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Abstract

MADS-box transcription factors are important for plant growth and development, and hun-

dreds of MADS-box genes have been functionally characterized in plants. However, less is

known about the functions of these genes in the economically important allopolyploid oil

crop, Brassica napus. We identified 307 potential MADS-box genes (BnMADSs) in the B.

napus genome and categorized them into type I (Mα, Mβ, and Mγ) and type II (MADS DNA-

binding domain, intervening domain, keratin-like domain, and C-terminal domain [MIKC]c

and MIKC*) based on phylogeny, protein motif structure, and exon-intron organization. We

identified one conserved intron pattern in the MADS-box domain and seven conserved

intron patterns in the K-box domain of the MIKCc genes that were previously ignored and

may be associated with function. Chromosome distribution and synteny analysis revealed

that hybridization between Brassica rapa and Brassica oleracea, segmental duplication,

and homologous exchange (HE) in B. napus were the main BnMADSs expansion mecha-

nisms. Promoter cis-element analyses indicated that BnMADSs may respond to various

stressors (drought, heat, hormones) and light. Expression analyses showed that homolo-

gous genes in a given subfamily or sister pair are highly conserved, indicating widespread

functional conservation and redundancy. Analyses of BnMADSs provide a basis for under-

standing their functional roles in plant development.

Introduction

The MADS-box gene family includes important transcription factors that are relevant across

Eukarya, including fungi, animals, and plants [1]. This gene family commonly possesses a

highly conserved N-terminal DNA binding domain (MADS-box), a moderately conserved

coiled-coil domain for protein reciprocity (K-box), a lightly conserved domain (I domain)

between the MADS-box and K-box, and a non-conserved C-terminal. The MADS-box is a

DNA binding domain of approximately 58 amino acids that binds DNA at consensus recogni-

tion sequences known as CArG boxes [CC(A/T)6GG][2, 3]. The I terminal is less conserved

and contributes to the specification of dimerization. The K domain is characterized by a
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coiled-coil structure that facilitates the dimerization of MADS-box proteins [4, 5]. Evolution

of motifs in different C-terminals results in different functions for MADS-box proteins [4, 6].

The MADS-box gene family is divided into two main lineages, type-I and type-II, that origi-

nated from a duplication of ancestor genes during the divergence of plants and animals [7].

Type-I genes were further divided into an animal serum-response factor (SRF) type and plant

type-I, while type-II genes were divided into fungi myocyte enhancer factor 2 (MEF2) type

and plant type-II[7]. A major difference between type-I and type-II genes is that type-II genes

possess the K-box domain. Genes in the type-II lineage are also termed MADS DNA-binding

domain, intervening domain, keratin-like domain, and C-terminal domain (MIKC) MADS-

box genes, attributable to their four domains, including the MADS-box domain, I domain, K-

box domain, and C terminal [8, 9]. MIKC-type genes can be further divided into MIKCc and

MIKC� clades, both of which were identified in a common ancestor of moss and vascular

plants, suggesting they are ancestral gene types [10].

The MADS-box gene family is known to contain flower organ identity genes and partici-

pate in homologous transformation during floral ontogeny. Floral organ identity genes are

subdivided into A, B, C, D, and E classes (ABCDE model), providing different homeotic func-

tions with different combinations, including A sepal, A+B petal, B+C stamen, C carpel, D

ovary formation and ovule development, E formation of floral organ in four rounds, and B+C

+E male flowers[11–15]. Moreover, the MADS-box gene family also contains flowering-time

genes and fruit dehiscence-related genes [16–18]. In addition, MADSs play regulatory roles

during the vegetative stage, including embryo, root, and leaf development [16, 19–22]. MADSs

also have been identified in gymnosperms and mosses without flowers or fruits, proving they

are not limited to flower and fruit development [10, 23–27].

To date, studies regarding the MADS-box gene family have been performed at the genome

level in many plant species, including Arabidopsis and Brassica rapa [28, 29]. Brassica napus is

one of the most important oil crops and ornamental plants in China; B. napus fluoresces,

which is considered decorative, while its seeds can be used to produce edible oils. Thus, identi-

fication and functional analyses of the MADS-box gene family in B. napus would contribute to

our understanding of the developmental mechanisms associated with flowering, as well as

improving floral organ features. For example, silique dehiscence is a serious problem that

results in a reduction in seed yield in B. napus [30], and the molecular mechanisms underlying

silique dehiscence are closely related to the ABCDE model. Thus, corresponding analyses in B.

napus could be an alternative way to solve this problem.

In this study, we performed a complete analysis of the MADS-box family of genes in B.

napus (BnMADSs) by identifying putative genes, evaluating the division of different subfami-

lies based on phylogeny, and exploring the protein structure and exon-intron characters. We

proved that the evolutionary mechanisms underlying intron patterns remain consistent with

those of functional diversification. Chromosome localization combined with gene synteny

analyses revealed the expansion of BnMADSs in B. napus. In addition, a cis-acting regulatory

element analysis of promoters indicated possible roles for BnMADSs in plant development

and stress response. Moreover, an expression profile analysis revealed abundant roles for

BnMADSs in B. napus.

Material and methods

Sequence retrieval

A preliminary search for B. napus MADS-box proteins in Genoscope (http://www.genoscope.

cns.fr/brassicanapus/) was performed using the basic local alignment search tool-protein

(BLASTP) with at least one representative sequence of the MADS-box domain for each

Evolution history of MADS-box gene family in allopolyploid Brassica napus
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MADS-box subfamily. We discarded redundant sequences with the same chromosome locus

to ensure the candidate genes mapped to unique loci in their respective genomes. We then

confirmed the putative non-redundant sequences to ensure that the putative proteins con-

tained MADS-box domains using ExPASy (http://expasy.org/prosite/) [31] and MEGA 7.0

[32] software. Finally, all candidate genes were named according to the chromosome locus.

Phylogenetic tree construction

Multiple sequence alignment was performed using MADS-box protein sequences of Arabidop-
sis and B. napus via the multiple alignment fast Fourier transform (MAFFT) software (http://

mafft.cbrc.jp/alignment/server/) [33]. The phylogenetic tree was constructed based on align-

ment of the MADS-box domains using MEGA7.0 [32] and the neighbor-joining (NJ) method,

with 1000 iterations for the bootstrap values, p-distance model, and pairwise deletion for gap

treatment. Tree files were viewed and edited using FigTree v1.3.1 (http://tree.bio.ed.ac.uk/

software/figtree/).

Chromosome localization

Information regarding chromosome length and gene locations was obtained from the Brassica

Database (http://brassicadb.org/brad/index.php) and B. napus Genome Browser (http://jacob.

cea.fr/drf/ifrancoisjacob/Pages/Departements/Genoscope.aspx), respectively. Mapchart

software was used to draw a chromosome map of the BnMADSs. Locations of the MADS-

box genes in Arabidopsis, B. rapa, and Brassica oleracea were also determined using the same

method.

Intron/Exon structure analysis

To find the intron and exon distribution and splicing phase in the candidate BnMADSs, we

compared and viewed the coding DNA sequences (CDS) and DNA sequences of BnMADSs
using GSDS software (http://gsds.cbi.pku.edu.cn/) [34] and then manually located the intron

insertion sites of protein sequences. Information about the MADSs intron insertion sites in

other species included in this study were gathered from Phytozome (https://phytozome.jgi.

doe.gov/pz/portal.html#).

Cis-element analysis of promoters

Cis-acting regulatory elements as binding sites of transcription factors connect gene structure

and function [35] and play important roles in gene expression. The cis-elements in BnMADSs
promoters were predicted using PlantCARE (http://bioinformatics.psb.ugent.be/webtools/

plantcare/html/).

Identification of conserved motifs

Full-length protein sequences of candidate BnMADSs were analysed using MEME software

(http://meme-suite.org/tools/meme) [36], with the following parameters: optimum motif

width� 6 and� 150 and maximum number of motifs to identify = 15. In addition, we used

the PFAM tool (http://pfam.xfam.org/) to identify whether any remaining motifs matched

well-known motifs [37].

Gene synteny analysis

We used CoGe software (https://genomevolution.org/coge/) to conduct a gene synteny analy-

sis of MADS-box genes in Arabidopsis, B. napus, B. rapa, and B. oleracea.
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Expression analysis of BnMADSs
The temporal and spatial expression patterns of candidate BnMADSs were further analysed

using the RNA-seq data of 50 different tissues (including roots, stems, leaves, flowers, seeds,

and siliques) from the B. napus cultivar Zhongshuang 11 (ZS11) at different developmental

stages (germination, seedling, budding, initial flowering, and full-bloom stages). We recently

created and deposited ZS11 in the BioProject (ID PRJNA358784). BnMADSs expression was

analysed using Cluster 3.0 software based on fragments per kilobase of exon per million reads

mapped (FPKM) with default parameters, and the heatmap was created using Cluster 3.0 [38]

and Java Treeview software [39].

Results

Identification of MADS-box genes in B. napus
With the aim of defining the B. napus MADS-box gene family, we applied BLASTP for genes

encoding MADS-box proteins in Genoscope using representative DNA-binding domain

sequences of typical MADS-box proteins as queries (S1 Table). After removing redundant

sequences, 312 primary putative MADS-box proteins were obtained in B. napus for this study.

To verify the reliability, we performed a PROSITE profile analysis to ensure all the putative

MADS-box protein sequences contained the typical MADS-box domain. Consequently,

BnaA08g31660D and BnaA09g05900D were deleted, as they had poor homology with atypical

MADS-box proteins; BnaA09g30870D, BnaA02g31770D, and BnaC05g45970D were deleted

because of mass deletions, especially at the N-terminal; while BnaC01g34010D,

BnaC02g43730D, BnaAnng04820D, and BnaA05g35580D were reserved because the deletion

occurred at the C-terminal, which did not impact the subsequent phylogenetic analyses.

Finally, a total of 307 BnMADSs with relatively complete open reading frame (ORF) regions

were identified in this study, constituting the largest known plant MADS-box gene family to

date. The candidate genes were then named according to the chromosomal distribution order

(S1 Table).

Sequence characteristics of BnMADS proteins

To investigate sequence features, we performed a multiple alignment analysis of type-I and

type-II BnMADS proteins, respectively. The MADS-box domain of type-I proteins is relatively

less conserved and studied than those of type-II proteins; therefore, we manually identified

type-I proteins using type-I MADS-box proteins in Arabidopsis as a reference [28].

Our results show that MADS-box domains of type-I proteins are quite divergent in length

and sequence characteristics (Fig 1). The length of the MADS-box domains in Mα, Mβ, and Mγ

were 67aa, 75aa, and 62aa, respectively. In type-I, the N-terminal of the MADS-box domain

was relatively more divergent than the C-terminal. In contrast, the MADS-box domains of

type-II proteins were highly conserved, and the basic region consisted of 61 basic residues with

rare deletions or insertions (approximately 1.6%). The residues Arg-17, Lys-23, Leu-38, and

Cys-39 were completely conserved in the type-II MADS-box domains, and another 18 residues

were also highly conserved (>90%), including Met-1, Arg-3, Lys-9, Ile-11, Gln-18, Val-19,

Thr-20, Phe-21, Arg-24, Arg-25, Gly-27, Leu-28, Lys-30, Lys-31, Ala-32, Glu-34, Asp-40, Phe-

48, and Ser-49. In addition, we found that the Leu-38 was completely conserved in Mβ MADS-

box domains. Cys-39 was also highly conserved in type-I MADS-box domains, except in Mα.

As with its counterparts in Arabidopsis, the lightly conserved Cys-39 residue in Mα was par-

tially replaced by Ser. Similarly, Lys-24, Arg-25, and Lys-32 residues were relative highly con-

served (>90%) in both type-I and type-II proteins.

Evolution history of MADS-box gene family in allopolyploid Brassica napus
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Phylogenetic analysis of BnMADS proteins

To determine the evolutionary relationship of BnMADSs between B. napus and Arabidopsis, a

neighbor-joining (NJ) phylogenetic tree was constructed based on the alignment of 307 and

107 MADS-box domains in B. napus and Arabidopsis, respectively, using bootstrap values

(1000 iterations).

The 414 MADS-box proteins were divided into two obvious lineages; specifically, type-I

and II, with 127 and 180 genes, respectively. Six BnMADSs homologous for AGL33 were

assigned to the MIKC� subgroup based on the findings of research on the Arabidopsis MADS-

box gene family [28]. To better examine the phylogenetic relationships between these two indi-

vidual lineages, we re-constructed the phylogenetic trees of type I and type II proteins (Fig 2

and S1 Fig). Type-I genes made up a smaller percentage (37.5%) in B. napus than in Arabidop-
sis (64%), with significantly more type-II genes than type-I genes. This result is consistent with

the trend observed in other species [28, 29] and may result from differences in gene-loss bias

between these two species.

Based on our results, we grouped the 120 type-I BnMADSs into Mα, Mβ, and Mγ clades con-

taining 57, 30, and 33 genes, respectively. The remaining 187 MIKC genes (type II) were

Fig 1. MADS-box domain of MADSs-box genes in the Brassica napus (BnMADSs) genome. A multiple alignment analysis was performed using the MAFFT

program. The sequence logos are based on the alignments of all type I (Mα, Mβ, and Mγ) and type II (MIKC) B. napus MADS-box domains. Bit scores indicate the

information content for each position in the sequence. Black and grey dots indicate 100%- and 90%-conserved residues, respectively.

https://doi.org/10.1371/journal.pone.0200762.g001
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classed into MIKC� and MIKCc subfamilies, containing 25 and 161 genes, respectively.

Among the 161 MIKCc genes, BnMADS116 and BnMADS289, along with the homologous

AGL63, could not be assigned to any MIKCc subfamily, possibly attributable to high sequence

divergence in the conserved regions, which is consistent with the situation observed in

Fig 2. Phylogenetic relationships of type II BnMADS proteins investigated in this study. A neighbor-joining tree representing relationships among 187

BnMADS proteins translated from B. napus and 45 from Arabidopsis are shown. The proteins are clustered into 16 subfamilies. Coloured dots indicate the

corresponding intron distribution patterns, as shown in Fig 3.

https://doi.org/10.1371/journal.pone.0200762.g002
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Arabidopsis [28]. The MIKCc subfamily was further divided into 13 clades with at least 57%

bootstrap support, including AGL2-like, AGL6-like, SQUA-like, AG-like, TM3-like, AGL12-

like, AGL15-like, GLO-like, DEF-like, GGM13-like, STMADS11-like, AGL17-like, and FLC-

like with 17, 7 19, 15, 33, 5, 13, 5, 4, 6, 7, 11, and 17 members, respectively. Our results indicate

that B. napus and Arabidopsis MADS-box proteins were not equal within a given clade, and we

commonly observed two or more putative orthologous BnMADSs of a single Arabidopsis gene.

Genes from the AGL6-like and AGL15-like clades were separated into two clades in our phylo-

genetic tree, indicating that a possible functional divergence appeared between them.

Intron patterns of BnMADSs
Intron and exon structures are important clues to understand the evolutionary gene relation-

ship and functional diversification within a gene family [40]. In the present study, the intron

and exon patterns were determined by comparing the full length CDS and DNA sequences of

candidate BnMADSs using the GSDS web server.

We observed a very striking bimodal distribution of introns between types I and II in the

BnMADSs family (S1 Table). Type-I genes had fewer intron insertions, mostly varying from 0

to 2, except for BnMADS077 and BnMADS156 which had three and BnMADS300 which had

six introns. In contrast, type-II genes had more introns, ranging from 0 to 15, with an average

of 5.95. The BnMADS005 gene had 15 introns, which is the maximum number. Type-II genes

with few introns usually did not have Arabidopsis orthologs. Candidate MADS-box genes

identified from other species such as Arabidopsis and B. rapa also showed the same bimodal

distribution of introns [28, 29, 41–43], indicating that this trend is evolutionarily conserved.

Moreover, the entire MADS-box domain was located in the first exon, accompanied by an

intron insertion with phase 2 in type II genes (S2 Fig).

The K-box was the second conserved domain of the MIKCc genes, with 4–5 intron inser-

tion sites generally conserved. A total of 7 highly conserved intron patterns (A–G) were first

identified in terms of conserved intron insertion sites and phases in this study. Among these

conserved intron patterns, C was the main type with the largest number, accounting for 52.5%

of type II genes; pattern A accounted for 5.7%, B for 9.0%, D for 9.8%, E for 13.1%, F for 4.9%,

and G for 4.9% (Fig 3). Intron insertion sites were conserved in each type, varying from 4 to 5

in different types. Except for the first intron insertion site, the other 4 insertion sites were con-

served in all types, with the type A and G lacking the second and fifth intron, respectively.

Moreover, amino acids near the intron insertion site were somewhat conserved (Fig 3). Inter-

estingly, in the phylogenetic tree, genes in the same clade generally shared the same intron pat-

terns (Fig 2). This finding constitutes an independent criterion for testing the reliability of our

phylogenetic analysis.

Common motifs identified in the non-conserved domain supports

subgroup designation

To discover motifs shared among related proteins within subfamilies, the MEME tool was

used to analyse the relatively non-conserved regions of BnMADSs. Since regions following

MADS-box domains in type-II BnMADS proteins are well known as the I-domain, K-box,

and C-terminal, we only included type-I BnMADS proteins in the MEME analysis.

In total, 15 conserved motifs of variable length (15–108 amino acids) were detected in the

C-terminals of type I proteins (S2 Table). We found that members of the same clade generally

shared one or more motifs (Fig 4). For example, 8 motifs (1–8) were identified in Mα, which

encompassed 40.4%, 17.6%, 40.4%, 8.8%, 8.8%, 12.3%, 22.3%, and 22.3% respectively; Mβ pro-

tein members contained motifs 9–12, with up to 90% contained motif 9; members of Mγ
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Fig 3. Schematic diagram of intron distribution patterns within the K-box of proteins translated from type II BnMADSs. Alignment of the K-

box domains is representative of 7 intron patterns, designated A to G. Intron locations are indicated by white triangles, and the number within each

triangle indicates the splicing phases: 0 refers to phase 0; 1 to phase 1; and 2 to phase 2. The number of BnMADSs within each pattern is presented on the

left. The correlation between intron distribution patterns and phylogenetic subfamilies is provided in Fig 2.

https://doi.org/10.1371/journal.pone.0200762.g003
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contained motif 9 and 14–15. In general, most of these 15 motifs were clade-specific rather

than subfamily-specific, except motif 9, which was shared by Mβ and Mγ, supporting the

evolutionary relationship of each subfamily. However, the function of these motifs remains

unknown.

Chromosomal distribution and duplication events of BnMADSs
To investigate the relationship between genetic divergence and gene duplication within the B.

napus MADS-box gene family, we analysed the chromosomal locations of BnMADSs based on

information from the Genoscope genomic database.

Results show that BnMADSs were distributed across all 19 chromosomes, and the number

of genes within each sub-genome appeared to be uneven (Fig 5). The An-subgenome had an

average of 12.1 BnMADS on its 10 chromosomes; A08 had a minimum number of 7, while

A03 and A09 had a maximum of 18 genes. The average number of BnMADSs in the Cn-subge-

nome was 13.3, with the C05 containing a minimum of 9 genes and the C04 having as many as

17 genes. Thus, there is not a biased tendency between these two subgenomes. Moreover, the

distribution of candidates on each chromosome was not quite balanced, except for A07 and

A09; the genes tended to distribute on the terminal parts. This pattern was similar to the

MADS-box genes observed in B. rapa and Arabidopsis [28].

A total of 201 BnMADSs were identified to have syntenic relationships, of which 174

BnMADSs were inherited from B. rapa or B. oleracea genomes (S3 Table). In contrast, only 18

genes from 18 pairs originated from segmental duplication in the B. napus genome, and 3

genes from 3 pairs were from tandem duplication. Among those genes from segmental dupli-

cations, 11 of 18 genes belonged to the type-I subfamily, while the remaining 7 genes belonged

to type-II, confirming a higher frequency of segmental gene duplication in the type-I subfamily

[44]. Moreover, according to the distribution on chromosome and sequence similarity,

BnMADS056/057,BnMADS198/199, and BnMADS264/265were identified as tandem duplica-

tion gene pairs.

Together, genes obtained from tandem duplication (3) and segmental duplication (18) took

up 0.98% and 5.86% of the BnMADS gene family, respectively, providing an outstanding

Fig 4. Architecture of conserved protein motifs translated from type I BnMADSs. The percentage of BnMADS proteins with each pattern is presented on the

right. Numbers in the colored bar indicate different motifs.

https://doi.org/10.1371/journal.pone.0200762.g004
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example of genome-wide allopolyploidization between B. rapa and B. oleracea that mainly

contributed to the large BnMADSs expansion in B. napus (56.68%).

Cis-acting regulatory elements in the BnMADSs promoters

Cis-elements in the promoter of a gene can regulate the initiation and efficiency of gene tran-

scription by binding with transcription factors. The cis-acting regulatory elements of BnMADS
promoters were predicted using PlantCARE.

In all, three cis-element groups in BnMADS promoters were classified (A–C) depending on

their functional annotations (Fig 6 and S4 Table). The A group contained elements responding

to light, the B group consisted of elements responding to biotic and/or abiotic stress induction,

and the C group contained elements responding to hormones.

In the A group, 34 elements were related to the light response, implying that BnMADSs
expression is induced by light, which is consistent with the function of many MADS-

box genes in plants that use a fluorescent process widely regulated by light. Elements in the B

group consisted of many stress response elements, such as MYB transcription factor binding

site (MBS, drought stress response element), heat shock element (HSE, heat stress response),

and TC-rich repeats (stress reaction), indicating that BnMADSs may respond to abiotic stress

responses. There are some cis-elements in the C group, including the salicylic acid (TCA)

Fig 5. Chromosomal locations and duplications of BnMADSs. The chromosome number is indicated above each chromosome. The scale is in megabases (Mb).

Genes inherited from B. rapa or B. oleracea genomes are under grey and black backgrounds respectively; genes originating from segmental duplication are

underlined by black lines accompanied with the same letter (e.g., a, b, and c); genes arising from homologous exchange (HE) are indicated using black boxes

accompanied with the same number (e.g., 1, 2, and 3); and genes originating from tandem duplication are marked with black dots.

https://doi.org/10.1371/journal.pone.0200762.g005
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response element, gibberellin response element (GARE-motif), CGTCA-motif/TGACG-motif

(methyl jasmonate [MeJA] response), and abscisic acid response (ABRE), accounting for over

50% of both type-I and type-II genes and indicating possible roles for candidate genes in hor-

mone response processes.

Genome-wide expression of BnMADSs in B. napus by RNA-seq

Gene expression patterns have been examined in relation to gene function [45], therefore, we

investigated the expression of all 307 BnMADSs in 50 different tissues at different stages.

Fig 6. Classification of the cis-elements in BnMADS promoters. 106 Cis-elements were identified in the promoters of all 307 BnMADSs and were classified into

three main groups (A–C). The number of type I and type II genes with the same type of cis-element is marked in different colours.

https://doi.org/10.1371/journal.pone.0200762.g006
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As shown in Fig 7, most BnMADSs were differentially expressed in different tissues in both

vegetative and reproductive organs at different stages, where the type II genes had much higher

and broader expression patterns. In contrast, the majority of type I genes had no or very low

expression levels, with a few exceptions, indicating that type II genes may have abundant func-

tions while type I genes have limited functions or are only expressed under special conditions

in B. napus, such as stress and induction of hormones.

In the type II subfamily, 20 of 187 (10.69%) genes were not expressed in any tissues, 18

(9.63%) genes had very weak expression levels (S1 Table), and the expression patterns of the

remaining 149 (79.68%) were clustered into three main blocks, with some genes (38, 25.5%)

having higher expression levels in the root, stem, and leaf during the seedling, budding, and

flowering stages (Fig 7). Furthermore, some genes (83, 55.7%) had relatively higher expression

levels in the flower and/or early developmental seed tissues, while some (28, 18.79%) had

higher expression levels in the seed tissues 19 days after pollination (DAP). It is obvious that

the main function of BnMADSs may involve reproductive organs (flower and/or seed tissues).

Moreover, the expression patterns of BnMADSs in different tissues of the same organ, such as

the flower and seeds, were generally different. For example, highly expressed genes belonging

Fig 7. Expression profiles of type II BnMADSs across different developmental stages and organs. The genes and their corresponding clade are on the right. The

tissues used for expression analysis are indicated at the top of each column. GS, germinate seed; Hy, hypocotyl; Ao, anthocaulus; Ro, root; St, stem; Le, leaf; Cal,

calyx; Cap, capillament; Pe, petal; Sta, stamen; Pi, pistil; SP, silique; Se, seed; SC, seed coat; Em, embryo; Co, cotyledon. s, seedling stage; b, bud stage; i, initial

flowering stage; and f, full-bloom stage. The time after seed germination is indicated as 24, 48, and 72 h. The number of days after pollination (DAP) is indicated as

3, 19, 21, 30, 40, and 46 d. The colour bar represents log2 expression values (FPKM). The genes with weak or no expression are supplied in S1 Table.

https://doi.org/10.1371/journal.pone.0200762.g007
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to the GGM13-like clade were primarily in female-reproductive related organs such as the pis-

til, and highly expressed members of the MIKC� subfamily primarily occurred in male-repro-

ductive organs such as the stamen. However, homologous genes in the same subfamily usually

had a conserved expression profile, suggesting functional redundancy. For instance, most

members of the AGL2-like clade were highly expressed in flowers and seed tissues during the

early development stage, and members of the STMADS11-like clade were highly expressed in

the root and/or stem and leaves.

In the type-I subfamily, 17 out of 120 (14.17%) genes were not expressed in any tissues,

84 (70%) had very low expression levels (S1 Table), and 19 (15.83%) showed relatively high

expression levels in B. napus (S3 Fig). Moreover, expression patterns of the genes with high

expression levels were broad in terms of reproductive and vegetable organs and were not con-

served between genes. In addition, the entire Mβ subfamily of genes showed very low expres-

sion levels.

Taken together, the type II genes had much wider and higher expression levels than type I

genes in B. napus, and the expression levels were generally conserved in each subfamily but

were different across distinct subfamilies.

Discussion

A good example of gene expansion and loss of the MADS-box gene family

in land plants

In the present study, we identified 307 MADS-box members in the B. napus genome

(BnMADSs), which is the largest number reported in plants to date [28, 29, 41–43]. Among the

identified genes, type-I genes made up 37.5% of the BnMADSs gene family, while in Arabidop-
sis the percentage is 64% [28]. In the case of B. rapa and B. oleracea, 40% [29] and 34% of

MADS-box genes are type I, respectively. Similarly, in higher plants such as rice, maize, soy-

bean, and sorghum, the percentage of type II genes is much higher than type I genes [41, 42,

46]. In lower land plants such as Selaginella, this trend is similar to that observed in Arabidopsis
[47]. Overall, it is obvious that the percentage of type-I genes generally diminishes during the

evolution to higher plants. The functions of type-I genes have been minimally reported to

date; however, we speculated that the presence of many non-functional type-I genes (i.e., pseu-

dogenes) indicates inactivity. In contrast, the number of type II genes in higher plants obvi-

ously increased, and type-II genes appear to have differentiated functionally in a relatively

short time, likely attributable to type II genes being maintained as functional genes in the

genome to perform more complex functions during flower and organ development [44].

Type-I and II genes differentiated in duplication patterns. According to synteny analysis,

201 out of 307 BnMADSs had syntenic relationships with MADS-box genes from B. rapa or B.

oleracea, respectively, proving that the majority of BnMADSs were obtained from inheritance

and genome-wide allopolyploidy of B. rapa and B. oleracea genomes. Among these, 57 type-I

genes (47.5%) come from allopolyploidy and 11 genes (9.17%) are segmental duplications in

B. napus. In contrast, 117 type-II genes come from allopolyploidy (62.57%), while 7 genes

(3.74%) and 3 genes (1.6%) are segmental and tandem duplications, respectively.

In addition, there were 109 and 90 syntenic genes in the An- and Cn-subgenomes, respec-

tively. After allopolyploidy, the gene retainment ratio was mainly balanced between these

two subgenomes, with the An-subgenome slightly advantaged. Furthermore, homologous

exchange (HE), meaning replacement of a chromosomal region with a duplicated copy from

the corresponding homologous subgenome, was found to be frequent between B. napus subge-

nomes [48]. Accordingly, we identified 18 genes from 8 pairs located in known HE blocks

[48], and the number of type I genes (6, 5%) was higher than the number of type II genes (3,
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1.6%), indicating HE was an important source underlying the evolution of BnMADSs after

allopolyploidization, especially for type I genes. Meanwhile, among HE events, more genes

from the Cn-genome were replaced by genes from the An-genome, indicating that genes from

the latter were more retained.

Overall, genome-wide allopolyploidy, segmental duplication and HE were the main expan-

sion mechanisms of BnMADSs, and subsequent duplications were preferred in the type-I

genes over the type-II genes in the B. napus genome.

An ignored evolutionary story of intron insertion patterns in the K-

box domain

Many studies have revealed the conservation of intron insertion sites in relatively conserved

DNA binding domains of many transcription factor gene families [49, 50]. Similarly, nearly

all studies of the MADS-box gene family focus on the MADS-box domain. In this study, we

found that all MADS-box domains of the BnMADS gene family are in the first exon, with no

intron insertions observed in this domain.

Interestingly, we found that the intron insertion patterns in the K-box domain are highly

conserved in type-II genes, and type-II genes could be further classified into 7 conserved

intron patterns in terms of absolute conserved intron insertion positions and phases (A–G

types) (Fig 3). The gene structure and sequence characteristics of these 7 types were highly sim-

ilar, indicating a relatively close relationship. There were 4–5 conserved introns inserted into

the K domain in each type. While the location of the first intron was variable across different

gene types, the remaining were highly conserved. Genes in the MIKCc clade were excluded in

the analysis, attributable to an incomplete K-box domain. Interestingly, as discussed below, we

found that genes in the MIKCc clade were not expressed.

To verify the intron patterns in different species of land plants, we extended this analysis to

19 other species, including chlorophytes (Chlamydomonas reinhardtii and Volvox carteri),
embryophytes (Marchantia polymorpha, Physcomitrella patens, and Sphagnum fallax), tracheo-

phytes (Selaginella moellendorffii), basic angiosperm (Amborella trichopoda and Zostera
marina), monocots (Brachypodium distachyon, Oryza sativa, Sorghum bicolor, and Zea mays),
and eudicots (Sorghum bicolor, Vitis vinifera, Populus trichocarpa, Citrus sinensis, Glycine max,

and Malus domestica) (S5 Table). We found that the C type was distributed in all species inves-

tigated except chlorophytes, while the A and B types existed in some embryophyte species,

indicating that the C type is older. The E type was distributed in basic angiosperms (Amborella
trichopoda and Zostera marina), indicating it is relatively older than the last three types (D, F,

and G). The D and G types were found in all flowering plants, including monocots and dicots,

suggesting they may predate divergence of these two lineages. F types were only distributed in

the Brassica species investigated in this study, indicating a new origin in this lineage. These

results proved that the intron patterns in the K-box are highly conserved across land plants,

thus should be a typical feature for the MADS-box gene family.

In the phylogenetic tree, the intron patterns of BnMADSs were generally conserved within

most of the clades, except for genes lacking a full ORF, suggesting a common origin of mem-

bers in each clade. For example, members of the AGL17-like clade shared the B intron pattern,

while members of the AGL15-like clade shared the F type (Fig 2). However, this pattern was

not absolute, as the intron patterns of the AGL2-like clade were mixed, containing both the A

and D types. Given that type A exists in lower land plants and members having similar func-

tions to those of pattern D in flower development, we speculated that type D likely developed

from type A. Interestingly, it has been reported that AGL18 (type F) and AGL15 (type C) are

functionally redundant in floral repress [51] and could be classified into one clade [28].
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However, in our phylogenetic tree, the homologous nature of these two groups included differ-

ent intron patterns; therefore, we divided them into two clades (AGL15-like and AGL18-like

clades). This result proves that intron patterns support classification of the phylogenetic tree.

Type F existed only in Cruciferae plants, while pattern C was widely distributed in all species

investigated; these results indicated that type F originated from type C in the Brassica lineage.

Furthermore, the function of the A, C, D, and E types relates to the flower and fruit [51–

59]; the B type relates to root development [60] and seeds [61]; and the G type is important for

the colour of the seed epidermis [62], which likely explains the closer relationship between the

A, C, D, and E types while the B and G types were more independent. It is also interesting to

note that there are 65 C-type BnMADSs, which is higher than the number of other types in B.

napus (Fig 3). Similar results were also observed in all the flowering plants investigated in this

study (S5 Table). Further, the B pattern, which is related to root development, took up the

highest percentage in Selaginella. These phenomena support our hypothesis that the intron

insertion pattern is related to a certain function in land plants.

Functional conservation and redundancy of BnMADSs based on expression

analysis

Our results show that the expression of BnMADSs is mainly conserved in each family and is

very similar to that of the homologous genes in Arabidopsis. These results suggest functional

conservation of homologous genes across different plants. For example, the genetic and molec-

ular basis of floral development have revealed that numerous MADS-box genes are involved in

specifying floral organ identity in Arabidopsis [11, 58, 62–64]. Accordingly, the Arabidopsis
SEP1/2/3 genes in the AGL2-like clade were identified as class E genes and function as organ-

identity genes in development of the petal, stamen, and carpel. Similarly, BnMADSs in the

AGL2-like clade are primarily highly expressed in the flower (calyx, capillament, petal, stamen,

and pistil) and seed tissues during the early development stages (seed and seed coat) (Fig 7).

The short vegetative phase (SVP) gene in the STMADS11-like clade was identified as a floral

repressor and plays an essential role in determining the length of vegetative growth; BnMADSs
in the same clade are all highly expressed in vegetative organs at different stages. The transpar-

ent Testa16 (TT16) gene in the GGM13-like clade is involved in the determination of seed

coat colour; BnMADSs in this clade are primarily highly expressed in the female-reproductive

organs (pistil) and seed tissues during the early stages. Trends in the other subfamilies were

the same.

Moreover, 65 pairs of 142 type II paralogous genes were identified in this study (S6 Table),

including 56 pairs with two genes (six genes had some deletions in the ORF regions), six pairs

with three genes, and three pairs with four genes. While six genes had some deletions in the

ORF region, the last of the 50 pairs contained two genes and shared a very high degree of

sequence identity or similarity in the binding domain and full protein length, with an average

identity of approximately 99% in the binding domain and an average identity of 85% in the

full-length proteins. In addition, the DNA binding domains of 42 out of the 65 pairs were the

same (Fig 7). Accordingly, most of the paralogous BnMADSs shared a similar or the same

expression patterns, implying a functional redundancy. For example, BnMADS103/194,

BnMADS030/190,BnMADS045/068,BnMADS035/182, and BnMADS153/180 showed the same

expression pattern. Furthermore, the expressions of sister pair genes showed no bias, as candi-

dates from the An- and/or Cn-subgenome were quite similar. For instance, BnMADS092/230
contained two genes from the An- and Cn-subgenome and shared a similar expression pattern,

while BnMADS045/068 contained two genes from the An-subgenome and had nearly the same

expression patterns. In addition, some sister pairs may represent neo-functionalization or sub-
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functionalization, as they showed similar expression patterns with slight diversification. For

instance, BnMADS150/195were both highly expressed in the calyx, capillament, and petal;

however, BnMADS150 was highly expressed in the pistil, whereas BnMADS195 was not (Fig

7). The expression of several pairs was obviously different, which may indicate functional

divergence; BnMADS032 from the BnMADS032/192 gene pair was highly expressed in vegeta-

tive organs and seeds, while BnMADS192 was not expressed. As mentioned above, the 20 type

II BnMADSs that were not expressed in any tissues investigated were generally the homologous

genes in a given clade; five were duplications and/or sister pair genes (S3 and S6 Tables). These

data suggested functional redundancy of highly homologous genes.

Furthermore, sequence analysis showed that the promoter regions of sister pairs were also

highly homologous, with the average sequence identity ranging from 48% to 97% (S6 Table).

In general, expression patterns and promoter sequence identity are closely related. Expression

of 55 of the 65 pairs was similar or the same, indicating functional redundancy; the last gener-

ally had more sequence identity in the ORF regions, but less in the promoter regions, suggest-

ing that functional divergence may first occur in the promoter region of sister pairs during

evolution.

Thus, our data show that expression patterns of homologous genes in a given subfamily or

sister pair are generally conserved, revealing a major functional conservation as well as redun-

dancy of BnMADSs during evolution.

Conclusions

Results of the present work confirm many features described in other species. However, some

novel characteristics were found in the B. napus MADS-box gene family, including intron pat-

terns in the K-box and expansion mechanisms after allopolyploidy between B. rapa and B. oler-
acea. Further, our phylogenetic analyses provide a useful reference for postulating functional

hypotheses for uncharacterized BnMADSs. In this study, we evaluated the roles and evolution

of uncharacterized MADS-box genes in B. napus using a comparative phylogenetic analysis of

B. napus, B. rapa, B. oleracea, and Arabidopsis, as well as information from previous research.
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