting prostate
gland cells mutate into tumor cells, proliferating at higher
mitotic levels. Initially, the prostate cells begin to proliferate
leading to tumor formation in the peripheral zone of the
prostate gland. Over time these cancer cells eventually mul-
tiply to further invade nearby organs, such as the seminal
vesicles, rectum, bladder and urethra [18]. During the initial
metastatic stages, malignant cells from the primary tumor
detach from their original site and migrate through blood
and lymphatic vessels [19]. In the later stages, cancer cells
eventually spread to more distal organs, including bones,
liver, and lung [18].

PCa treatment has been conducted primarily by surgery
and/or radiotherapy due to the intimate organ localization [4,
20]. A prostatectomy usually leads to an excellent prognosis
with low risk of death from PCa after surgery [21]. However,
deregulated production and secretion of growth factors by
stromal cells within the PCa microenvironment, as well
as mutations in androgen signaling pathway components
and further physiological modifications, including angio-
genesis, local migration, invasion, intravasation, circulation,
and extravasation of the tumor, potentially lead to systemic
recurrence of the cancer, including the appearance of focal
tumor in advanced stage [22–26]. In this case, the preferred
treatment is based on androgen-deprivation therapy (ADT),
mostly including a luteinizing-hormone-releasing hormone
(LHRH) [20]. In advanced PCa, ADT still remains the
most effective therapy in initial stages, despite its temporary
effectiveness (in general, between 18 and 24 months) [20, 27].

In order to study PCa, a variety of cell lines mimicking
androgen-dependent and androgen-independent carcino-
genic formations have been extensively used [28]. These cell
lines have enabled researchers to directly test a series of
antitumor drug candidates, such as tumor apoptosis inducers
[29] or enhancers of antitumor immune response [30], as well
as to evaluate the genomic foundations of PCa [31] and to
further decipher the biological characteristics within cancer
development [32, 33]. Alongside the in vitro studies, several
animal models have been developed in order to confirm in
vitro results by using a more clinically relevant approach
[34, 35]. Mouse models for PCa can be obtained by systemic
induction of gene mutations [36], xenografts [37], or by
doxycycline-based inducible systems to overexpress certain
target genes like in the case of AKT, which in turn induces
tumorigenesis [38].

Many genetic alterations may be accountable for PCa
induction, whereas mutations in genes responsible for the
expression of proteins that participate in a variety of cell
signaling processes can affect the decision of cell death or
survival [39]. In this review, we will discuss the role of major
cellular signaling pathways in the progression of PCa and
some potential strategies to prevent this malignant outcome.

2. The Androgen Receptor Signaling
Pathway in Prostate Cancer

2.1. Pathway Description. The androgen receptor (AR)
signaling pathway promotes the differentiation of epithelial
cells into male urogenital structures and encodes proteins
that are necessary for the normal function of the prostate and
for the initiation and maintenance of spermatogenesis [20,
40]. AR is a nuclear receptor that acts as a transcription factor
[20], which is formed by four distinct functional domains like
many other steroid-hormone receptors (Figure 1). The first
region is composed of an N-terminal domain (NTD) that
is constitutively active and has a transcriptional activation
function (AF-1), executed by two transcriptional activation
units (TAU-1 and TAU-2). The second region is a highly
conserved DNA-binding domain (DBD), responsible for
DNA binding specificity and for facilitating the dimerization
and stabilization of the AR-DNA complex [20, 27]. The
COOH-terminal ligand-binding domain (LBD) is another
receptor site that is moderately conserved and equally
important tomediate the binding to steroid hormones, which
is the primary feature of the AR signaling pathway [20]. This
site is also responsible for the direct binding between AR and
the chaperone complex (Hsp90), which keeps the receptor
in an inactive state but in a spatial conformation that allows
affinity for androgens [41]. Upon binding to androgens, Hsp
dissociates and releases AR from this complex, which further
dimerizes and then translocates to the nucleus [27]. A fourth
AR region contains the hinge region, a short amino-acid
sequence that separates LBD from DBD and possesses
a nuclear localization signal (NLS). This region is also
important for the AR translocation to the nucleus through
the interaction with the cytoskeletal protein Filamin-A
(FlnA) [20], whose cytoplasmic localization is correlated
with metastatic and hormone-refractory phenotype [20, 42].
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Figure 1: Androgen receptor (AR) signaling in prostate cancer. (a) Schematic representation of the AR gene, highlighting some major AR
mutations and their exon localization. (b) Schematic representation of AR protein structure with indication of its functional domains. (c)
AR-mediated signaling pathway. The androgen-receptor (AR) signaling pathway begins with the translocation of the testosterone to the
cytoplasm, where it can be converted to dihydrotestosterone (DHT) and then promote the receptor dimerization and its further migration to
the nucleus. A variety of signals, including PTEN-dependent downregulation, can also merge to AR stabilization and further activation (as
indicated).
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2.2. PathwayDisruptionsAssociatedwith PCa andTherapeutic
Targets. One of the major causes of CRPCa is AR overex-
pression, which can be related to gene amplification or tran-
scriptional and/or translational upregulation and decreased
degradation. AR gene amplification is observed in approx-
imately 80% of the CRPCa cases, being the most common
genetic alteration in this type of cancer [43]. However, gene
amplification can only partially explain AR overexpression,
and other mechanisms that promote this enhancement have
been investigated [27]. AR regulates many genes through the
binding of the AR-ligand complex to the DNA, specifically
to androgen receptor binding sites (ARBSs) or androgen-
responsive elements (AREs). These binding sites might be
close to the target genes or acting as distal enhancers. During
PCa progression, many androgen-regulated genes including
UBE2C, CND1, p21, and p27 are up-regulated [43, 44]. In
most of CRPCa conditions, where AR overexpression is
found, prostate cells show more sensitivity to lower concen-
trations of the ligand [45].

AR mutations are rare in the initial phases of PCa, but
they are very common inCRPCa [43].Thesemutationsmight
broaden AR specificity towards nonandrogenic molecules, or
they can bypass the necessity of a ligand for proper transcrip-
tional activity [27]. A considerable number of AR mutations
have been characterized, showing that the promiscuous
behavior of the receptor culminates in activation by adrenal
androgens and other steroids hormones, including dehy-
droepiandrosterone (DHEA), progesterone, estrogens, and
cortisol [27].This phenomenon allows the prostatic epithelial
cells to grow in an androgen-refractory way [40, 43, 46]. For
this, there are three particular AR regions where mutations
appear to give specific properties (Figure 1). The first region
is between residues 701 and 730, and it enables resistance
to adrenal androgens, glucorticoids and progesterone [27,
43], and mutations like L701H, V715M, and V730M are
responsible for affecting these properties [27, 43]. In the
second region, between residues 874–910, a T877A mutation
has been described as the most frequent in CRPCa [43]. This
alteration appears to affect theAR ligand specificity by chang-
ing the stereochemistry of the binding pocket, which expands
the spectrum of ligands able to bind AR. This allows other
hormones like DHEA, estrogen, progesterone, cortisone,
and cortisol to activate AR [27, 40, 43]. Another mutation
(H874Y) is also responsible for enhancing the transcription
sensitivity of AR towards steroids like adrenal androgens or
antiandrogens [43].The third mutational site occurs between
residues 670–678, located at the boundary of the hinge and
LBD regions, that enhances the transactivation activity of AR
in response to dihydrotestosterone (DHT). Other mutations
in the amino terminus also occur but at a low frequency [27].

Transcription factors play a key role in AR expression and
act positively or negatively in gene regulation. For instance,
cAMP response element-binding proteins (CREB) have been
reported to significantly increase during PCa progression,
which ultimately enhancesAR transcriptional levels [46].The
proto-oncogene Myc is well known to be involved in cancer
formation [46] and it also participates in AR transcription,
acting as a predictor of biochemical recurrence after radical
prostatectomy (RP) [46, 47]. The member of the activator

protein-1 (AP-1) c-Jun is known to suppress AR expression,
but it also acts as a coactivator of this receptor [46, 47].
Another transcription factor that positively regulates AR
transcription is FOXO3a, which binds to the Foxo-response
element in theAR promoter region.The Lymphoid enhancer-
binding factor 1 (LEF1) is a nuclear transducer that indicates
a link between Wnt signaling and PCa, as Wnt1 leads to
activation of LEF1 and it increases AR transcription [46].
Other transcription factors, like NF-𝜅B and Twist-1, have a
positive correlation with AR expression, suggesting a key role
in the progression and in the CRPCa state [46].

Anothermechanism to bypass the requirement of ligands
for AR activity is the presence of splice variants of AR tran-
scripts. Alternative splicing events occur in approximately
90% of human genes and such events are evident in PCa
[27, 43] where, in fact, it is an important mechanism of PCa
resistance to AR-targeted therapy and further progression
to CRPCa. Recent studies have identified several AR splice
variants, and, despite having slightly different structures, a
common characteristic is the absence of the LBD and the AF-
2 domain in these isoforms [41]. The absence of LBD leads
to loss of repression activity of this domain in the receptor,
and potential hormone-independent AR activity [41]. It has
been suggested that some AR variants may have an exclusive
cytoplasmic function, although it has been demonstrated
that truncated AR variants still show a nuclear localization
that is enough to support transcriptional activity [41]. It has
also been demonstrated that these AR variants can access
the nucleus independently of the Hsp90 chaperone complex
[41]. The clinical relevance of these variants is currently
under investigation, and, due to the frequent identification
of these splice variants in PCa metastases and CRPCa [27],
these molecules could be envisioned as potential therapeutic
targets.

Alterations ofAR transcriptional activation induce dereg-
ulated proliferation and survival of prostate cells. For
instance, it has been reported that androgens enhance the
transcription of SENP1, amember of SUMO-specific protease
family, showing that the regulation of AR signaling through
this protease is based on a positive feedbackmechanism [48].
Similarly, the regulation of the cell cycle regulator cyclin D1
by SENP1 contributes to cancer progression [49]. Therefore,
SENP1 has emerged as an important prognostic marker and
also a therapeutic target [38, 49]. Moreover, considering that
the AR receptor is a phosphoprotein, changes to its phospho-
rylation profile would clearly have an impact on its function
[20, 27, 40].The use of pharmacological agents that modulate
the AR posttranslational portfolio could be considered as an
alternative approach for further interventions.

3. The NF-𝜅B Pathway in Prostate Cancer

3.1. PathwayDescription. Thenuclear factor kappaB (NF-𝜅B)
signaling pathway is involved in a variety of physiopatholog-
ical conditions, including inflammation, autoimmune disor-
ders, and cancer. In humans, theNF-𝜅B family is composed of
fivemembers: p65 (RelA), p100/p52, p105/p50, c-Rel andRelB
(Figure 2(a)). NF-𝜅B proteins form homo- or heterodimeric
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Figure 2: The NF-𝜅B signaling and prostate cancer. (a) Domain structure of NF-𝜅B family members and its direct modulators I𝜅B and IKK.
The last two NF-𝜅B members p50 and p52 are derived from the C-terminal processing of p105 and p100, respectively. All NF-𝜅B family
members contain an N-terminal Rel-homology domain (RHD) that governs the DNA binding, protein dimerization, and interaction to I𝜅B.
The Rel subfamily, RelA, RelB, and c-Rel, also contain a C-terminal transcriptional activation domain (TAD) and the subunit RelB has an
additional leucine zipper (LZ) domain at the N-terminus. The I𝜅B family mainly consists of I𝜅B𝛼, I𝜅B𝛽, I𝜅B𝛾, I𝜅B𝜀, and BCL-3 proteins
(p100 also operates as an I𝜅B-like protein in the non-canonical pathway). The I𝜅B proteins contain ankyrin-repeat motifs (ANK) in their
C-terminal region that interact with the RHD of NF-𝜅B proteins and then prevent their nuclear translocation and DNA binding. The I𝜅B
kinase (IKK) complex is primarily composed of the two catalytic subunits IKK1 (or IKK𝛼) and IKK2 (or IKK𝛽) and the scaffolding protein
NEMO (or IKK𝛾). IKK1 and IKK2 are structurally related and both contain an LZ domain and a helix-loop-helix region (HLH), with a C-
terminal portion containing a NEMO binding domain (NBD). NEMO has an alpha helical region along with two coiled-coil (CC) regions
and a putative zinc finger (ZF) domain. (b) The TNF-dependent NF-𝜅B signaling pathway. The canonical pathway in normal cells is used as
an example for the signaling through TNF receptor.The activated IKK complex phosphorylates I𝜅B that is then degraded by the proteasome.
Upon degradation of I𝜅B, the subunits of NF-𝜅B are released and the complex is free to migrate to the nucleus.The canonical NF-𝜅B pathway
in prostate tumor cells is often constitutively activated, potentially due to increased levels of specific receptors like TNF receptors (TNFRs),
which dramatically increase I𝜅B degradation and the translocation of NF-𝜅B dimers to the nucleus to activate 𝜅B-responsive genes involved
in the development and progression of the tumor. Additionally, undetermined tyrosine kinase subpathways lead to NIK activation, which
induces constitutive IKK activity and then constitutive NF-𝜅B activation in androgen receptor-negative prostate cancer cell lines.

structures that, after activation, function as transcriptional
factors through binding to 𝜅B enhancer sites along the DNA.
The canonical NF-𝜅B pathway involves the phosphorylation
of the inhibitory I𝜅B proteins by the I𝜅B kinase complex
(IKK) (composed of the catalytic subunits IKK𝛼 and IKK𝛽,
and the regulatory scaffolding protein NEMO), which results
in the ubiquitination and further degradation of I𝜅B by the
proteasome, thus releasing theNF-𝜅Bdimers to translocate to
the nucleus and activate 𝜅B-responsive target genes. In con-
trast, a non-canonical NF-𝜅B pathway is detected in a more
cell-specific fashion (including lymphoid tissue and immune-
related cells), and it involves an IKK𝛼-dependent p100 pro-
cessing instead of the typical I𝜅B degradation. The non-
canonical pathway is activated by specific stimuli that include

Lymphotoxin-𝛽 (LT𝛽) and B cell-activating factor (BAFF),
whereas the canonical pathway is activated by a broader
spectrum of stimuli, such as tumor necrosis factor 𝛼 (TNF-𝛼)
and interleukin 1 (IL-1) and is often related to tumorigenesis,
including leukemias, lymphomas, and some solid tumors
[50–54]. SomeNF-𝜅B target genes have important antiprolif-
erative and apoptotic roles and may contribute to the devel-
opment, progression, and resistance of certain tumor cells.

3.2. Pathway Disruptions Associated with PCa and Thera-
peutic Targets. Molecular strategies that target NF-𝜅B have
been shown to suppress prostate cancer, in terms of both
prevention and further therapy [55–58]. For instance, the
effect of specific IKK inhibitors in the growth and survival
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of androgen-dependent and independent PCa cell lines has
been determined. The results indicate that, regardless of
the AR status and androgen dependency, cell growth is
remarkably affected [59]. Thus, the identification of NF-𝜅B
responsive genes linked to PCa progression represents a crit-
ical step toward a better understanding and treatment of this
disease. Some genetic alterations have been identified by the
differential mRNA expression between tumor tissues versus
normal tissues. For example, during androgen-independent
tumorigenesis in the prostate, NF-𝜅B expression is elevated
at both mRNA and protein level [60]. These studies indicate
that the NF-𝜅B pathway can be constitutively activated in
PCa, since an increased expression of interleukin 6 (IL-6) in
androgen-independent PCa cell lines (PC-3 and DU145) was
consistently observed. This deregulation of IL-6 expression
in prostate cancer cells is in fact mostly mediated by the
constitutive NF-𝜅B activation [61], and this activation occurs
through signal transduction involving the upstream effectors
NF-𝜅B inducing kinase (NIK) and IKK. Therefore, NF-𝜅B
also targets a transcription regulatory element of the prostate-
specific antigen PSA, which is an important marker for
development and progression of PCa [62, 63].

The proinflammatory cytokine TNF-𝛼, a prototypical
NF-𝜅B inducer and also a downstream target gene, is highly
expressed in PCa, and the TNF receptors TNFR1 and TNFR2
are also expressed at higher levels in the tumor epithelium
when compared to normal prostate epithelium (Figure 2(b))
[64]. The levels of TNF-𝛼 in the serum are associated with
the pathological data and the prognosis of PCa patients [65].
High expression of TNF-𝛼 has been correlated with increased
survival and proliferation of PCa cells, angiogenesis, metas-
tasis, and changes in the response to chemotherapeutic
agents [66]. Experiments using PC-3 and DU145 cell lines
treated with psoralidin (TNF-𝛼 inhibitor) indicate that this
cytokine could be one potential therapeutic target. TNF-𝛼
inhibition by psoralidin inhibits NF-𝜅B via p65 and other
upstream molecules, including the survival protein families
IAPs (inhibitor of apoptosis proteins) [67]. The IAP proteins
inhibit two major pathways that normally initiate the acti-
vation of the cysteine protease caspases, the mitochondrial
(intrinsic) and the death receptor (extrinsic) pathways. The
combined inhibition of IAPs and TNF-𝛼 could be attractive
for PCa therapy, since IAPs modulate apoptotic events and
TNF-𝛼 affects cell survival and proliferation via NF-𝜅B [68].

Recent clinical data and in vitro studies have suggested
that NF-𝜅B directly interferes with AR signaling. NF-𝜅B is
associated with increased AR expression and higher binding
activity in androgen-independent xenografts [69]. In fact,
AR has been described as a NF-𝜅B target gene, whereas
p65/RelA activity causes an increase of AR at both mRNA
and protein levels [70].Moreover, endogenous AR expression
can be induced by p65 in human prostate cancer cells,
and this induction is associated with increased expression
of downstream AR targets and enhanced growth and/or
survival of prostate cancer cells [70]. Complex formation
including the non-canonical p52 and AR has also been
described, where it causes an increase in nuclear localization
and binding of AR to DNA even in the absence of its ligand.
This ligand-independent AR activation has similarities to the

non-canonical NF-𝜅B signaling, since both pathways depend
on IKK1 activity to phosphorylate the p100 precursor and
by STAT3 phosphorylation [71]. NF-𝜅B and STAT3 share a
subset of target genes during tumorigenesis, including PAI-
1, Bcl-3, Bcl-2, and GADD45𝛽. For this, the cooperation
between STAT3 andNF-𝜅B pathways is required [72], in such
a way that NF-𝜅B members physically interact with STAT3.
This interaction can result in a synergy of specific gene
transcription or repression regulated by NF-𝜅B/STAT3. It has
been suggested that nonphosphorylated STAT3 can bind to
the NF-𝜅B complex, thus facilitating its activation indepen-
dently of IKK activity, supporting the idea that STAT3 may
prolong the presence of active NF-𝜅B dimers in the nucleus.
Thus, STAT3 may represent an important mechanism that
ensures continuous NF-𝜅B activation in cancer cells [72].

The regulation of NF-𝜅B by the tumor suppressor gene
p53 has also been observed in many types of hematopoietic
and solid tumors [73]. The interaction between p53 and NF-
𝜅B reveals that, despite its role as a tumor suppressor, NF-
𝜅B becomes activated after reactivation of p53 even when the
p53-induced apoptosis requires the participation of NF-𝜅B.
Thus, activation of NF-𝜅B in apoptosis is additionally related
to a hyperactivation of p53 [73]. Because NF-𝜅B and p53 can
be eventually activated by the same stimuli, the balance of
their activities is crucial for cell fate decision. An important
mechanism of communication between these two pathways
is the binding competition for CBP and p300, which are
necessary for the selective activation of these factors [74].

4. The PI3K/AKT Pathway in Prostate Cancer

4.1. Pathway Description. The Phosphoinositide 3-kinase/
AKT (PI3K/AKT) pathway is a key signal transduction
pathway that links multiple classes of membrane receptors
to many essential cellular functions, such as cell survival,
proliferation, and differentiation [75–77]. PI3K molecules
are divided into three major classes: class I (IA and IB)
molecules, which have one catalytic and one regulatory
subunit and can bind to receptor tyrosine kinases, G-protein
coupled receptors and oncogenic proteins, such as small G
protein RAS, to transduce their signals, and class II and
III molecules which have a single catalytic subunit and can
bind to several receptors, such as RTKs or cytokine receptors
(class III molecules have been shown as important mediators
of signaling through the mammalian target of rapamycin,
mTOR). After activation of PI3K, these molecules can induce
recruitment and activation of the serine/threonine-specific
protein kinase AKT (also called protein kinase B, PKB)
through phosphorylation-induced activation of transmem-
brane phosphatidylinositol (4,5) bisphosphate (PIP2) into
phosphatidylinositol (3,4,5) trisphosphate (PIP3). PIP3 can
recruit AKT through its pleckstrin homology domain [78,
79], a conserved protein module identified in many proteins
involved in cell signaling or as cytoskeleton constituents.
Activated AKT can subsequently phosphorylate and activate
several other proteins, such as mTOR, glycogen synthase
kinase 3, and FOXO members (the forkhead box family of
transcription factors). Ultimately, AKT’s action induces and
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regulates a large array of cellular processes [80, 81]. Con-
sidering that PI3K/AKT signaling is related to cell survival
and proliferation, it is reasonable to link PI3K/AKT to cancer
development.

4.2. PathwayDisruptionsAssociatedwith PCa andTherapeutic
Targets. PI3K/AKT pathway is deregulated in the majority
of solid tumors [82]. In PCa, it has been estimated that
PI3K/AKT/mTOR signaling is up-regulated in 30%–50% of
the cases, often due to the loss of PTEN function [83, 84],
which leads toAKThyperactivation. PTEN (phosphatase and
tensin homolog) is responsible for the dephosphorylation of
PIP3 to PIP2 and, in this way, negatively controls the activity
of PI3K/AKT signaling. Interestingly, it is not clear whether
or howdirectmutations inAKT can lead to PCa [85]. PTEN is
haploinsufficient in PCa, and its genetic dose is linked to PCa
progression, in which total loss of function can be correlated
withmore advanced PCa, as seen in artificially createdmouse
models [86]. Complete PTEN inactivation in the prostate
leads to a noninvasive PCa phenotype in mouse models,
suggesting that other mutations might drive the appearance
of more invasive tumors [87]. In fact, mutations in p53 or in
the cyclin-dependent kinase inhibitor p27KIP1, when com-
bined with loss of PTEN, have been linked tomore aggressive
PCa in vivo [87, 88]. Besides PTEN gene deletion, other
mechanisms seem to contribute to loss of PTEN function. For
instance, the action of microRNAs (miRNAs)—small, single-
stranded RNA sequences which function as posttranscrip-
tional regulators of gene expression—on PTEN inactivation
has been recently described, with the characterization ofmiR-
22 and miR-106b∼25 as PTEN-targeting miRNAs aberrantly
expressed in PCa [89]. It is also known that nuclear exclusion
of PTEN is important for the development of tumors, includ-
ing PCa [90]. In fact, it has been described that nuclear PTEN
interacts with the anaphase-promoting complex (APC/C)
and induces its association with CDH1 (APC/C activator
protein), thereby enhancing the suppressive capacity of the
APC-CDH1 complex to advance cell division [91], thus
indicating a role for nuclear PTEN in PCa suppression.

TheAKThyperactivation induces high proliferative levels
and resistance to apoptosis, an example of which is TRAIL
resistance. TRAIL is a member of the tumor necrosis factor
superfamily that specifically promotes apoptosis in cancer
cells [92]. Indeed, treatment of PCa cells with the PI3K
inhibitor LY294002 induces sensitization of these cells to
TRAIL-induced apoptosis [93]. The excessive PI3K/AKT
activation observed in PCa cells is accompanied by the pres-
ence of certain PI3K subunits that are not usually expressed
in non-hematopoietic cells, such as p110𝛿. Augmented p110𝛿
expression is correlated with inhibition of PTEN activity
and further AKT activation [94]. Besides p110𝛿, transgenic
mice with constitutive expression of p110𝛽 indicate that this
molecule can be also linked to neoplasia formation [95].

PI3K/AKT pathway seems to act in conjunction with
other proteins implicated in PCa cell growth. For example,
AKT interacts with MST1, a hippo-like serine-threonine
kinase [96]. Mst1 plays a critical role in the regulation of
programmed cell death and it has been implicated in PCa

development [96]. Interestingly, MST1 has been detected in
AR-chromatin complexes, and forced expression of MST1
reduces AR binding to androgen-responsive elements along
the PSApromoter [97].MST1 also suppresses PCa cell growth
in vitro and tumor growth in vivo [97]. AKT is able to phos-
phorylate a highly conserved residue Thr120 of MST1, which
leads to inhibition of its kinase activity and nuclear translo-
cation, as well as the autophosphorylation of Thr183 [98],
having a positive role in PCa progression. Another example
relates to a non-membrane tyrosine kinase called Acetate
Kinase (Ack1) that is recruited by the upstream receptors and
activates AKT through Tyr-176 phosphorylation, favoring
the development of PCa [99]. Also, the polycomb group
silencing protein Bmi1 can be phosphorylated by AKT, which
enhances its oncogenic potential in PCa. Overexpression of
Bmi1 can act in combinationwith PTENhaploinsufficiency to
induce invasive carcinogenic formation in the prostate [100].
Recently, it was described that the deficiency of the Sprouty
protein 2 (SPRY2) acts with the epidermal growth factor
receptor (EGFR) system (RTK) and loss of PTEN to drive
hyperactivation of PI3K/AKT via enhanced RTK trafficking
in PCa [101]. It is also important to note that insulin-like
growth factor (IGF) is an upstreameffector onAKT signaling,
and IGF up-regulation (which activates AKT) could promote
the development of PCa in vivo [102, 103], suggesting an inter-
relationship between IGF and AKT signaling in PCa. Finally,
the Myc oncogene, a downstream target of PI3K/AKT path-
way, commonly upregulated in many types of cancer [104],
appears to act synergistically with AKT in the development of
prostate tumorigenesis by altering, for instance, its sensitivity
to mTOR inhibitors [105]. The implications of PI3K/AKT
signaling in PCa are detailed in Figure 3.

In the context of PCa, a variety of new drugs tar-
geting deregulation of the PI3K/AKT pathway have been
developed. Natural products such as Ethanolic Neem Leaf
Extract (ENLE) [106], 𝛽-Caryophyllene Oxide [107], and
Dietary flavonoid fisetin [108] have been described as having
anti-PI3K/AKT activity in PCa cells. Other drugs, such as
curcumin, can inhibit several signaling pathways including
AKT [109–112]. Synthetic drugs, such as KN-93, can inhibit
PCa cell growth in an androgen-independent manner, by
activation and production of reactive oxygen species (ROS),
which prevent AKT activation [113]. Other drugs, like GDC-
0980, can inhibit PCa cell proliferation through direct inhi-
bition of class I PI3K and mTORC1/2 [114]. HIF-1 proteins
are regulators of transcriptional responses against hypoxia
and equally important in angiogenesis and tumor growth. An
HIF-1𝛼 inhibitor has been described to inhibit the PI3K/AKT
pathway in PCa cell lines [115]. Another example is Gambogic
Acid, which limits PCa development through inhibition of
both PI3K/AKT and NF-𝜅B pathways [116]. Several mTOR
inhibitors have been tested to control the development of
androgen-independent PCa [117]. It should be noted that
there are currently several AKT inhibitors in clinical trials
[118]. For instance, Celecoxib, an inhibitor of cyclooxygenase
2 (COX-2), is described to prevent AKT phosphorylation
by inactivating its upstream kinase PDK1 [119]. Perifosine, a
phospholipid analogue, can also arrest PCa cell cycle in G1/S
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activation, thus favoring an AR-independent growth. Conversely, AR pathway target genes can limit the PI3K/AKT pathway, favoring an AR-
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PCa cells leads to enhanced production of CCL2, which avoids autophagy in part through PI3K/AKT pathway.

or G2/M through AKT inhibition, although the mechanism
of inactivation is still not fully understood (but possibly
in a PDK1-independent manner) [120]. Genistein, a natural
soy-based isoflavone, can inhibit AKT directly, subsequently
inhibiting NF-𝜅B activation and inducing apoptosis of PCa
cells [121]. On the other hand, the deregulated PI3K/AKT
pathway during PCa progression appears to be a reason for
the resistance against some anticancer drugs; an example is
the resistance to sunitinib in CRPCa, which is correlated with
the loss of PTEN expression [122].

5. The JAK/STAT Pathway in Prostate Cancer

5.1. Pathway Description. Janus Kinase/signal transducers
and activators of transcription (JAK/STAT) pathway is
recognized as an important membrane-to-nucleus cascade,
which may be activated by a wide variety of stimuli such
as reactive oxygen species, cytokines, and growth factors
[123–127]. JAK/STAT is one of themain cascades required for

normal development and cell homeostasis, as well as in the
control of cell proliferation, differentiation, cell migration,
and apoptosis [124]. Specifically, this pathway is essential
to regulate many physiopathological processes including
hematopoiesis, gland development, immune response, adi-
pogenesis, and sexually dimorphic growth [128, 129]. Briefly,
the signaling activation occurs when specific inducers (e.g.,
IL-6) binds to and induces the oligomerization of respective
receptor subunits (e.g., cytokine receptors), leading to signal
propagation by phosphorylation of the receptor-associated
tyrosine kinases, known as JAK1-3 and Tyk2 [130, 131].
Particularly, JAK activation occurs when the receptor subunit
comes into close proximity (after ligand recognition) and
allows the cross-phosphorylation of these tyrosine kinases.
Subsequently, activated JAKs induce the phosphorylation of
the receptor that now serves as a docking site for additional
JAK targets including their major substrates known as signal
transducer and activator transcription factors (STATs). STAT
proteins have a dual function of signal transduction and
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transcription activation downstream of phosphorylation
events. Indeed, STAT phosphorylation permits the dimer-
ization of other STATs, culminating with the translocation to
the nucleus mediated by importin 𝛼-5 and the Ran nuclear
import system. Inside the nucleus, the dimerized STATs bind
to specific regulatory sequences along the DNA, leading to
activation or repression of target genes [132–135].

5.2. PathwayDisruptionsAssociatedwith PCa andTherapeutic
Targets. The family of STAT transcription factors is con-
stitutively activated in many human tumors. In this sense,
these proteins control various cellular events such as prolif-
eration, differentiation, and cell survival. Extensive studies
have indicated that this pathway is upregulated in a broad
range of cancers [136–140]. A particular member, STAT3,
has been shown to be constitutively active in a number
of human tumor cell lines as well as primary tumors,
including haematological malignancies [141]. For instance,
constitutive activation of STAT3 has been related to breast
cancer susceptibility cancer 1 (BRCA1) expression in certain
tumor cell lines [142]. Additionally, mutations in BRCA
genes have been shown to increase predisposition to breast,
ovarian, and prostate cancers [139, 143–145]. Both BRCA1 and
BRCA2 are related to biological processes including DNA
repair, control of cell-cycle checkpoint, and transcriptional
regulation. Specifically, BRCA1 performs distinct but more
general functions, working as a sensor/signal transducer
and as an effector component in response to DNA damage
by homologous recombination, while BRCA2 function is
more restricted to DNA repair, modulating the activation of
RAD51 recombinase, which is also required for homologous
recombination [139, 146, 147]. It has been demonstrated that
in PCa cells, BRCA1 interacts with JAK1/2, leading to STAT3
phosphorylation and culminating in the induction of cell
proliferation and inhibition of apoptotic cell death [142].

STAT3 also targets other genes associated with cell cycle
regulation [141, 148]. Upregulation of antiapoptotic STAT3
induces a subset of Bcl-related genes, including Bcl-2, Bcl-XL,
Survivin, and Mcl-1, which have been described in PCa and
many other tumors [141]. Another STAT3 target gene is the
proangiogenic vascular endothelial growth factor (VEGF),
involved in tumor invasion and spreading, which directly reg-
ulates several matrix metalloproteinases enzymes implicated
in tumor cell invasion [141, 149–152]. Moreover, high levels of
STAT3 in both malignant and normal tissues adjacent to the
tumor have been detected, suggesting that STAT3 activation
may occur before any detectable histological changes in the
prostate [153]. Additionally, the inhibition of JAK/STAT3
signaling suppresses PCa cell growth and induces apoptosis
[154]. In fact, STAT3 inhibition has been suggested as a good
strategy to promote the control of cell proliferation and,
consequently, tumor growth and metastasis formation [155].

IL-6 is another factor that has been found to be upregu-
lated in the serumof PCa patients. IL-6 signaling is important
to modulate cell growth and differentiation and immune-
mediated resistance against infections. Unbalanced IL-6 pro-
duction has a role in several diseases, such as osteoporosis,
atherosclerosis, autoimmune disorders, rheumatoid arthritis,

psoriasis, diabetes, and cancer [156, 157]. Several studies
have indicated an important role of IL-6 in promoting
PCa progression. PCa cells have upregulated expression of
both IL-6 and its receptor IL-6R [158], as well as elevated
circulating levels of IL-6 in patients with metastatic PCa
and CRPCa [159–161], correlating IL-6 production to cancer
morbidity [162–164] and differential autocrine and paracrine
modulation of PCa cell lines [141, 164–166]. It has been shown
that silencing of IL-6 expression by small-interfering RNA
in PCa cell lines dramatically decreases cell growth, and this
event is accompanied by downregulation of Bcl-2, Bcl-xL, and
phosphorylation of AKT,MAPK, and STAT3 both in vivo and
in vitro [167]. Upon IL-6 stimulation, androgen-responsive
PCa cell lines also activate STAT3, which further binds to the
C/EBP𝛿 promoter region, inducing its expression. C/EBP𝛿 is
a member of the CCAAT/enhancer binding protein (C/EBP)
family of transcription factors and plays a crucial role in the
regulation of cell growth and fate [168–170]. In fact, C/EBP𝛿
overexpression leads to inhibition of tumor growth in PCa
[171]. On the other hand, after treatment with IL-6, androgen-
independent PCa cells do not exhibit increased C/EBP𝛿
gene expression or growth inhibition [171]. However, in PCa
patients, the expression of C/EBP𝛿 is significantly reduced in
metastases when compared to primary PCa [172]. Altogether,
the induction of C/EBP𝛿 overexpression may function as an
alternative of prevention and/or treatment of PCa.The impli-
cations of JAK/STATpathway in PCa are detailed in Figure 4.

6. The MAPK Pathway in Prostate Cancer

6.1. Pathway Description. Mitogen activated protein kinases
(MAPKs) comprise a family of kinases that have a major
role in tumor growth and metastasis [173–175]. MAPKs can
be divided into three subfamilies: the extracellular-signal-
regulated kinases (ERKs), the c-Jun N-terminal kinases
(JNKs), and p38 MAPKs that, together with the JNKs,
compose the stress-activated protein kinase pathways [175].
All MAPKs have been linked to the regulation of intracellular
metabolism, gene expression, cell growth and differentiation,
apoptosis, and stress response [176–182]. There is a great
body of evidence indicating that alterations in the regulation
of MAPKs are extremely important in cancer development
[183].

A plethora of extracellular signals initiate MAPK signal-
ing by the binding and activation of receptor tyrosine kinases
(RTKs) or G-protein coupled receptors (GPCRs) (Figure 5).
In the case of ERK, the activation through these receptors
leads to the recruitment of downstream effectors including
growth factor receptor-bound protein 2 (Grb2) and protein
tyrosine phosphatase non-receptor type 11 (PTPN11/Shp2),
leading to the recruitment of Gab1 (GRB2-associated binding
protein 1) and SOS (Son of Sevenless). Then, SOS protein
exchanges the GDP in the Ras G-protein for a GTP.The Ras-
GTP complex is able to activate the RAF kinase, a MAP-
kinase-kinase-kinase (MAP3K) that is an upstream compo-
nent of the ERK pathway, which in turn phosphorylates the
MEK kinase (MAP2K) and, subsequently, phosphorylates
and activates the next pathway component MAPK/ERK



10 Prostate Cancer

JAK1 JAK2

IL-6

STAT3 STAT3

STAT3

STAT3

1

2

BRCA1

BRCA1
BRCA2

BRCA2
BRCA1

BRCA1

3P

PP

P

DNA repair
Apoptosis inhibition

Cell growth
and differentiation

Cellular 
proliferation

AR

4

5

Cellular stress

AR ATF3

ATF3

Inhibition of 
androgen-signaling

Extracellular

Cytosol

Nucleus

P P

C/EBP𝛿

Figure 4:The JAK/STAT signaling in prostate cancer. (1)The JAK/STAT pathway has been found constitutively activated in PCa cells, leading
to induction of tumor cell proliferation and apoptosis inhibition mediated by STAT3 activation. (2) BRCA1/2 is required for DNA repair in
normal cells. However, in PCa, BRCA1 can bind STAT3 to promote JAK/STAT3 activation. (3) AR is a well-characterized cross-talk pathway
in PCa. When activated, AR can bind to STAT3 leading to the activation of JAK/STAT cascade, being important in the induction of cell
proliferation and apoptosis inhibition. (4)Under stress conditions, ATF3 is activated andplays a crucial role in themaintenance of cell integrity
and homeostasis. ATF3 does so by interacting with AR, leading to inhibition of androgen signaling and, consequently, the inhibition of cell
proliferation. However, ATF3 is downregulated in PCa cells, suggesting that this pathway provides an importantmechanism of defense against
cancer. (5) Similarly, C/EBP𝛿 is required to inhibit cell proliferation by binding to STAT3. Nevertheless, C/EBP𝛿 is typically downregulated
in PCa, and, therefore, it could be used as an strategy in the development of therapeutic drugs against PCa growth.

[184]. The RTKs that interact with Ras, or other members of
its superfamily, are diverse and include the epidermal growth
factor receptor (EGFR), c-Kit, platelet-derived growth fac-
tor receptor (PDGFR), vascular endothelial growth factor
receptor (VEGFR), fibroblast growth factor receptor (FGFR),
and fms-related tyrosine kinase-3 (FLT-3) [185]. JNKs can be
activated by the upstream MKK4 and MKK7 kinases [186,
187]. Although there are many JNK substrates, it is still chal-
lenging to identify the molecular networks regulated by the
individual JNK family members. It has been found that JNK
signaling can alternatively lead to apoptosis or cell survival
[187–189]. Downstream targets of the MAPKs include c-Jun,
c-Fos, and p53 [184]. c-Jun and c-Fos form a complex called
AP-1 (activator protein 1) that acts as a transcription factor.
MAPKs are able to translocate to the nucleus and then phos-
phorylate AP-1 transcription factors (c-Fos, c-Jun, ATF, and
JDP family members) to mediate expression of target genes
containing a TPA DNA response element (TRE) [190, 191].

6.2. PathwayDisruptionsAssociatedwith PCa andTherapeutic
Targets. MAPK/ERK pathway is shown to be activated in

PCa, especially in later stages of the disease, and is often
deregulated with AKT signaling [192–194]. The upstream
events that lead to activation of MAPK signaling are not well
defined but are possibly related to aberrant growth factor
signaling [195]. Although members of the Ras family are
rarely mutated in PCa [22], Ras and the MEK/ERK pathway
are stimulated by EGF, IGF-1, KGF, and FGFs, which are
often overexpressed in PCa [196–198]. The expression of Ras
or its effector-loop mutants reduces the androgen-dependent
requirement of LNCaP cells for growth and increases their
PSA expression and tumorigenicity, whereas dominant neg-
ative N17-Ras can restore androgen sensitivity to the CRPCa
C4-2 cell line [22, 199]. Notably, expression of activated forms
of Ras or Raf in the mouse prostate epithelium results in
PCa formation [200, 201]. Interestingly, a small percentage of
aggressive PCa contains chromosome translocations involv-
ing b- or c-Raf, which results in a constitutively activated
hybrid protein due to the loss of the N-terminal RAS binding
domain [202], which suggests that perturbations of Ras or Raf
signaling may occur in PCa through mechanisms other than
activatingmutations. Also, p38 signals play an important role
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in the adaptation of malignant cells to hypoxia by increasing
the expression of the pore-forming proteins Aquaporins
[203] and also by the increased resistance to apoptosis by
overexpression of COX-2 [204].

MAPK and its upstream signals seem to be involved
not only in PCa but also in the correct development of the
prostate. For instance, FGFR2 is an RTK capable of recruiting
Grb2 and Shp2 when activated, which acts as an upstream
activator of the MAPK signaling pathway [205]. It has been
demonstrated that FGFR2 is necessary for the embryological
formation of the prostate [205]. Nullmutants for Fgf10mostly
lack prostate budding [206], while conditional deletion of
FGFR2 or Frs2𝛼, a downstream signaling component in
prostate epithelium, results in defects in branching morpho-
genesis [207, 208] It has been also demonstrated that ERK
1/2 is rapidly activated in the urogenital sinus (UGS) when
induced by FGF10, and the inhibition of FGFR activitymostly
inactivates phosphorylated ERK 1/2 in the UGS, suggesting
that FGF10 may signal through MAPK pathway [209].

Simultaneous activation of the ERK and AKT signaling
pathways has been shown to promote PCa and CRPCa both
in vitro and in vivo, while combined inhibition of these
pathways blocks cell proliferation and leads to Bcl-2 and
Bim upregulation [192, 210] (Figure 5). Therefore, the MAPK
signaling pathway may be a target for PCa therapy, especially
if its modulation could be achieved concomitant with other
pathways, including PI3K/AKT signaling. The aim of future
studies in this area might be directed toward the factors and
mechanisms that account for differential function of JNK,
p38, and ERK MAPKs as pro- or anti-tumoral factors. In
addition, it has been shown that the AKT/mTOR andMAPK
pathways participate in the development of PCa. A thera-
peutic strategy using both rapamycin (mTOR inhibitor) and
PD0325901 (MEK1 inhibitor) is shown to inhibit cell growth
in a series of PCa cell lines and also to affect tumor growth
in mouse models [192]. These results have been further
confirmed [211] using inhibitors of both PI3K/AKT/mTOR
and RAS/MEK/ERK pathways. These observations may lead
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to the development of therapeutic approaches to effectively
target the pro-tumoral effects of the MAPK pathways.

7. The TGF-𝛽/SMAD Signaling Pathway in
Prostate Cancer

7.1. Pathway Description. The TGF-𝛽/SMAD signaling path-
way is involved in the regulation of many cellular functions
including cell growth, adhesion, migration, cell differentia-
tion, embryonic development, and apoptosis [212]. Accord-
ingly, alterations in the TGF-𝛽/SMAD signaling pathway
are implicated in many human diseases such as cancer,
fibrosis, and several hereditary conditions [213–215]. The
pathway initiates when activated ligands (e.g., TGF-𝛽) bind
to respective receptors, composed of a very diverse cysteine-
rich domain, a single-pass transmembrane domain, and a
significantly conserved intracellular serine-threonine kinase
domain. There are two types of functional receptors that
bind to the TGF-𝛽 ligands, nominated as type I and type II
receptors. Type II receptors are constitutively active recep-
tors, and, upon ligand binding, they further activate type
I receptors in a phosphorylation-dependent manner. The
activated receptors then tetramerize and are able to recruit
and activate SMAD proteins, the main effector proteins of
this pathway [214–216]. SMADs are intracellular proteins that
transduce signals from the TGF-𝛽 superfamily of ligands to
the nucleus, where they activate or suppress the transcription
of target genes. There are eight known types of SMADs,
which can be divided into three different classes: receptor-
regulated SMADs (R-SMADs), common-mediated SMAD
(Co-SMAD), and inhibitory SMADs (I-SMADs). Once the
receptors are activated, they recruit R-SMADs and phos-
phorylate them. Phosphorylated R-SMADs can then form
complexes with the Co-SMAD SMAD4. This complex is
translocated to the nucleus and acts as a transcription factor
for many target genes (Figure 6). The I-SMADs, SMAD6
and SMAD7, inhibit SMAD transcriptional activity and the
activation of the TGF-𝛽/SMAD signaling pathway [214, 216].

7.2. PathwayDisruptions Associated with PCa andTherapeutic
Targets. Despite the fact that enhanced TGF-𝛽 levels have
been positively associated with prostate cancer progres-
sion (Figure 6), TGF-𝛽-mediated suppression of growth and
motility is also increased inmetastatic CRPCa cells, and these
events appear to be partially mediated by Smad2/3 signaling
[217]. For instance, there is an increased sensitivity to TGF-
𝛽1-mediated growth inhibition and downregulation of cyclin
D in prostate-derived metastatic cell lines C4-2 and C4-
2B, when compared to the nonmetastatic cell line (LNCaP
cells) and robust phosphorylation and nuclear translocation
of Smad2 and Smad3 in metastatic cell lines [217]. The
interactions of the stromal environment and epithelial tumor
cells apparently dictate PCa progression, and it is likely
that TGF-𝛽 pro-metastatic effects indirectly affects PCa cells
through stromal cells, in contrast to its antiproliferative effect
on the epithelium [217].

Using a Cre/flox-based system in mouse models, it has
been observed that, in the absence of TGF-𝛽1 produced by

activated CD4+ T cells and regulatory T cells, there is inhibi-
tion of tumor growth and protection from spontaneous PCa
[218]. These findings have suggested that TGF-𝛽1, produced
by activated CD4+ T cells, is necessary for tumor evasion
from immune surveillance [218]. Furthermore, it is reported
that LY2109761, a selective inhibitor of the TGF-𝛽 type I
receptor, provides anti-tumoral effects against PCa cells after
growth in bone tissue [219]. In addition, increased volume
in normal bone and increased osteoblast and osteoclast
numbers are observed after inhibition of the TGF-𝛽 type I
receptor [219]. Thus, TGF-𝛽1 has been detected at higher
levels in the sera of PCa patients, is associated with bone
metastasis, and correlates to a poor clinical outcome [220–
222].Many other studies have also linked changes in the levels
of TGF-𝛽 and of pathway components to cancer progression
and to further cellular responses [215, 223, 224].

Evidence for SMAD2 as a critical mediator of TGF-
𝛽-induced apoptosis has been reported [225]. Silencing of
Smad2 expression in NRP-152, a nontumorigenic rat prostate
basal epithelial cell line, inhibits TGF-𝛽-induced apoptosis.
Furthermore, rats injected with small hairpin RNA (shRNA)
constructs targeting SMAD2 show palpable PCa tumors in
over 80% of the injected sites by day 41 following injection
[225].

The activation of the TGF-𝛽 signaling pathway in an
SMAD-independent manner has also been described [226].
BMP-10 (bone morphogenetic protein 10) seems to inhibit
growth of PCa cells, mainly by inducing caspase-3 mediated
apoptosis and preventing PCa cell migration and invasive-
ness through SMAD-independent signaling (Figure 6) [226].
BMP-10 overexpression in PCa cells decreases tumor cell
growth, cell matrix adhesion, invasion, and migration. These
effects seem to be mediated through activation of TAK1 and
ERK1/2 [226]. Nodal, another TGF-𝛽 ligand, has also been
found to be overexpressed in some PCa cells and it can be
involved in the inhibition of proliferation and induction of
migration in these cells [227]. Furthermore, activin A, also
known to inhibit growth of PCa cells and promote apoptosis,
has been identified as a promoter of bone metastasis in
PCa, possibly through SMAD signaling and concomitant
elevation of the androgen receptor (AR) gene transcription
[228]. Interestingly, the expression of activin A correlates
with increased PSA expression, and, therefore, it might be
considered as a novel biomarker or potential therapeutic
target for the treatment of patients withmetastatic PCa [228].

8. The Wnt Signaling Pathway in
Prostate Cancer

8.1. Pathway Description. The Wnt family is composed of
a large set of soluble proteins that play important roles
in the embryonic developmental processes including cell
proliferation, differentiation, and epithelial-mesenchymal
interactions [229, 230]. Deregulations in the Wnt pathway
have been implicated in cancer development in a variety
of tissues including lung, skin, liver, and prostate [229, 231,
232]. Wnt proteins exert their biological effects through two
signaling pathways (canonical and non-canonical), which
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functions; it promotes proliferation, invasion, and motility of cells and inhibits apoptosis. Green arrows indicate potentially up-regulated
proteins in PCa.

are separated by their ability to stabilize 𝛽-catenin [233].
The 𝛽-catenin is a multirole protein that promotes cell
proliferation by inducing gene transcription through the
activation of transcription factors like T cell factor (TCF)
and lymphoid enhancer factor (LEF) family of transcription
factors [234]. 𝛽-Catenin exists in a cytoplasmic complex with
Axin, APC (adenomatous polyposis coli gene), and glycogen
synthase kinase 3𝛽 (GSK3𝛽), which constitute the “𝛽-catenin
destruction complex.” In the absence of Wnt, 𝛽-catenin is
phosphorylated by casein kinase I (CKI𝛼) at Ser45; this,
in turn, enables GSK3𝛽 to phosphorylate serine/threonine
residues 41, 37, and 33 [235]. Phosphorylation of these
last two residues triggers ubiquitination of 𝛽-catenin and
further degradation by the proteasome ([233, 236, 237],
Figure 7(a)). The binding of Wnt proteins to transmembrane

Frizzled receptors (FZD) activates the Disheveled protein
(DVL), leading to the dephosphorylation of Axin which then
reduces the formation of cytoplasmic 𝛽-catenin complexes.
As a result, free 𝛽-catenin accumulates in the cytosol and
it is further translocated to the nucleus, where it activates
TCF/LEF transcriptional factors ([238], Figure 7(b)). The 𝛽-
catenin/LEF/TCF complexes have been shown to interact
with a variety of other nuclear factors to control specific
transcriptional targets which include c-Myc, p300, CBP,
Hrpt2, Foxo, Bcl9-2, reptin, pontin, c-Jun, Grouchos, Prmt2,
CtBP, and cyclin D1 [239–241].

8.2. PathwayDisruptionsAssociatedwith PCa andTherapeutic
Targets. The Wnt family members have been widely studied
in PCa progression [241]. It has been hypothesized that PCa
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Figure 7: The Wnt signaling and its implications in the development of prostate cancer. (a) In an inactive state, the protein 𝛽-catenin
is sequestered in a complex in the presence of Axin, GSK3𝛽, CK1𝛼, and APC. This complex allows ubiquitination of 𝛽-catenin and its
subsequent degradation in a proteasome-dependent manner, maintaining this pathway inactive in the absence of Wnt. (b) After binding
of Wnt to Frizzled receptor complex (which includes the adaptor molecules LRP5/LRP6), this allows the recruitment of Dishevelled (DVL)
and Axin; the recruitment of Axin disrupts the inactivation complex and releases 𝛽-catenin, which translocates to the nucleus and functions
as a transcription factor, inducing expression of several genes related to proliferation, such as c-myc and cyclin D1. (c) In the PCa environment,
𝛽-catenin can combine with AR proteins, whose levels are typically increased in PCa, enhancing their function as transcription factors and
leading to increased gene expression of pro-survival and proliferative factors.

cells adopt embryonic signaling pathways that are generally
silent in differentiated cells [242]. The role of 𝛽-catenin in
tumorigenesis was first established in colon carcinoma, due
to its complex formation with the adenomatous polyposis
coli (APC) gene product [243]. APC is a well-known tumor
suppressor, which plays a central role in the Wnt signaling
pathway by targeting 𝛽-catenin for degradation. It has been
shown that the APC gene is downregulated due to pro-
moter hypermethylation [244], while 𝛽-catenin is frequently
mutated to an active form [245] and it is typically found in
early stages of prostate tumor formation. Indeed, APC exerts
a variety of growth regulatory functions that, if disrupted,

might lead to tumor formation [235]. A mouse model in
which the APC gene has been inactivated results in PCa
and adenocarcinoma [246]. Alterations in the APC gene
are rare, although loss of heterozygosity and mutation have
been detected in some PCa samples [243, 247]. As indicated,
some studies have identified the genes c-Myc and cyclin D1
as transcriptional targets activated by the 𝛽-catenin signaling
pathway [248, 249]. The overexpression of c-Myc and cyclin
D1 increase cell growth and tumorigenicity in PCa cells, and
these genes are apparently activated at the earliest phases of
PCa progression [248, 249]. Noticeably, Wnt ligands are up-
regulated in PCa, and their expression often correlates with
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aggressiveness and metastasis [250]. It has been determined
that 15 out of the 19 Wnt proteins are expressed in PCa cell
lines [251]. Several Wnt ligands, such as Wnt-5a and Wnt-
11, can induce the 𝛽-catenin-independent (non-canonical)
pathway [252]. In particular, Wnt-11 is a secreted protein that
modulates cell growth, differentiation, and morphogenesis
during development; however, the prevalence of increased
expression of Wnt-11 in tumours and the functions of Wnt-11
in PCa cells are not fully understood [253]. Recent data have
shown an upregulation of Wnt-11 expression in a significant
proportion of PCa tumors, and it has been positively corre-
lated to higher Gleason scores as well as increased PSA levels
[254]. AnotherWnt ligand,Wnt-4, is highly expressed during
embryonic development but is significantly less abundant in
the adult prostate [251], suggesting that Wnt signaling might
be temporally regulated during prostate development and
that it can induce changes in cell fate for prostate progenitors.

Overexpression of Wnt ligands and high levels of 𝛽-
catenin gene expression have been associated with advanced
PCa in vitro [255]. Moreover, detection of mutant forms of
𝛽-catenin has been discovered in PCa [256, 257]. A series of
studies have demonstrated that mutant forms of 𝛽-catenin
that affect GSK3𝛽-dependent phosphorylation site (which
prevents its degradation and then allows its accumulation in
the cytosol) are found in 5%–7% of radical prostatectomy
specimens ([250, 258, 259], Figure 7(c)). Anothermechanism
for increased 𝛽-catenin expression in PCa may be loss of
PTEN, which is common in advanced PCa and results in acti-
vation of the PI3K and downstream AKT signaling pathways
[260]. AKT can phosphorylate and inactivate GSK3𝛽, leading
to stabilization and increased levels of 𝛽-catenin. Indeed,
GSK3𝛽 suppression and subsequent 𝛽-catenin stabilization
have been directly demonstrated in PTEN-deficient PCa cell
lines [261]. Consistently, other members of the Wnt pathway
are also deregulated in PCa [262]. For instance, Frizzled-
4 (FZD4, a Wnt receptor) is co-expressed in human PCa
samples with the ETS-related gene (ERG). Gene fusions
involving ETS transcription factors (mostly ERG) are found
in roughly 50% of all PCas [254]. Further experiments have
shown that FZD4 overexpression in ERG-positive PCa leads
to an epithelial-to-mesenchymal transition, which is a crucial
step in metastasis initiation [254].

In summary, there are several ways that the Wnt pathway
can be abnormally activated in cancer, due to the large num-
ber of proteins involved in this pathway [257]. For this reason,
there is a great potential for the development of awide array of
Wnt antagonists. Several pharmaceutical and biotechnology
companies have substantial programs designed to target this
pathway [260], and a variety of drugs targeting Wnt pathway
are currently on the market or under development [263,
264]. Some categories of drugs include non-steroidal anti-
inflammatory drugs (NSAIDs) [265], vitamin D derivatives
[266], antibody-based treatments [259], and other small
molecule inhibitors [266, 267].

9. Conclusions

In the past several decades, an abundance of data related to
the signaling events that trigger and maintain PCa have been

collected. An increasing knowledge of the interconnections
(crosstalks) of different signaling cascades, that ultimately
promote the advance of PCa, is of seminal importance for
the development of specific drugs which might promote the
blockage and/or induction of specific molecules that could
lead to the control of tumor progression. In fact, several
drugs are currently in clinical trials or being tested in animal
models, most of them acting as specific inhibitors of dereg-
ulated signaling pathways, such as those described in this
review. Nevertheless, a more detailed and interactive panel of
the external factors capable of inducing the deregulation(s)
observed in the PCamicroenvironment is still missing.Thus,
it is crucial to pursue a more complete understanding of
the cascade-dependent signals that lie behind PCa induction,
to consequently lead to the development of fully functional
strategies against PCa. This will also advance our knowledge
towards more efficient screenings of PCa predisposition,
whichwill certainly lead to increased prevention schemes and
early treatments against this malady.
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