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Abstract

The homeostatic iron regulator protein HFE is involved in regulation of iron acquisition for
cells. The prevalence of two common HFE gene variants (H63D, C282Y) has been studied
in many cancer types; however, the impact of HFE variants, sex and HFE gene expression
in lung cancer has not been studied. We determined the prevalence of HFE variants and
their impact on cancer phenotypes in lung cancer cell lines, in lung cancer patient speci-
mens, and using The Cancer Genome Atlas (TCGA) database. We found that seven out of
ten human lung cancer cell lines carry the H63D or C282Y HFE variant. Analysis of lung
cancer specimens from our institute (Penn State Hershey Medical Center) revealed a sex
and genotype interaction risk for metastasis in lung adenocarcinoma (LUAD) patients;
H63D HFE is associated with less metastasis in males compared to wild type (WT) HFE;
however, females with the H63D HFE variant tend to develop more metastatic tumors than
WT female patients. In the TCGA LUAD dataset, the H63D HFE variant was associated
with poorer survival in females compared to females with WT HFE. The frequency of C282Y
HFE is higher in female lung squamous cell carcinoma (LUSC) patients of TCGA than
males, however the C282Y HFE variant did not impact the survival of LUSC patients. In the
TCGA LUSC dataset, C282Y HFE patients (especially females) had poorer survival than
WT HFE patients. HFE expression level was not affected by HFE genotype status and did
not impact patient’s survival, regardless of sex. In summary, these data suggest that there is
a sexually dimorphic effect of HFE polymorphisms in the survival and metastatic disease in
lung cancer.

Introduction

Lung cancer is the second most common cancer in both men and women and is the leading
cause of cancer deaths in the US [1]. There are two types of lung cancers: non-small cell lung
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cancer (NSCLC) and small cell lung cancer (SCLC). NSCLC is the most common type of lung
cancer and accounts for approximately 80-85% of lung cancers [2-4]. There are 3 main types
of NSCLC: adenocarcinoma, squamous cell carcinoma, and large cell carcinoma. Adenocarci-
noma, the most common form of lung cancer in non-smokers, accounts for about 40% of all
lung cancers. Squamous cell carcinoma accounts for roughly 30% and large cell carcinoma is
less than 10%. SCLC accounts for ~20% of all lung cancers, with a 5-year survival of only
5-10% [4, 5]. Molecular profiling of NSCLC found higher gene mutations in multiple onco-
genes, such as epidermal growth factor receptor (EGFR) (10-35%), K-ras (KRAS) (15-25%),
and Phosphatase and tensin homolog (PTEN) (4-8%). Other gene alterations, e.g. Fibroblast
growth factor receptor 1 (FGFRI) amplification (20%) and anaplastic lymphoma kinase (ALK)
rearrangement (3-7%) are also found in NSCLC [6-8]. Interestingly, many driver mutations
found in lung adenocarcinoma (LUAD) are rarely found in lung squamous cell carcinoma
(LUSC), which suggests distinct cancer development processes among lung cancer sub-types.

Cancer cells have a robust iron appetite associated with their higher growth and metabolism
[9]. Iron can influence the epigenetics of cancer cells [10] and the tumor microenvironment by
impacting macrophage function [11, 12]. Among the many iron metabolism genes, the HFE
(homeostatic iron regulator) gene has been interrogated for its relationship to cancer. The
HFE gene encodes for a 343-amino acid major histocompatibility complex (MHC) class 1 mol-
ecule [13] whose interaction with the transferrin receptor (TFRC) on the cell membrane regu-
lates the amount of iron internalized to the cell by limiting the interaction of transferrin (TF)
with the TFRC. The HFE gene contains genetic polymorphisms identified as risk factors or dis-
ease modifiers for several human diseases such as hereditary hemochromatosis, neurodegener-
ative diseases, liver disease, and cancers [14-18].

Polymorphisms in the HFE gene occur more frequently in Caucasians than in other races
[19-21]. There are two major mutation sites in the HFE gene [13]. One is H63D, a single muta-
tion of C to G at nucleotide 187, which results in a substitution of aspartate for histidine at
amino acid 63. The other one is C282Y, a mutation of G to A at nucleotide 845, which results
in the substitution of tyrosine for cysteine at amino acid 282. In the normal Caucasian popula-
tion, the frequency of H63D and C282Y HFE genotype is around 26% (24% heterozygote and
2.4% homozygote) and 10% (10% heterozygote and 0.44% homozygote), respectively [19]. The
allelic frequency of H63D and C282Y HFE in the general Caucasian population is 15.3% and
6.8% [20]. Increased frequency of the HFE variants have been reported in acute lymphoblastic
leukemia [22, 23] and breast cancer [24, 25]. Increased frequency of H63D HFE variant was
observed in malignant gliomas [26]. The H63D HFE variant is also a risk factor for colorectal
cancer [27], hepatocellular carcinoma [28-30], and pancreatic cancer [30, 31]. Increased fre-
quency of C282Y HFE variant was observed in colorectal cancer [32] and hepatocellular carci-
noma [33]. In addition, the C282Y HFE variant is a risk factor for breast cancer [31, 34, 35],
colorectal cancer [34, 35], hepatocellular carcinoma [30, 31, 35, 36], liver cancer [37], and ovar-
ian cancer [38]. The risk of C282Y HFE variant in colorectal cancer has been reported as both
increased [32] and decreased [31]. In our previous study using Penn State Health Milton S.
Hershey Medical Center (PSHMC) glioblastoma (GBM) patient’s samples, we demonstrated
poorer overall survival in male GBM patients with H63D HFE than male WT HFE GBM
patients [39] although this finding was not observed in TCGA GBM samples [40].

Despite the prevalence of lung cancer and the prevalence of the HFE gene variants, the
impact of HFE genotype on lung cancer has not been studied systematically and this knowl-
edge gap is addressed in this study. We interrogated the HFE genotype and/or HFE expression
in human lung cancer cell lines, specimens of lung cancer patients, and lung cancer database.
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Materials and methods
Cell culture

All tested lung cancer cell lines were ordered from American Type Culture Collection (ATCC,
Manassas, VA) or obtained from Dr. Jong K. Yun (Pennsylvania State University College of
Medicine). Human lung cancer cell lines were maintained in Roswell Park Memorial Institute
(RPMI) media 1640 with 1X Penicillin-Streptomycin and 10% fetal bovine serum (FBS). RPMI
media 1640 and other cell culture ingredients were purchased from Life Technologies (Grand
Island, NY).

HFE genotype of cell lines and plasma of lung cancer patients at the Penn
State Health Milton S. Hershey Medical Center (PSHMC)

HFE genotype of lung cancer cell lines was determined using a restriction enzyme digestion
method after PCR. The digested PCR products were run in 5% TBE polyacrylamide gel for
HFE genotype as reported [41]. The HFE genotyping from plasma of lung cancer patients was
performed using same method after genomic DNA purification using DNeasy Tissue kit (Qia-
gen) according to the manufacturer’s instructions. The HFE genotype of select samples was
confirmed via DNA sequencing.

The de-identified plasma samples and clinical data of human lung cancer patients were
obtained from Tumor Bank of Penn State Institute for Personalized Medicine (PSIPM) and
approved by Penn State College of Medicine Institutional Review Board (IRB Protocol Number
40532). DNA was purified from the plasma samples by DNeasy Blood & Tissue kit (QTAAGEN)
to determine HFE genotype as described above. For HFE genotype data analysis, we used only
Caucasian lung cancer patients’ samples, because HFE polymorphisms are most prevalent in
the Caucasian population. We consented and enrolled 53 adenocarcinoma of the lung (23 male
and 30 female) and 41 squamous cell lung cancer patients (28 male and 13 female).

The HFE genotype of lung cancer patients was compared with samples from individuals
without cancer or with neurological disease in our Institute of Personalized Medicine [41] and
1000Genome data which was downloaded the frequency of Single Nucleotide Variants (SNVs)
in the HFE gene using Variant Call Format (VCF) file from The International Genome Sample
Resource.

The Cancer Genome Atlas (TCGA) lung cancer patient’s data

There are two types of lung cancer data in the TCGA database: lung adenocarcinoma (LUAD)
and lung squamous cell carcinoma (LUSC). In the TCGA lung cancer database, we used two
samples data from each lung cancer patients. i.e., Blood Derived Normal (NB), Primary Solid
Tumor (TP). The total number of NB samples of LUAD patients with corresponding HFE
genotype information was 408. Among 408 samples, there were 307 Caucasian, 36 Black, 6
Asian, and 59 unknown. The total number of TP samples of LUAD patients who had HFE
genotype information was 558. Among the 558 samples, there were 381 Caucasian, 52 Black, 8
Asian, 1 American Indian, and 116 unknown. The total number of NB samples of LUSC
patients who had HFE genotype information was 322. Among 322 samples, there were 203
Caucasian, 15 Black, 6 Asian, and 98 unknown. The total number of TP samples of LUSC
patients who had HFE genotype information was 507. Among 507 samples, there were 300
Caucasian, 28 Black, 9 Asian, and 170 unknown. We accessed HFE gene variant data from
Cancer Genomics Hub (CGHub) using GeneTorrent and GTFuse software (AnnaiSystems,
Carlsbad, CA) to extract and download only HFE genes from complete mapped sequence
(BAM) files. Genome Analysis Toolkit (GATK) software, based on the GATK best practices
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pipeline, was used to identify HFE gene variants (H63D, C282Y) from the sequences as we pre-
viously reported [40]. Clinical data for the TCGA lung adenocarcinoma and lung squamous
cell carcinoma cohorts was accessed with TCGA biolinks [42-44]. During our TCGA lung
cancer data analysis, we noticed that some patients had extremely short follow-up times (< 30
days). Because we were concerned that these short survival times could bias the results of our
survival analyses, we performed HFE genotype status and survival analyses using either (i) all
subjects, or (ii) all subjects with follow-up times greater than 30 days (both living and
deceased). The two approaches produced highly concordant results. Therefore, the results pre-
sented here are based on an analysis of all patients.

Association between HFE genotype/HFE expression/Sex and survival in
TCGA lung cancer patients

RNA sequencing (RNA-Seq) and clinical data from the TCGA LUAD and LUSC cohorts were
accessed from the Broad Institute’s Firehose GDAC (https://gdac.broadinstitute.org/). We
applied a log transformation to the resulting normalized RSEM (RNA-Seq by Expectation-
Maximization) values from RNA-Seq, so gene expression was quantified as log2 (RSEM + 1).
Primary tumor samples (LUAD, n = 515; LUSC, n = 445) and matched patient’s normal sam-
ples (LUAD, n = 58; LUSC, n = 33) were identified from the TCGA barcodes. Kruskal-Wallis
tests or Wilcoxon rank sum tests were used to compare HFE expression values in the following
groups: (i) HFE variant vs. HFE wild type (WT), (ii) females vs. males. Separate analyses were
performed for primary tumor and matched blood samples in each subject. Additionally, H63D
and C282Y variants were considered separately in each tumor type, and the variant status for
matched normal samples was determined by the status of the matched primary tumor sample.
Kaplan-Meier plots and log rank tests were applied to compare survival times in groups
defined by HFE expression level. Survival times were compared for females and males after
defining HFE expression groups as high or low based on median expression or based on quar-
tiles. Additionally, multivariable Cox proportional hazards models were fit using either HFE
genotype or HFE expression while adjusting for tumor stage (early stage (I/II) vs. advanced
stage (III/IV)), age at diagnosis, gender, and smoking (never smoked vs. any smoking history).
All survival analyses were performed after restricting to Caucasians only.

Statistical analysis

Comparisons of HFE gene variant frequency between samples were determined using Fisher's
exact test or Chi-square test. Additionally, the associations between HFE gene variant and sex
were examined using Fisher’s exact test. The association between patients’” overall survival and
HFE polymorphisms (H63D, C282Y) was indicated by Kaplan-Meier survival curve and ana-
lyzed by log-rank test. The log-rank test results were further examined using multi-variable Cox
proportional hazards regression models, by controlling for several known confounders. R 3.5.0
(R Foundations) was used to conduct all data analyses for HFE expression related study [45],
and the survival analyses were performed using the survival R package [46] and GraphPad
Prism 7 software. All tests were two-sided and the statistical significance level was set to 0.05.

Results
HFE genotype of lung cancer cell lines

Of the ten lung cancer cell lines investigated, 6 expressed the H63D HFE variant and 1 had the
C282Y HFE variant (Table 1). Only 1 large cell lung cancer cell line did not have a HFE gene
variant and the only squamous cell carcinoma cell line was heterozygote for C282Y.
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Table 1. HFE genotype of lung cancer cell lines.

Name Tissue or cancer type Stage H63D HFE C282Y HFE
A549 Carcinoma NA hetero wildtype
H23 Adenocarcinoma, Non-small cell lung cancer NA hetero wildtype
H441 Papillary adenocarcinoma NA hetero wildtype
H460 Carcinoma; large cell lung cancer NA wildtype wildtype
H520 Squamous cell carcinoma NA wildtype hetero
H522 Adenocarcinoma, Non-small cell lung cancer 2 hetero wildtype
H838 Adenocarcinoma, Non-small cell lung cancer 3B wildtype wildtype
H1299 Carcinoma, Non-small cell lung cancer NA wildtype wildtype
H1650 Adenocarcinoma; bronchoalveolar carcinoma 3B hetero wildtype
H1993 Lung adenocarcinoma 3A homo wildtype

NA (not available); hetero (heterozygote); homo (homozygote)

https://doi.org/10.1371/journal.pone.0226821.t001

Frequency of HFE genotype in lung cancer patients

We determined the frequency of HFE gene variants in lung cancer patients (adenocarcinoma
of the lung, squamous cell lung cancer) seen in our Penn State Hershey Medical Center
(PSHMC), and publically available lung cancer databases. The characteristics of lung cancer
patients, such as median age, age range, and male: female ratio, are summarized in Table 2.
We limited our analysis to Caucasians because of the higher frequency of HFE polymor-
phisms compared to other races [19-21]. Among 53 lung adenocarcinoma patients in
PSHMCG, the frequency of H63D and C282Y HFE gene variant was 32.0% and 13.2%, respec-
tively (S1 Table). In squamous cell lung cancer patients, the frequency of H63D and C282Y
HFE variant was 14.6% and 12.2%, respectively (S1 Table). The allele frequency of H63D HFE
was 20.8% and 8.5% for C282Y HFE in lung adenocarcinoma, and 7.3% for H63D HFE and
7.3% for C282Y HFE in lung squamous cell carcinoma. Statistical analysis revealed a lower fre-
quency of H63D HFE alleles in squamous cell carcinoma compared to adenocarcinoma

Table 2. Characteristics of our study sample, TCGA lung cancer, and 1000Genome data.

PSHMC LUAD PSHMC LUSC |TCGA TCGA TCGA TCGA PSHMC Non- | White in
(n=53) (n=41) LUAD_NB LUAD_TP LUSC_NB LUSC_TP cancer (n = 94) | 1000Genome Phase
(n=307) (n=381) (n=203) (n =300) @ 3 (n=185) b
Median age | 70, 73, 67, 67, 68, 68, 58, NA
(years old) | (Male: 71; (Male: 73; (Male: 66.5; (Male: 66.5; (Male: 68; (Male: 68; (Male: 61;
Female: 68.5) Female: 70) Female: 67) Female: 67) Female: 69.5) Female: 69) Female: 56)
Range of 48-90, (Male: | 40-84, (Male: 33-88, (Male: 38— | 33-88, (Male: 44-85, (Male: 40-85, (Male: 40-85, (Male: NA
age (years | 54-84; Female: | 54-81; Female: | 88; Female: 33— | 38-88; Female: 46-85; Female: | 40-85; Female: | 41-82; Female:
old) 48-90) 40-84) 87) 33-87) 44-83) 44-83) 40-85)
Male : 23:30(1:1.3) |28:13(2.15:1) | 140:167(1:1.2) |172:209(1:1.2) | 151:52(2.9:1) |219:81(27:1) |34:60(1:1.8) |80:102(1:1.3)
Female
(ratio)

LUAD (lung adenocarcinoma)

LUSC (lung squamous cell carcinoma)

NB (blood normal)

TP (tumor patient)

3Lee SY et al. PLoS One. 2017;12(3):e0174778. [40]

There are a total of 1,077 samples (527 male, 550 female) listed on the website, however, only a subset have sequences. There are 185 European subpopulation (80 male,
102 female, 3 unknown). Age information is not available.

https://doi.org/10.1371/journal.pone.0226821.t1002
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Fig 1. Allele frequency of HFE variants in lung cancers and control population (non-cancer general population). (A) H63D HFE allele frequency in the blood
samples of lung cancer patients (TCGA LUAD or LUSC, PSHMC) and non-cancer control (PSHMC non-cancer, 1000Genome, and White of Adams study in 2005
[20]). The asterisk (*) indicates significantly decreased H63D HFE allele frequency in LUSC of PSHMC patients compared to non-cancer control population. p<0.05 (B)
C282Y HFE allele frequency in the blood samples of lung cancer patients (TCGA LUAD or LUSC, PSHMC) and general population (PSHMC non-cancer,
1000Genome, and White of Adams study in 2005 [20]).

https://doi.org/10.1371/journal.pone.0226821.9001

(p =0.007). In comparison to non-cancer population adenocarcinoma tended to have higher
C282Y HFE allele frequency (p = 0.08) compared to 1000Genome database. Squamous cell car-
cinoma had significantly lower H63D HFE allelic frequency than the PSHMC control samples
(p =0.0336) or 1000Genome data (p = 0.04).

There were no differences between TCGA lung cancer samples (LUAD, LUSC) and non-
cancer population for the frequency of HFE genotype or HFE alleles (S2 Table). The summary
of allele frequencies for H63D HFE and C282Y HFE in lung cancers and controls are summa-
rized in Fig 1.

Association between HFE genotype and sex in the lung cancer patients

Because distinct male: female ratios exist in two lung cancer types (lung adenocarcinoma, lung
squamous cell carcinoma), the HFE genotype data were stratified by sex. There was an increase
in the C282Y HFE allelic frequency in female LUAD patients in the TCGA database

(p =0.0474) (Table 3) but not in the PSHMC database (S3 Table). There were no sex differ-
ences in the H63D HFE allele groups.

Association between HFE genotype and HFE expression and sex in TCGA
lung cancer data (Caucasian patients)

We evaluated the association between HFE genotype and HFE mRNA expression in TCGA
lung cancer data. There were no differences between WT and H63D or C282Y HFE variants in
matched normal or primary tumors of LUAD and LUSC lung cancer patients in two sample t-
test (S1 and S2 Figs). The level of HFE expression was not different between males and females
in matched normal or primary tumors of LUAD and LUSC lung cancer patients in two sample
t-test (S1 and S2 Figs). There were no HFE expression differences between WT and HFE vari-
ants in male or female LUAD and LUSC in the TCGA lung cancer dataset (Fig 2).
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Table 3. Frequency of HFE genotype and alleles based on sex in TCGA lung cancer (Caucasian patients).

TCGA LUAD TCGA LUSC
NB (n = 307) TP (n = 381) NB (n = 203) TP (n = 300)
Male Female Male Female Male Female Male Female
(n =140) (n=167) (n=172) (n=209) (n=151) (n=52) (n=219) (n=81)
Genotype
H63/D63 (heterozygote) 37 (26.4%) 46 (27.5%) 41 (23.8%) 57 (27.3%) 32 (21.2%) 13 (25.0%) 46 (21.0%) 20
(24.7%)
D63/D63 (homozygote) 6 7 6 8 3 1 7 3
(4.3%) (4.2%) (3.5%) (3.8%) (2.0%) (1.9%) (3.2%) (3.7%)
C282/Y282 (heterozygote) 12 22 (13.2%) 14 (8.1%) 30 (14.4%) 20 (13.2%) 5 27 (12.3%) 5(6.2%)
(8.6%) (9.6%)
Y282/Y282 (homozygote) 0 (0.0%) 3 (1.8%) 1 (0.6%) 2 (1.0%) 0(0.0%) 1(1.9%) 0(0.0%) 1(1.2%)
Alleles
H63D HFE 49/280 60/334 (18.0%) | 53/344 73/418 (17.5%) | 38/302 15/104 60/438 26/162
(17.5%) (15.4%) (12.6%) (14.4%) (13.7%) (16.1%)
C282Y HFE 12/280 (4.3%) | 28/334 (8.4%) 16/344 (4.7%) | 34/418 (8.1%) | 20/302 (6.6%) | 7/104 (6.7%) | 27/438 (6.2%) | 7/162 (4.3%)
Fisher’s exact test (Male vs. p =0.9142 (H63D) p = 0.4268 (H63D) p = 0.6082 (H63D) p = 0.4249 (H63D)
Female) p = 0.0474 (C282Y) p = 0.0549 (C282Y) p = 1.0 (C282Y) p = 0.4308 (C282Y)

Values were expressed as n = N (%)
LUAD (lung adenocarcinoma)

LUSC (lung squamous cell carcinoma)
NB (blood normal)

TP (tumor patient)

https://doi.org/10.1371/journal.pone.0226821.t003

Impact of HFE genotype on the metastasis of lung cancer patients at
PSHMC

Metastatic disease was only available in the PSHMC database. The incidence of metastasis in
lung cancer patients at PSHMC revealed no statistical difference between WT and HFE poly-
morphisms but when we stratified for sex, there were significant differences between WT and
HFE polymorphisms (Table 4). None of the H63D HFE male adenocarcinoma patients devel-
oped metastases while 50% of WT HFE male patients did (p = 0.0189); whereas in females the
findings were opposite with H63D HFE carriers tending to develop more metastases than WT
HFE (p = 0.0596). With the C282Y HFE variant, male adenocarcinoma patients tend to
develop more metastases compared to WT HFE male carriers (p = 0.0672) while there is no
difference in females. In squamous cell lung cancer, neither of the HFE variants (H63D and
C282Y) or sex impacted metastatic rate.

Association between HFE genotype/HFE expression/Sex and patient
survival in lung cancer patients at PSHMC and TCGA lung cancer data

There was no survival difference between WT and H63D HFE (p = 0.2866 for LUAD;
p = 0.3740 for LUSC), or WT and C282Y HFE (p = 0.6568 for LUAD; p = 0.2498 for LUSC)
lung cancer patients who enrolled at PSHMC (S3 Fig).

In TCGA database, the Kaplan-Meier survival curve for lung adenocarcinoma patients
showed a trend toward poorer survival in H63D HFE variants compared to WT HFE patients
(p =0.0763) (Fig 3A). When the analysis focused on H63D homozygotes compared to WT
HFE patients, the survival difference was marginally significant (p = 0.0539) (S4A Fig). The
survival for WT HFE patients and C282Y HFE patients was not different (Fig 3B). The
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Fig 2. Association between HFE expression and HFE genotype or sex in TCGA lung cancer data. (A) HFE gene expression based on HFE genotype (WT, H63D,
C282Y, H63D and C282Y) in male primary tumor LUAD patients. (B) HFE gene expression based on HFE genotype (WT, H63D, C282Y, H63D and C282Y) in female
primary tumor LUAD patients. (C) HFE gene expression based on HFE genotype (WT, H63D, C282Y, H63D and C282Y) in male primary tumor LUSC patients. (D)
HFE gene expression based on HFE genotype (WT, H63D, C282Y, H63D and C282Y) in female primary tumor LUSC patients. Kruskal p = the p-value for the Kruskal-
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C282Y HFE, Wilcox p3 = the p-value for the Wilcoxon rank sum test comparing the median HFE expression levels in WT HFE vs. H63D/C282Y HFE.

https://doi.org/10.1371/journal.pone.0226821.g002

Kaplan-Meier survival curve for LUSC patients revealed a significant survival difference
between WT HFE patients and C282Y HFE patients (p = 0.0067), but not between WT HFE

and H63D HFE variants (Fig 3C and 3D).

We performed multiplex Cox regression to double check the bivariate associations
(Kaplan-Meier curve) between HFE gene variant and overall survival by further controlling
other possible factors (tumor stage etc.) that could contribute to the overall survival. The effect
of C282Y HFE variant on LUSC patient survival remains significant after controlling for age,
tumor stage, and smoking status in multiple Cox regression (Table 5).

When we stratify the survival data by sex and HFE genotype we found that male LUAD
patients with H63D HFE had no survival difference compared to WT HFE and female LUAD
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Table 4. HFE genotype and metastasis rate based on sex of lung cancer patients at PSHMC.

Male

H63D
HFE

C282Y
HFE

Female

H63D
HFE

C282Y
HFE

CC

CG or
GG

GG

GA or
AA

CC

CG or
GG

GG

GA or
AA

PSHMC LUAD
(n=23),
n (%)

14 (60.9%)
9 (39.1%)

19 (82.6%)
4(17.4%)

LUAD (n=30),n
(%)

22 (73.3%)

8 (26.7%)

27 (90.0%)
3 (10.0%)

LUAD (lung adenocarcinoma)

LUSC (lung squamous cell carcinoma)

https://doi.org/10.1371/journal.pone.0226821.1004

Metastasis, n

Fisher’s exact test (WT HFE vs | PSHMC LUSC

Metastasis, n

Fisher’s exact test (WT HFE

(%) variant HFE) (n=28),n (%) (%) vs variant HFE)
7 (50.0%) p=0.0189 24 (85.7%) 10 (41.7%) p=0.0978

0 (0.0%) 4(16.7%) 4 (100.0%)

4(21.1%) p=0.0672 24 (85.7%) 11 (45.8%) p =0.5956

3 (75.0%) 4(16.7%) 3 (75.0%)

Metastasis, n

Fisher’s exact test (WT HFE vs

LUSC (n=13), n (%)

Metastasis, n

Fisher’s exact test (WT HFE

(%) variant HFE) (%) vs variant HFE)
3 (13.6%) p =0.0596 11 (84.6%) 2 (18.2%) p=1.0

4 (50.0%) 2 (15.4%) 0(0.0%)

7 (25.9%) p=10 12 (92.3%) 2 (16.7%) p=10

0 (0.0%) 1(7.7%) 0 (0.0%)

patients with H63D HFE had significantly poorer survival compared to WT HFE (p = 0.0455)
(Fig 4A and 4B). The dramatic difference in survival for male LUSC patients with C282Y HFE
compared to WT HFE did not reach statistical significance (p = 0.0665); however, female
LUSC patients with C282Y HFE had significantly poorer survival compared to WT HFE

(p =0.0283) (Fig 4C and 4D).

We further compared the survival of lung cancer patients based on HFE expression and sex.
The survival pattern was not different regardless of HFE expression levels in lung cancer
patients. There were no survival differences between lower 50% and upper 50%, or between
lower 25% and upper 75% in TCGA lung cancer dataset (S5 Fig). In general, the survival curve
between males and females was not different regardless of HFE expression levels in lung cancer
patients (S6 and S7 Figs). However, when HFE expression level is in the upper 50%, male
LUAD and LUSC patients tend to had poorer survival than females (S6 and S7 Figs).

Discussion

The present study determined the frequency of HFE polymorphisms in lung cancer cell lines
and human lung cancer patients. We found 7 of 10 lung cancer cell lines had the H63D or
C282Y varijant of the HFE gene. This result provided motivation to interrogate lung cancer
samples from our institute and existing database such as TCGA for the frequency and impact
of HFE gene variants on lung cancer.

There are significant HFE genotype and sex differences for survival and metastatic disease.
In the TCGA lung cancer database, adenocarcinoma patients with H63D HFE trended to have
poorer survival outcomes than WT HFE, but when the outcome data were stratified by sex the
difference in survival outcome became statistically significant for females. The TCGA database
does not include information on metastatic disease so we used our smaller internal database
(PSHMC) and found a sex and genotype dependent effect for adenocarcinoma patients; males
with the H63D HFE variant had less metastasis and females with the H63D HFE variant had
more metastasis. There is no frequency increase in H63D HFE in the squamous cell cancer
population or impact on the disease noted in our studies. These interesting results suggest that
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Fig 3. Kaplan-Meier survival curve for TCGA lung cancer patients (Caucasians) with HFE genotype. (A) Survival curve of LUAD patients with WT or H63D HFE.
(B) Survival curve of LUAD patients with WT or C282Y HFE. (C) Survival curve of LUSC patients with WT or H63D HFE. (D) Survival curve of LUSC patients with
WT or C282Y HFE. Statistical analysis was performed by log-rank test and indicated as p value. Censored record is indicated as + in the graph.

https://doi.org/10.1371/journal.pone.0226821.9003

H63D HFE variant protects lung cancer metastasis in males, but enables metastasis in females.
As far as we know, this is the first report for the impact of HFE variants and sex on lung cancer
patients’ outcome.

In addition to the H63D variant of the HFE gene, the C282Y HFE variant is also found in
the general population although at a lower prevalence. This gene variant has received consider-
able attention in hepatic cancers because of its tendency to be associated with hemochromato-
sis, the iron overload disease. In the TCGA database, individuals with squamous cell
carcinoma that carry C282Y HFE have poorer survival than WT HFE. Moreover, when strati-
fied for sex, it appears the females with C282Y are driving the significant difference as their
survival outcome is much worse than males. There is no impact of this genotype of metastatic
disease in the squamous cell cancer population. There is no statistically significant effect of
C282Y HFE on the adenocarcinoma population, but there is a trend toward greater frequency
of metastatic disease in males compared to females although the sample size is small. All these

PLOS ONE | https://doi.org/10.1371/journal.pone.0226821

December 19, 2019 10/17


https://doi.org/10.1371/journal.pone.0226821.g003
https://doi.org/10.1371/journal.pone.0226821

@ PLOS|ONE

HFE genotype and expression in lung cancer

Table 5. Hazard ratios from the multiple-variable Cox model for the TCGA lung cancer (Caucasian patients).

LUAD:
H63D variant
AgeAtDiagnosis
Tumor stage
Smoking
LUSC:
H63D variant
AgeAtDiagnosis
Tumor stage

Smoking

LUAD (lung adenocarcinoma)

Multivariate analysis

HR

0.71 (0.38-1.32)
1.00 (0.98-1.04)
3.60 (1.93-6.55)
2.00 (1.08-3.55)

1.80 (0.59-5.24
1.00 (0.96-1.06
2.50 (1.10-5.68
0.82 (0.36-1.84

st N2l N2 Rt

LUSC (lung squamous cell carcinoma)

HR (hazard ratio)

P-value

0.2803
0.5381
<0.0001
0.0275

0.3084
0.6639
0.0279
0.6286

C282Y variant
AgeAtDiagnosis
Tumor stage

Smoking

C282Y variant
AgeAtDiagnosis
Tumor stage

Smoking

Multivariate analysis

HR

1.70 (0.70-4.23)
1.00 (0.98-1.05)
4.20 (2.26-7.63)
1.90 (1.03-3.40)

0.32 (0.13-0.78)
1.00 (0.97-1.06)
2.40 (1.08-5.51)
0.58 (0.24-1.42)

P-value

0.2409
0.4285
<0.0001
0.0392

0.0130
0.6231
0.0316
0.2349

Covariates: Age at diagnosis (continuous), tumor stage (two categories, 3&4 vs 1&2), and smoking status (ever smoked vs never smoked)

https://doi.org/10.1371/journal.pone.0226821.t005
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data suggest that females with C282Y HFE are a risk factor for lung squamous cell carcinoma.
In our previous PSHMC GBM samples study, we found poorer survival in female metastatic

brain tumor patients with C282Y HFE than WT HFE patients or male metastatic brain tumor
patients with C282Y HFE [39]. The data implies that the metastatic potential of C282Y HFE is
both cancer type and sex dependent.
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Fig 4. Kaplan-Meier survival curve for TCGA lung cancer patients (Caucasians) based on sex and HFE genotype. (A) Survival curve of male LUAD patients with
WT or H63D HFE or C282Y HFE. (B) Survival curve of female LUAD patients with WT or H63D HFE or C282Y HFE. (C) Survival curve of male LUSC patients with
WT or H63D HFE or C282Y HFE. (D) Survival curve of female LUSC patients with WT HFE or H63D HFE or C282Y HFE. Statistical analysis was performed by log-
rank test and indicated as p value. Censored record is indicated as + in the graph.

https://doi.org/10.1371/journal.pone.0226821.9004
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Although we found HFE genotype and sex effect for lung cancer patient’s survival and met-
astatic disease, this is not related with the frequency of HFE genotype/alleles. For example, we
observed higher frequency of C282Y HFE allele in female lung adenocarcinoma patients than
male patients in TCGA; however, there was no survival difference between female C282Y HFE
and male C282Y HFE lung adenocarcinoma patients. Instead, we found survival difference
between female H63D HFE adenocarcinoma patients and female WT HFE adenocarcinoma
patients.

In the present study, the level of HFE gene expression was not different between WT HFE
and HFE variants of lung cancer patients (matched normal, primary tumors) in TCGA lung
cancer data. In addition, HFE gene expression level did not impact survival of TCGA lung can-
cer patients (LUAD, LUSC) even when stratified for sex. These results suggest that poor sur-
vival in female lung adenocarcinoma with H63D HFE and female lung squamous cell cancer
with C282Y HFE is not due to the expression level of HFE variants or frequency of HFE geno-
type but rather the function of HFE variant itself. There are many reports for the function of
H63D or C282Y HFE in human cancer. For example, at the cellular level, the HFE H63D vari-
ant alters cholesterol metabolism [47], Endoplasmic Reticulum stress [48] and alters cancer
phenotype [41, 49] including the protein profiles of exosomes [50]. Mouse H67D Hfe variant
(human equivalent for H63D HFE variant) also alters macrophage function [51]. The C282Y
HFE variant contributes therapy resistance and increased tumor burden [49]. Therefore, we
will pursue the impact of sex and HFE variants in LUAD and LUSC in animal models as a
future direction.

There are no consistent results between PSHMC and TCGA lung cancer samples for HFE
genotype and cancer patient survival. When we compare the key variables between the TCGA
lung cancer and the PSHMC samples, there are difference in age at diagnosis (e.g., median age:
70 years old for PSHMC vs. 67 years old for TCGA LUAD; p = 0.0026), smoking status (e.g.,
PSHMC vs. TCGA LUAD; p<0.0001), and the vital status (e.g., PSHMC vs. TCGA LUAD;

p = 0.001) suggesting the PSHMC and TCGA cohorts have important distinctions. Therefore,
we only showed Kaplan-Meier survival curve of PSHMC samples without Cox-regression
results.

In summary, the H63D HFE gene variant is associated with poor survival and increased
metastasis in female, but not male, LUAD patients. Although the frequency of C282Y HFE
gene variant is higher in female LUAD patients than males, there was no gene effect on sur-
vival in these patients. However, the C282Y HFE gene variant is associated with poor survival
in LUSC patients, especially females. The present findings indicate that there is a distinct
impact of H63D and C282Y HFE variants in two different subtype of human lung cancers and
impact of the genotype is influenced by sex.

Supporting information

S1 Fig. Association between HFE gene expression and HFE genotype or sex in TCGA
LUAD patients. (A) HFE gene expression based on WT HFE vs. H63D HFE in matched nor-
mal or primary tumor LUAD patients. (B) HFE gene expression based on WT HFE vs. C282Y
HFE in matched normal or primary tumor LUAD patients. (C) HFE gene expression based on
males vs. females in matched normal or primary tumor LUAD patients. P value was calculated
from Wilcoxon rank sum tests to compare HFE expression values in the HFE mutant vs. HFE
wild type.

(PPTX)

S2 Fig. Association between HFE gene expression and HFE genotype or sex in TCGA
LUSC patients. (A) HFE gene expression based on WT HFE vs. H63D HFE in matched
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normal or primary tumor LUSC patients. (B) HFE gene expression based on WT HFE vs.
C282Y HFE in matched normal or primary tumor LUSC patients. (C) HFE gene expression
based on males vs. females in matched normal or primary tumor LUSC patients. P value was
calculated from Wilcoxon rank sum tests to compare HFE expression values in the HFE
mutant vs. HFE wild type.

(PPTX)

S3 Fig. Kaplan-Meier survival curve for PSHMC lung cancer patients (Caucasians) with
HFE genotype. (A) Survival curve of LUAD patients with WT HFE or H63D HFE. (B) Survival
curve of LUAD patients with WT HFE or C282Y HFE. (C) Survival curve of LUSC patients
with WT HFE or H63D HFE. (D) Survival curve of LUSC patients with WT HFE or C282Y
HFE. Statistical analysis was performed by log-rank test and indicated as p value. Censored
record is indicated as + in the graph.

(PPTX)

$4 Fig. Kaplan-Meier survival curve for TCGA lung cancer patients (Caucasians) with HFE
genotype. (A) Survival curve of LUAD patients with WT HFE or heterozygote or homozygote
H63D HFE. (B) Survival curve of LUSC patients with WT HFE or heterozygote or homozygote
C282Y HFE. LUSC with C282Y HFE heterozygote had poorer survival than WT HFE

(p = 0.0052). Statistical analysis was performed by log-rank test and indicated as p value. Cen-
sored record is indicated as+ in the graph.

(PPTX)

S5 Fig. Effect of HFE gene expression level on survival of TCGA lung cancer patients. (A)
Kaplan-Meier survival curve of TCGA LUAD patients based on lower 50% or upper 50% of
HFE gene expression. (B) Survival curve of TCGA LUAD patients between lower 25% and
upper 75% of HFE gene expression. (C) Survival curve of TCGA LUSC patients based on
lower 50% or upper 50% of HFE gene expression. (D) Survival curve of TCGA LUSC patients
between lower 25% and upper 75% of HFE gene expression. P value was calculated from log
rank tests to compare survival times in groups defined by HFE expression level.

(PPTX)

S6 Fig. Effect of HFE gene expression level and sex on survival of TCGA LUAD data. Sur-
vival curve between males and females of TCGA LUAD patients based on HFE gene expres-
sion at lower 25% (A) or lower 50% (B) or upper 50% (C) or upper 75% (D). Log rank tests
were used to compare survival times in groups defined by HFE expression level.

(PPTX)

S7 Fig. Effect of HFE gene expression level and sex on survival of TCGA LUSC data. Sur-
vival curve between males and females of TCGA LUSC patients based on HFE gene expression
at lower 25% (A) or lower 50% (B) or upper 50% (C) or upper 75% (D). Log rank tests were
used to compare survival times in groups defined by HFE expression level.
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