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Summary
Non-alcoholic fatty liver disease (NAFLD) is a major cause of liver disease worldwide, affecting up to
30% of adults. Progression to non-alcoholic steatohepatitis (NASH) is a key risk factor for cirrhosis,
hepatocellular carcinoma and cardiovascular events. Alterations in reproductive hormones are
linked to the development and/or progression of NAFLD/NASH in women. Women with polycystic
ovary syndrome and those with oestrogen deficiency are at increased risk of NAFLD/NASH, with
higher mortality rates in older women compared to men of similar ages. NAFLD/NASH is currently
the leading indication for liver transplantation in women without hepatocellular carcinoma.
Therefore, a better understanding of NAFLD in women is needed to improve outcomes. In this re-
view, we discuss the hormonal and non-hormonal factors that contribute to NAFLD development
and progression in women. Furthermore, we highlight areas of focus for clinical practice and for
future research.
© 2023 The Authors. Published by Elsevier B.V. on behalf of European Association for the Study of the
Liver (EASL). This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).
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Introduction
Non-alcoholic fatty liver disease (NAFLD) is a
chronic liver disease characterised by increased
hepatic fat content (>−5%), which is diagnosed after
exclusion of well-established causes of hepatic
steatosis such as alcohol, steatogenic drugs and
inherited errors of metabolism.1 Hepatic triglycer-
ide accumulation by itself is not hepatotoxic.2

However, pathogenic processes such as adipose
tissue dysfunction,3 gut microbiome dysbiosis,4

fructose-induced mitochondrial dysfunction and
endoplasmic reticulum stress5 may drive hepatic
steatosis to hepatic inflammation and hepatocel-
lular ballooning (non-alcoholic steatohepatitis or
NASH), leading to fibrosis and eventually cirrhosis.6

Liver fibrosis represents the main predictor of liver
and non-liver-related adverse clinical outcomes.
Hepatocellular carcinoma (HCC) can occur in pa-
tients with cirrhosis and in patients without
cirrhosis.

Globally, the prevalence of NAFLD is 30%,7

which is projected to rise to 56%,8 paralleling the
increasing incidence of obesity and type 2 diabetes.
In adults, up to a third of patients with NAFLD
develop NASH over a period of �7 years,9 and
around 40% of the individuals who have histologi-
cally proven NASH progress to fibrosis.10 The
prevalence of NAFLD is higher in men than in pre-
menopausal women below the age of 50 years.9

However, in women, the prevalence of NAFLD in-
creases after menopause, with a rising trend
observed after the age of 50 years, which peaks at
60 to 69 years, before declining in those aged >−70
years.10

Recently, a panel of international experts pro-
posed the redefinition of NAFLD to metabolic
dysfunction-associated fatty liver disease (MAFLD)
based on the presence of hepatic steatosis and
metabolic risk factors (overweight/obesity, type 2
diabetes and/or metabolic dysfunction).11 The term
MAFLD may include patients with concomitant
causes of liver diseases and it may exclude those
with steatosis but without the full spectrum of
metabolic risk factors.12 However, some studies
suggest women with NAFLD may be less likely to
be meet the criteria for diagnosis of MAFLD than
menwith NAFLD,13 which could have a detrimental
effect on outcomes in women. Hence, we have
elected to use the NAFLD nomenclature in this
review.

Women aged >−50 years with NAFLD are 1.2
times more likely to develop NASH compared to
age-matched men and are more likely to progress
to advanced fibrosis,14 with preliminary tran-
scriptomic and plasma profiling studies suggesting
that NAFLD may follow a distinct biological tra-
jectory in women aged >−50 years.15,16 Liver fibrosis
stage is associated with increased mortality from
0.32 deaths per 100 person-years at stages F0 to F2
to 1.76 deaths per 100 person-years at stage F4.17

Predicting the presence of fibrosis with blood-
based non-invasive markers, which may perform
differently according to sex, may require dedicated
cut-offs for women.18 Notably, women tend to have
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Key points

� Women with NAFLD have different outcomes compared to men with
NAFLD.

� In women, age of menarche, menopausal status, body fat distribution,
reproductive hormones, sarcopenia and certain conditions (including
Turner syndrome and polycystic ovary syndrome) influence the
development and progression of NAFLD.

� Oestrogen deficiency is associated with increased lipogenesis, fatty acid
oxidation and progression of NAFLD whereas androgen excess in-
creases the risk of NAFLD development.

� In the absence of licensed treatments for NAFLD, cardiovascular and
metabolic risk reduction remain the mainstay of NAFLD management.
However, sex-specific guidelines are lacking.

� Evidence-based data on the influence of sex on biomarker sensitivity
and sex-specific prediction models are needed to facilitate imple-
mentation of personalised treatment strategies in women with NAFLD.
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lower serum liver enzyme activities than age-matched men.18

Nevertheless, there is no evidence that non-invasive markers
of fibrosis, such as the FIB-4 and NAFLD fibrosis scores, which
rely heavily on the measurement of transaminase activities, may
perform differently in women. Interestingly, a recently devel-
oped non-invasive marker, called the AGILE 3+ score, has
demonstrated how integrating sex with other clinical parame-
ters may improve the risk stratification of patients with NAFLD.19

In addition, HCC occurs less frequently in women than men, in
both patients with and without cirrhosis,20 suggesting that
dedicated surveillance strategies may need to be explored.

NASH is the leading cause of end-stage liver disease requiring
transplantation in women who do not have HCC.21 In women
undergoing liver transplantation, long-term survival is higher
than in men.22 However, women are more likely to die whilst on
the waiting list for liver transplantation due to NASH, partly due
to underestimation of mortality in women using current strati-
fication scores (i.e. the MELD [model of end-stage liver disease]
score). A sex- and sodium-adjusted MELD score for liver trans-
plant allocation has recently been proposed,23 which may help to
ensure more equitable access to liver transplantation.

Women with NAFLD have increased mortality rates from
cardiovascular disease (CVD) compared to women without
NAFLD.24 This excess risk of CVD is also higher in women
compared to age-matched men with NAFLD (e.g. 10% in a 40-year
old woman with NAFLD vs. 8% in a 40-year old man with
NAFLD).25 The excess CVD risk increases with age, and is exag-
gerated after menopause (e.g. in people with NAFLD aged 60
years, the CVD risk in women is 18% vs. 9% in men).25

In this review, we summarise the factors that contribute to
the development and progression of NAFLD in women and in
specific populations. We aim to raise awareness of NAFLD in
women and highlight areas for future research to address gaps in
our understanding of its pathophysiology that will hopefully lead
to improvements in the clinical management of this complex
condition.

Search strategy and selection criteria
A literature search was performed to identify studies investi-
gating NAFLD/NASH in women, published up to November 2022.
Original research and review articles were identified through
searches in the PubMed database, Scopus database, Ovid Med-
line, and Ovid EMBASE, with the search limited to articles pub-
lished in the English language. We included basic science studies,
randomized-controlled trials, reviews, original prospective
studies, cross-sectional studies, retrospective studies and best
practice guidelines using different combinations of the following
search terms: “fatty liver” OR “non-alcoholic fatty liver disease”
OR “NAFLD” OR “steatohepatitis” OR “NASH” OR “liver fibrosis”
OR “liver disease” OR “liver cancer” AND “women” OR “gender”
OR “female” OR “sex difference” OR “reproductive age” OR
“premenopausal women” OR “postmenopausal women”. For ef-
fects of hormones on NAFLD, we used the search terms: “an-
drogens” OR “estrogens” OR “oestrogens” OR “testosterone” OR
“sex hormones” OR “sexual dimorphism” OR “menopause” OR
“hormone replacement therapy” AND “NAFLD” OR “NASH” OR
“steatohepatitis” OR “liver fibrosis”. For effects of NAFLD in
specific population groups, we used a combination of search
terms including “NAFLD in Polycystic Ovary Syndrome”, “NAFLD
in Turner syndrome”.
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Reproductive hormones and NAFLD
Oestrogens
Oestrogens play important roles in regulating lipogenesis and
fatty acid oxidation. Ovariectomised female rats have a 51% in-
crease in hepatic lipogenesis and a 34% reduction in fatty acid
oxidation26 due to decreased synthesis of peroxisome
proliferator-activated receptor a (PPARa, a regulator of fatty acid
oxidation) and upregulation of the genes encoding sterol regu-
latory element-binding protein 1 (SREBP-1, a nuclear transcrip-
tion factor that promotes lipid synthesis).26 Additionally, stearoyl
coenzyme A desaturase 1 (the rate-limiting enzyme in triglyc-
eride synthesis) is upregulated following ovariectomy.27

The metabolic actions of oestrogens are typically attributed to
classical oestrogen receptor-a (ERa encoded by ESR1) signal-
ling.28 Both male and female Esr1 knockout mice exhibit upre-
gulation of lipogenic (SREBP-1 and fatty acid synthase [FASN])
and adipogenic (PPARc and lipoprotein lipase) genes, a process
that is reversed by ERa agonist treatment.26,27 Mice lacking G-
protein coupled oestrogen receptor (GPER) and mice with liver
Esr1-knockout (LERKO) exhibit similar metabolic phenotypes
including higher body weight and increased visceral
adiposity.29,30 Female, but not male, Gper-knockout mice fed a
high-fat diet display lower levels of high-density lipoprotein
(HDL)-cholesterol and greater liver fat accumulation compared
to controls.30 This suggests that both ERa and GPER pathways are
important for hepatic and whole-body lipid homeostasis and
contribute to sexual dimorphism in NAFLD.

Oestrogens also influence reverse cholesterol export, i.e. the
process by which peripheral cholesterol is returned to the liver.31

In LERKO mice, hepatic low-density lipoprotein receptors are
reduced by�18 to 22%31 and hepatic expression of PDZK1 protein
(which plays a role in HDL cholesterol uptake) is reduced by 22%
and 33% in male and female mice, respectively.31 Loss of ERa re-
duces cholesterol efflux from foam cells into HDL particles in fe-
male andmale LERKOmice.31 Thus, oestrogen deficiency disrupts
the molecular machinery involved in hepatic lipogenesis and
adipogenesis. Consistent with these findings, progression from
pre-to post-menopause is independently associated with an in-
crease in total cholesterol and low-density lipoprotein cholesterol
inwomen aged between 47 and 55 years.32 Thismay contribute to
the higher prevalence of NAFLD in post-menopausal women.

Interactions between oestrogens and glucagon may be
important in the pathogenesis of NAFLD. Glucagon promotes
2vol. 5 j 100835



hepatic lipolysis and suppresses de novo lipogenesis. Glucagon
levels have been observed to be inversely associated with NAFLD
progression.33 Attenuation of glucagon receptor signalling is also
proposed to increase the risk of NAFLD.34 Furthermore, in NAFLD,
expression of the glucagon receptor gene and the function of the
glucagon protein may be impaired, resulting in glucagon resis-
tance.33,35 In vitro studies have shown that physiological levels of
oestrogen can inhibit glucagon secretion by binding to the
GPR30 oestrogen receptor,36 while oestradiol-mediated inhibi-
tion of glucagon release is attenuated by deletion of GPR30 re-
ceptors.37 Ovariectomy has also been shown to increase
circulating glucagon in rodents36,38 and glucagon levels are
suppressed by oestradiol treatment.36,39 These data suggest
oestrogen deficiency could have beneficial effects in NAFLD via
increased glucagon levels. However, oestrogen deficiency has
detrimental effects as described above. Therefore, the roles of
oestrogen (and oestrogen deficiency) in the development and
progression of NAFLD require further study.

Androgens
Prenatal exposure of female rodents to androgens disrupts the
balance between enzymes involved in lipogenesis (SREBP, PPAR
and ChREBP [carbohydrate-responsive element-binding pro-
tein]) and lipolysis.40 In young adult ewes, prenatal exposure to
androgens downregulates hepatic PEPCK and causes hepatic in-
sulin resistance.41 Upregulation of expression of other hepatic
metabolic genes including mitogen activated protein kinase 4 (a
pro-inflammatory protein involved in ceramide signalling), UDP-
glucose ceramide glucosyltransferase (involved in ceramide
metabolism) and acyl-coenzyme A dehydrogenase (involved in
lipid metabolism) also occurs, further exacerbating liver
damage.41

The effects of androgens in animal models could be mediated
by changes in body adiposity/composition exacerbated by a
high-fat diet42 and/or via changes in transcriptional activity of
gluconeogenic genes.43 Postnatal exposure of female rodents to
dihydrotestosterone (DHT) induces hepatic steatosis, insulin
resistance and recapitulates the reproductive phenotype of
polycystic ovary syndrome (PCOS).44 In normal weight female
mice, low-dose DHT upregulates SCAP (SREBP cleavage acti-
vating protein) and SREBP-1, which promotes FASN and acetyl-
CoA carboxylase expression, resulting in hepatic steatosis.45 In
DHT-exposed female rats, NASH may develop via activation of
NF-jB signalling, enhanced expression of pro-inflammatory cy-
tokines (IL-6, IL-1b, and TNFa) and an increase in pro-apoptotic
markers.46 Cumulatively, prenatal or postnatal androgen expo-
sure appears to increase the risk of NAFLD development and
progression by increasing lipogenesis and pro-inflammatory
mediators.
Factors contributing to the development and
progression of NAFLD in women
Age of menarche
Earlier onset of menstruation (i.e. age of menarche <12 years) has
been associated with increased risk of cardiometabolic disease in
post-menopausal women.47 In the CARDIA study, earlier
menarche by 1 year conferred a 10% increased risk of NAFLD
(diagnosed using CT scans) in adulthood independent of socio-
economic factors and baseline BMI.47 Early menarche is often
preceded by rapid accumulation of fat during childhood, a
physically less active lifestyle and/or behavioural factors that
JHEP Reports 2023
could also increase the risk of the metabolic syndrome.48

Therefore, other factors such as obesity, insulin resistance or a
hyperandrogenic phenotype (such as in PCOS)49 may interact
with early menarche to confer an additional risk of developing
NAFLD.

Menopausal status
Oestradiol, being the most abundant circulating female repro-
ductive hormone, plays important roles in the regulation of lipid
and glucose metabolism in hepatic and adipose tissues. In pre-
menopausal women, oestradiol is predominantly secreted by
the ovaries.50 However, after menopause,50 ovarian oestrogen
secretion ceases and circulating oestradiol levels decline to a
mean value of �10 pmol/L51, but low quantities are still produced
by non-ovarian tissues.50,52 The decline of circulating oestradiol
during natural menopause is associated with increased risk of
NAFLD, type 2 diabetes, central adiposity and hyper-
triglyceridemia (Fig. 1).53

In a cross-sectional study involving 541 people with biopsy-
proven NASH,54 advanced fibrosis was more prevalent in post-
menopausal women (27.6%) compared to men (22.2%) and pre-
menopausal women (14.4%).54 Women over the age of 50 years
have increased odds of advanced fibrosis (odds ratio 1.8, 95% CI
1.2-2.7) even after adjustment for covariates (enrolling site,
ethnicity and degrees of portal inflammation).54 The risk of se-
vere fibrosis remained elevated in lean post-menopausal women
with NAFLD compared to lean pre-menopausal women with
NAFLD (odds ratio 2.17, 95% CI 1.1-4.5).55 This suggests that
menopause is associated with severe fibrosis that is, in part, in-
dependent of age or body fat composition.

Womenwho have undergone oophorectomy have an increased
risk of NAFLD compared to pre-menopausal womenwho have not
undergone oophorectomy.56 In fact, a stronger association was
observed inwomenwho underwent oophorectomy before the age
of 45 years.56 Similarly, women with premature menopause prior
to the age of 40 years have a 90% increased risk of severe fibrosis
on histology compared to women who went through menopause
after 40 years.57 Conceivably, the duration of oestradiol deficiency
contributes significantly to the risk of post-menopausal hepatic
fibrosis.

Hormone replacement therapy
The role of hormone replacement therapy (HRT) in preventing
the development and/or progression of NAFLD remains unclear.
A randomised double-blind study comparing womenwith type 2
diabetes on oral HRT (1 mg oestradiol plus 0.5 mg norethister-
one) to those on placebo for 6 months showed that women on
HRT (n = 19) had reduced circulating concentrations of liver
enzymes compared to the placebo group (n = 23).58 A South
American study reported that post-menopausal women on HRT
(dose and type of hormones not specified) for at least 6 months
(n = 14) had lower waist circumference, lower HOMA-IR index,
lower ferritin levels (a surrogate marker of parenchymal
inflammation) and lower gamma-glutamyltransferase when
compared with women not taking HRT (n = 79).59 However,
improvement in liver biochemistry may not reflect improvement
in liver histology. Thus, the same group of researchers assessed
the frequency of NAFLD diagnosed by abdominal ultrasound and
reported a lower frequency of NAFLD in women taking HRT (14/
53, 26.4%) compared with women not taking HRT (79/198,
39.9%) irrespective of the type of HRT, duration of use and route
of administration.60
3vol. 5 j 100835



Pre-menopausal
(High oestrogen levels)

Post-menopausal
(Low oestrogen levels) 

Adipose tissue
Visceral adipose tissue
Subcutaneous adipose tissue
Adipose tissue dysfunction

Liver
Insulin sensitivity
Liver fatty acid oxidation
Hepatic lipid deposition

Skeletal muscle
Muscle strength
Muscle fibre
Fat oxidation
Intramyocellular lipid content
Insulin sensitivity

Other metabolic risk increases
Type 2 diabetes
Obesity
Cardiovascular disease 

Fig. 1. Changes occur in adipose tissue, liver and skeletal muscle during the menopause that have detrimental metabolic effects. These may contribute to
the increased prevalence of metabolic conditions in post-menopausal women.
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However, other studies did not report a reduction in the risk
of NAFLD61 or severe hepatic fibrosis amongst post-menopausal
women taking HRT.54 One study demonstrated an increased risk
of severe lobular inflammationwith HRT use in post-menopausal
women and oral contraceptive use in pre-menopausal women.62

Details of the types, routes of administration and doses of oes-
trogens (and progestins), and their differential effects on the risk
of severe inflammation, were not reported. Future studies are
indicated to investigate the impact of synthetic oestrogens and
progestins on the natural history of NAFLD and/or NASH in post-
menopausal women.
Selective oestrogen receptor modulators
Selective oestrogen receptor modulators (e.g. tamoxifen) are
agents that elicit tissue-specific oestrogen receptor agonist or
antagonist activity. Women treated with tamoxifen have a higher
prevalence of NAFLD and an increased risk of progression to
NASH and advanced fibrosis.63 The mechanisms by which
tamoxifen influences NAFLD risk remain unclear. In vitro, genes
involved in lipogenesis and fatty acid synthesis (e.g. SREBP-1c,
FASN, stearoyl coenzyme A desaturase 1 and acetyl coenzyme
A carboxylase) are upregulated after treating HepG2 cells with
tamoxifen.64 Obese female Wistar rats who were fed a high-fat
diet for 15 weeks and then given tamoxifen for 2 weeks were
observed to have increased hepatic lipid synthesis and decreased
triglyceride export.65 This was associated with a marked down-
regulation of sirtuin 1 (SIRT1) and upregulation of p-FoxO1/
LXRa-SREBP1c signalling, leading to increased hepatic stea-
tosis.65 Administration of a SIRT1 agonist inhibited the promo-
tion of tamoxifen-induced lipid synthesis, suggesting that SIRT1
is a regulator of tamoxifen-induced fatty liver disease.65

In addition, tamoxifen-treated ovariectomized C57BL6/J fe-
male mice are protected from HFD-induced steatosis via selec-
tive activation of ERa-activating factor 1 (ERa-AF1).66 This
JHEP Reports 2023
contradicts findings from a previous study indicating that pro-
tective metabolic actions of oestradiol are mediated mostly via
ERa-AF2.66 It is likely that there is redundancy in the ERa-AF1
and ERa-AF2 systems or that the effects of tamoxifen may differ
depending on the tissue type.66 More mechanistic studies are
needed to elucidate the influence of selective oestrogen receptor
modulators on NAFLD. More importantly, targeting liver ERa-AF1
or SIRT1 are potential future strategies to mitigate against the
development and progression of NAFLD.
Turner syndrome
Turner syndrome (TS) is a sex-chromosome disorder in females
caused by an abnormal or absent X chromosome.67 Women with
TS have a 4.4-fold increased risk of type 2 diabetes,68 and a 5.5-
fold increased risk of developing cirrhosis.68 Histological evi-
dence of nodular hyperplasia, NAFLD and cirrhosis have been
described in women with TS.69 Elevated liver enzymes were
found in �50% of women with TS (n = 125).70 Of the 21 women
who had Fibroscans, liver stiffness measurements suggestive of
fibrosis were reported in 38%70 and liver architectural changes
were found in the 11 women who consented to a biopsy.70

Compared to age-matched eugonadal women or oestradiol-
treated women with premature ovarian insufficiency, women
with TS have higher waist circumference, elevated BMI, and
increased IL-6 and triglyceride levels.71 Women with TS also
have increased intrahepatocellular lipid content, which is
correlated to duration of oestrogen deficiency.72 Although larger
studies are needed to explore the relationship between oestra-
diol and metabolic risk, these data suggest a role for oestrogen
deficiency in promoting hepatic steatosis and insulin resistance
in this context.

It is difficult to disentangle the contributions of gonadal
hormones from those of sex chromosomes in patients with TS. In
the FCG (four core genotype) model (in which sex chromosomes
4vol. 5 j 100835



are unrelated to gonadal sex), mice with one X chromosome had
reduced body weight compared to XX mice.73 By contrast,
women with one X chromosome have higher body weight and
increased risks of developing metabolic disease than women
with two X chromosomes.74 Although low levels of sex hor-
mones contribute to the increased risk of developing metabolic
disease, imprinting of X-linked genes may also contribute to
metabolic dysregulation in TS.75 Depending on the parental
origin of the X chromosome, imprinting of maternally trans-
mitted X-linked genes in patients with TS has been shown to
prevent visceral fat accumulation whereas imprinting of pater-
nally transmitted X-linked genes promoted higher triglyceride
and lipid levels.75 The rarity of sex chromosome aneuploidies
presents challenges in determining the relative contributions of
reduced numbers of sex chromosomes and hypogonadism in the
development of NAFLD in women with TS. However, the FCG
mouse model may help advance our understanding of these two
contributing factors.
Polycystic ovary syndrome (PCOS)
PCOS affects up to 13% of women of reproductive age and is
characterised by ovulatory dysfunction, hyperandrogenism and/
or polycystic ovarian morphology.76 Women with PCOS have an
increased prevalence of NAFLD compared to age-, BMI- and waist
circumference-matched women without PCOS.77 This excess risk
is also present in lean women (BMI <25 kg/m2) with PCOS.78 A
concerning finding is the higher prevalence of biopsy-proven
NASH in women with PCOS younger than 40 years.79

Hyperandrogenism is associated with increased NAFLD risk in
women with PCOS. In a retrospective study involving 63,210
women with PCOS, serum testosterone levels >3.0 nmol/L were
associated with an increased risk of NAFLD (hazard ratio 2.30, 95%
Ageing
Menopause

Adipose
tissue 

Pro-in
Increased VAT

Impaired VAT lipid
metabolism

(lipolysis, lipid storage)

Increased inflammatory
infiltrate in VAT Insulin resistance

FFA flow
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Car

Fig. 2. Interactions between adipose tissue, muscle and liver contribute to the
(such as myostatin) mediate adipose tissue-muscle interactions. Ageing and the
mass and quality. Expanded VAT depots increase FFA delivery to the liver, whic
insulin resistance, hyperglycaemia and/or hyperlipidaemia, with consequent dev
fatty liver disease; VAT, visceral adipose tissue.
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CI 1.16–4.53).78 Liver fat is greater in hyperandrogenic women
with PCOS compared to normo-androgenic women with PCOS
after correcting for visceral adiposity and BMI.80 Consistent with
these findings, a cross-sectional study of 400 Chinese womenwith
PCOS concluded that the risk of NAFLD increases with free
androgen index, which is a surrogate measure of androgen
bioavailability.81 Notably, excess androgens are associated with an
increased risk of developing NAFLD in women, independently of
obesity and insulin resistance.81 Women with hyperandrogenic
PCOS also had higher circulating levels of glycerophospholipids
and lysoglycerophospholipids which are potential biomarkers of
NASH.82 Intra-adipose androgen generation by the enzyme aldo-
ketoreductase type 1C3 was increased in the subcutaneous adi-
pose tissue (SAT) of women with PCOS, resulting in lipotoxicity
and predisposing women with hyperandrogenic PCOS to liver
injury.83 Although a causative role for androgens has not been
proven, these association studies suggest a potential use for anti-
androgens in treating women with PCOS and NAFLD.
Body fat distribution
Sex-specific body fat distribution influences an individual’s pre-
disposition to cardiometabolic complications independently of
body weight or body fat percentage.84 Compared to age- and BMI-
matched men, pre-menopausal women typically have greater SAT
mass in the abdominal85 and femoral-gluteal areas.86 By contrast,
men have a higher percentage of visceral adipose tissue (VAT), 10-
20% in men vs. 5-8% in women.87 Given the higher percentage of
VAT inmen, they have a greater ability to depositmeal-derived free
fatty acids (FFAs) into VAT, which results in higher liver fat disposal
(Fig. 2).88 Excess FFAs released into the bloodstream predispose
individuals to lipotoxicity and increased lipid uptake by the liver,
pancreas and/or muscle.89 This overflow of FFAs to the liver could
Liver
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development and progression of NAFLD inwomen. Adipokines and myokines
menopause (i.e. oestrogen deficiency) increase VAT depots and reduce muscle
h has detrimental effects. These alterations in body composition contribute to
elopment and progression of NAFLD. FFA, free fatty acid; NAFLD, non-alcoholic
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lead to increased cellular levels of ceramides, long-chain fatty acyl-
coenzyme A and pro-inflammatory processes causing chronic low-
grade inflammation.89,90 Unsurprisingly, people with increased
VAT mass are more insulin resistant, have impaired glucose meta-
bolism and are more likely to develop NAFLD.91 Indeed, a pro-
spective study showed a rising incidence of NAFLD based on
ultrasound and CT imaging with increasing quintiles of VAT (10.2%,
17.1%,18.1%, 25.2% and 34.4%, respectively) inbothmen andwomen
after amedian follow-up of 4.4 years.92 In this study, after adjusting
for cholesterol and triglyceride levels individuals with the highest
quintile of VAT were more likely to develop NAFLD (hazard ratio
2.23, 95% CI 1.28–3.89) compared to individuals with the lowest
quintile of VAT.

Prior to menopause, women accrue more fat in the SAT, which
protects them from the negative consequences of the metabolic
syndrome.93 As women transition through menopause, both SAT
and VAT increase but VAT expands more at the onset of meno-
pause and then plateaus at a higher set-point after menopause.93

During menopause, changes in SAT and VAT metabolism also
result in alterations in body fat distribution.94 Although pre-
menopausal and post-menopausal women retain similar sensi-
tivity and responsiveness to sympathetic activation by beta-
adrenergic agonists, adipose tissue basal lipolysis rate is
reduced and lipoprotein lipase activity (which promotes hydro-
lysis of circulating triglycerides to FFAs) is enhanced in the
gluteal and abdominal adipose tissues of post-menopausal
women.95 Compared to pre-menopausal women, expression of
FASN is reduced in the SAT of post-menopausal women by 61%,94

whereas PPARc expression is increased in VAT by 83%.94 The
increased PPARc expression in VAT may reflect a compensatory
attempt to curtail the need for increased lipid storage, as VAT
accumulation correlates with features of insulin resistance.94

Interestingly, thiazolidinediones (PPARc agonists used to treat
type 2 diabetes), may promote a redistribution of SAT and a
lower expression of transcriptional genes for VAT, suggesting an
effect on adipose tissue depot-specific regulation.96 However,
their unfavourable safety profile (e.g. increased risks of atypical
humeral fracture and bladder cancer) limits their use in clinical
practice. Changes in adipose tissue metabolism, coupled with
preferential fat accumulation in VAT during menopause predis-
pose women to increased cardiometabolic risk (Fig. 2).97

Oestrogen levels correlate positively with percentage of SAT
and negatively with visceral fat accumulation in pre-menopausal
women.97 Oestrogen treatment decreases insulin resistance by
�50% and decreases abdominal visceral adiposity in post-
menopausal women and ovariectomized female animal
models.98,99 Oestrogen also reverses the increase in hepatic tri-
glyceride content caused by diet-induced obesity in LERKO
mice.100 Evidently, oestrogen plays a role in insulin sensitivity and
glucose homeostasis in women, in addition to promoting fat
accumulation in SAT and modifying the risk of NAFLD progression.
Muscle quality and quantity
Sarcopenia is defined as generalised progressive loss of skeletal
muscle mass, muscle function andmuscle strength. Meta-analyses
have shown that the risks of NAFLD and NASH are increased by
1.5- to 2.5-fold among individuals with sarcopenia.101,102

Furthermore, among individuals with NAFLD, sarcopenia is inde-
pendently associated with hepatic fibrosis after adjusting for
obesity and insulin resistance (odds ratio 2.59, 95% CI 1.22-
5.48).103 Coexistence of sarcopenia and NAFLD doubles mortality
JHEP Reports 2023
risk, independently of fibrosis stage.104 It remains unclear if NAFLD
directly contributes to sarcopenia or sarcopenia causes NAFLD.

Skeletal muscle is a major site of insulin-stimulated glucose
uptake.105 Ageing results in loss of muscle mass and reduction in
type 2 (fast-twitch) muscle fibres (by �10 to 14% per decade).105

Fast-twitch muscles depend on glycolysis for energy produc-
tion,106 and the gradual reduction in fast-twitch muscle during
ageing results in reduced dependence on cytosolic glycolytic
processes for glucose disposal.105 Mitochondrial bioenergetics
are also altered with ageing. Reduced expression of gene regu-
lators, such as PGC-1a (PPARc coactivator-1a) in aged skeletal
muscles suppresses AMP-activated protein kinase, SIRT1 and p38
mitogen-activated protein kinase.107 Suppression of SIRT1 limits
oxidative capacity and lipid metabolism leading to hyper-
lipidaemia, dysregulated glucose metabolism, hyperinsulinemia
and insulin resistance.108

Ectopic fat accumulation in the muscles (myosteatosis) can be
a consequence of insulin resistance and perpetuate NAFLD. Se-
vere myosteatosis is associated with a 2- to 3-fold increased risk
of early NASH in patients with NAFLD.109 In a recent study, the fat
content in psoas skeletal muscle (measured by a parameter
known as skeletal muscle fat index) was observed to be higher in
individuals with NASH and advanced fibrosis (>−F3) than in those
with NASH and early stages of fibrosis (F1 to F2).110 Myosteatosis
promotes endoplasmic reticulum stress, which in turn impairs
mitochondrial function.111 Furthermore, myosteatosis contrib-
utes to reduced skeletal muscle protein synthesis stimulated by
anabolic hormones (insulin, oestradiol and testosterone).111

Oestradiol reduction during menopause further promotes pro-
teolysis, reduction in lean mass, and increased fat mass.111

Mechanisms underlying the manifestation of sarcopenia are
likely to be multifactorial. Although low oestradiol levels may
play a role in the decline in muscle mass in women aged >−50
years old, evidence elucidating the contribution of menopause to
sarcopenia remains unclear. Some studies have reported an
accelerated decline in muscle mass in women during meno-
pausal transition.113,114 Samson et al. observed a decline in iso-
metric knee extensor strength (IKES) and handgrip strength
(HGS) of 40.2% and 28%, respectively, in elderly women aged 55
to 80 years old, whereas the decrease in IKES and HGS was 10.3%
and 8.2%, respectively, in women aged 20 to 55 years old.113 By
contrast, the decline in IKES and HGS was 23% and 17.4%,
respectively, in men aged 55 to 80 years old but 24% and 19.6%,
respectively, in men aged 20 to 55 years old.113 A 20% reduction
in maximum voluntary force of the adductor pollicis (by �20%)
has also been seen around the time of menopause in women
followed by little change after that, whereas in men (n = 176),
muscle force was maintained before weakness started at age
60.114 In the same study, women receiving HRT had attenuated
loss of muscle force, suggesting a possible role of oestrogens in
preventing loss of muscle strength and weakness.114 However,
other studies did not find any differences in the rate of decline of
height-adjusted appendicular skeletal muscle mass between
males and females before the age of 60.115

The fluctuation of oestradiol during the menstrual cycle
(oestrus cycle in rodents) also does not seem to affect the muscle
strength, fatiguability or power performance of young female
athletes (n = 29)116 or rodents.117 Evidence to support the impact
of menopause on muscle strength and muscle mass independent
of ageing are equivocal and further research is needed to specify
the contribution of menopause to sarcopenia. Nevertheless,
sarcopenia and NAFLD remain closely linked, with each entity
6vol. 5 j 100835



Menopause

Unmet needs in clinical practice

Evidence for influence of sex on non-invasive markers
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Sex-specific weight loss targets
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Fig. 3. Women with certain conditions (PCOS and Turner syndrome) are at an increased risk of NASH and cirrhosis. In addition, pre-menopausal women are
less likely to have resolution of NASH following weight loss. Post-menopausal women have increased prevalence of NAFLD, increased risk of NASH progression
and death (due to CVD and liver failure requiring OLT). There are several unmet needs in clinical practice, which if addressed, may improve outcomes. CVD,
cardiovascular disease; NAFLD, non-alcoholic fatty liver disease; NASH, non-alcoholic steatohepatitis; PCOS, polycystic ovary syndrome; OLT, orthotopic liver
transplantation.
increasing the risk of the other and potentially being exacerbated
by the menopause (Fig. 2).

Areas of focus in clinical practice
Diagnosis
Despite the high prevalence of NAFLD, diagnostic and manage-
ment approaches in clinical practice are variable. This is partly due
to the low rate of recognition of NAFLD among non-hepatology
specialists112 and delayed referral of patients at risk of advanced
liver disease to specialists for evaluation and care.112 Even more
worryingly, data collected from102countries revealed that at least
31% of the countries surveyed do not have any national guidance,
strategies or action plans in place to address the increasing prev-
alence of NAFLD.113

Due to the lack of data on cost-effectiveness and value of non-
invasive liver tests, screening for NAFLD in the general population
is currently not recommended.114–118 American and Asia-Pacific
guidelines advise adopting a high index of suspicion to investi-
gate for presence of NAFLD in high-risk individuals.116,118,119 Eu-
ropean and Latin-American guidelines offer more specific
recommendations and suggest screening in patients with persis-
tently elevated liver enzymes, metabolic syndrome, type 2 dia-
betes and/or obesity (BMI >−30 kg/m2).6,114 Risk prediction tools,
such as the FIB-4 score, NAFLD fibrosis score or enhanced liver
fibrosis score, and transient elastography are recommended as the
next step in identifying patients at risk of advanced fibrosis and
cirrhosis, as these patients should be referred to a hepatologist for
specialist management.120 However, these prediction tools do not
consider the effects of sex, ethnic heritage and hormonal status on
liver-related outcomes. Reassuringly, sex does not influence the
likelihood of unreliable liver stiffness measurements using
vibration-controlled transient elastography.121

Lifestyle interventions
Current management is focused on optimising associated co-
morbidities including diabetes, hypertension, hyperlipidaemia,
and reducing cardiovascular risk by encouraging smoking
cessation and prescribing lipid-lowering medication. Data from
JHEP Reports 2023
Korea suggest that women (but not men) with NAFLD have an
increased risk of cardiovascular and liver-related mortality.122 By
contrast, data from America indicate that men with NAFLD have
an increased risk of death from cancer and cardiovascular causes
compared to women.123,124 Therefore, more data are required
before recommending sex-specific risk factor reduction.

Lifestyle modification remains the initial step in the manage-
mentofNAFLD.Physical activityexceeding150min/weekdecreases
serum aminotransferase levels.116–118,125 Reducing calories by 750-
1,000kcal/day improves insulin resistanceandhepatic steatosis.116–
118,125 Weight loss of at least 5% of body weight reduces hepatic
steatosis but greater weight loss of >−7%-10% improves NASH.116–
118,125 However, in women, a >−7-10% weight loss is associated
with a lower probability of NASH resolution, highlighting a need for
sex-specific weight loss targets.126 Additionally, the optimal
amount of weight loss required to produce beneficial effects in
NAFLD in post-menopausal women is not known. Furthermore,
weight loss interventions that preserve or increasemusclemass127

may have added benefits.

Therapeutics
There are currently no licensed medications for the treatment of
NAFLD. Vitamin E and pioglitazone have been recommended in
some guidelines.116–118 Vitamin E has been demonstrated to have
beneficial effects on liver transaminases, hepatic steatosis,
lobular inflammation and hepatocellular ballooning.128 However,
sex-specific outcomes were not reported in this meta-analysis,128

nor in the individual studies included in the meta-analysis.129,130

Furthermore, long-term high-dose vitamin E use may increase
the risk of heart failure131 and prostate cancer.138 Therefore, sex-
specific analyses of treatment responses and adverse events are
required as the risk-benefit ratio of vitamin E use in NAFLD may
differ between men and women.

Pioglitazone, a PPARc activator, improves insulin sensitivity
and attenuates inflammation and fibrosis in patients with and
without diabetes with biopsy-proven NASH, but weight gain,
fluid retention and increased risk of bone fractures are
commonly occurring adverse effects that limit its use.116–118

Interestingly, women with NAFLD and pre-diabetes or type 2
7vol. 5 j 100835
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diabetes treated with pioglitazone have greater reductions in
liver fat content than men with similar co-morbidities.132 This
may be due to a greater reduction in insulin resistance by pio-
glitazone in women compared to men.132 Until further data are
available, both vitamin E and pioglitazone are not recommended
for patients without biopsy-proven NASH.116–118

Reproductive hormones impact the risk of NAFLD develop-
ment and progression in women. However, current evidence is
insufficient to recommend HRT as a treatment for NAFLD in post-
menopausal women. In a small study that included men and
womenwith NAFLD, combination treatment with spironolactone
(which has anti-androgenic effects) and vitamin E reduced he-
patic fat scores after 52 weeks of treatment.133 Sub-analyses by
sex were not reported in this study. In women with PCOS, spi-
ronolactone use has been shown to improve insulin resistance
and lipid levels.134 Whether the anti-androgen effect of spi-
ronolactone would modify the risk of developing NASH in
women with PCOS remains to be explored. As current manage-
ment options for NAFLD are limited, patients should be offered
the opportunity to participate in research as they may benefit
from early access to emerging therapies.
JHEP Reports 2023
Future directions and conclusions
While several medications have failed to demonstrate an
improvement in clinical trials endpoints, there are still promising
agents in the pipeline for the treatment of NAFLD.135 In addition,
reproductive hormone receptor agonists involved in hepatic
steatosis, inflammation and/or fibrosis, such as the kisspeptin
receptor136, are being developed as potential therapeutic agents.
Data from large-scale studies like DAISY-PCOS (Dissecting
Androgen excess and metabolic dysfunction – an Integrated
Systems approach to PCOS) may advance our understanding of
the influence of androgens on NAFLD and offer tailored man-
agement strategies in women.

In conclusion, management of women with NAFLD should
take into consideration their risk profiles, hormonal status, age
and metabolic factors (Fig. 3). Evidence-based data on the in-
fluence of sex on biomarker sensitivity and/or sex-specific pre-
diction models are needed. A better understanding of the
influence of reproductive hormones on NAFLD and reporting of
sex-based responses to therapeutic interventions could lead to
the development of beneficial personalised management ap-
proaches in women.
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