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Abstract

An improved knowledge of protein-protein interactions is essential for better understanding

of metabolic and signaling networks, and cellular function. Progress tends to be based on

structure determination and predictions using known structures, along with computational

methods based on evolutionary information or detailed atomistic descriptions. We hypothe-

sized that for the case of interactions across a common interface, between proteins from

a pair of paralogue families or within a family of paralogues, a relatively simple interface

description could distinguish between binding and non-binding pairs. Using binding data for

several systems, and large-scale comparative modeling based on known template complex

structures, it is found that charge-charge interactions (for groups bearing net charge) are

generally a better discriminant than buried non-polar surface. This is particularly the case for

paralogue families that are less divergent, with more reliable comparative modeling. We

suggest that electrostatic interactions are major determinants of specificity in such systems,

an observation that could be used to predict binding partners.

Introduction

The interplay between biopolymers is critical in directing and maintaining physiological pro-

cesses. Whilst genome-sequencing projects are providing large amounts of protein sequence

data from many organisms, our understanding of binding specificity between proteins, and

how a protein selects partners from closely related alternatives, remains limited. The majority

of work in identifying specificity determinants focuses on the sequences and structures of the

proteins involved. Methods for identifying residues that determine specificity face challenges,

often due to an absence of suitable experimentally determined structures or the lack of affinity

data [1]. Where structural models are available, computational predictions of protein—protein

interactions focus on aspects of the association such as size, shape, and physicochemical
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complementarities at the interaction interface [2,3], as well as the factors that discriminate spe-

cific and non-specific interactions [4] Increasingly, experimental data are being combined

with physicochemical calculations to provide predictions of interfaces and the roles of individ-

ual residues at interfaces [5,6] and, in turn, experiments are being guided by such calculations

[7]. Sequence, evolutionary, and expression data may also be included in predictions [8].

Computational methods can be benchmarked against experimentally-determined complexes

in community-wide studies [9,10].

Genomic and proteomic studies have shown that most proteins belong to families of evolu-

tionarily, and often functionally, related molecules [11]. The number of proteins in a given

family increases through gene duplication and the resulting generation of paralogues. For

example, the human genome encodes several hundred protein kinases, which are believed to

have arisen through large- and small-scale genetic duplications [12]. When interactions

between proteins in paralogue families are considered, maintaining physiological cellular sig-

naling requires proteins to distinguish between highly similar surfaces. Several approaches

have been taken in attempting to rationalize such intricate interactions. Coexpressed proteins

are enriched for interacting pairs [13], and within those pairs there may exist coevolving

sequence signatures for the interaction [14]. Structural and bioinformatics studies have shown

that protein–protein interfaces can be divided into a core and rim, with the rim being enriched

in subfamily-specific residues [15]. There have been attempts to rationalize specificity through

computational studies at differing levels of theoretical sophistication. Fong and Keating [16]

have assessed the binding feasibility of different pairs of leucine zipper transcription factors by

representing each pair as a multidimensional vector, the entries of which represent the differ-

ent amino acid pairings from the two opposing chains. Each vector is then multiplied by a vec-

tor of corresponding weights for the different pairings. Most interfaces though are more

complicated than the coiled-coil of a leucine zipper dimer, and are less amenable to such an

approach. Atomistic models are, therefore, more prominent in rationalizations of specificity

determinants. Calculations of electrostatic interactions with Generalized Born or Poisson-

Boltzmann methods, combined with surface area, are often used in molecular mechanics, and

have proven successful in identifying specificity determinants and recognition mechanisms

[17,18]. Due to the extent of interfaces of even small protein–protein complexes, such methods

are generally more successful in rationalizing protein–small molecule binding, than protein–

protein binding [19]. More computationally expensive higher-level theory calculations, such

as density functional theory and quantum mechanics, are almost exclusively carried out on

protein–small molecule systems [20].

The present report examines specificity in paralogous protein–protein interactions from a

structural viewpoint, combining atomistic-level detail, with rapid calculation of electrostatic

interactions and surface burial. In computing interfacial properties, an empirical calculation

approach is taken, using the solvent accessible surface area (SASA) approach of Lee and Rich-

ards [21] and a Debye-Hückel computation of charge interactions between groups bearing net

charge [22]. Computed properties are compared between interacting and non-interacting

pairs of proteins, identified from literature. This study aims to establish whether these simple

interface descriptors discriminate between binding and non-binding pairs in paralogous pro-

tein–protein interactions. Sets of experimental data have been identified, together with struc-

tural templates for modeling paralogue complexes, so that this hypothesis can be tested. Perhaps

the most clear-cut example is in transcription factor heterodimerization via leucine zippers,

where charge interactions modulate specificity on a relatively conserved steric framework [23].

The simple surface area and electrostatics model allows rapid estimation of interfacial energetics

over a wide range of paralogue complexes generated by sidechain replacement comparative

modeling. It is found that the leucine zipper model for charge mediated specificity persists in
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other systems, although both the effect and the confidence with which it can be assessed falls

away the further that sequences diverge between template and modeled proteins. Whilst there

are many examples of paralogue family protein—protein interactions, corresponding experi-

mental data are limited. Improved modeling of specificity in such interactions will lead to a

better understanding of structure—function relationships, and protein—protein interaction

networks.

Methods

Sequence alignment and comparative modeling

The key requirements for a system to be included in this study are the availability of binding

data, and the presence of at least one representative complex in the protein structural database

[24]. After obtaining a three-dimensional structure of a complex, a multiple sequence align-

ment is generated between each molecule in the template and the relevant set of paralogues.

Sequences were obtained from UniProt [25]. Sequence alignment was performed with the

default settings of T-Coffee [26], and used in generating a three-dimensional structure for

each possible combination of potential interactors. The comparative modeling pipeline incor-

porated side-chain replacement with fixed backbones. Identical side-chains between template

and model are maintained in their conformers, while swapped side-chains are repacked [27]

with an adaptation [28] of a self-consistent mean-field method for rotamer selection from a

rotamer library [29]. The algorithm performs pairwise packing of rotamers while observing a

predefined tolerance for clashes of van der Waals radii. Beyond that tolerance, overlap of

atomic van der Waals radii is prohibited subject to a further relaxation that is incremented

until a packing solution is found i.e. with all sidechains having at least one allowed rotamer

[28].

Buried surface and electrostatic energy calculations

The estimated electrostatic energy of interaction for groups bearing net charge (NetQ) and

changes in non-polar and polar solvent accessible surface areas (ΔSASAnp and ΔSASApol) are

calculated for all complexes modeled as rigid structures, with the differences for surfaces

denoting subtraction of the sum of the component values from the complex value. Each com-

ponent may be one, or more than one, polypeptide chain [27]. Surfaces are calculated using a

sphere of radius 1.4 Å rolling on the van der Waals contour of a protein [21,28]. In keeping

with the empirical nature of this study, a framework for electrostatic interactions was used that

allowed rapid application to multiple comparative models, with simple Debye-Hückel estima-

tion of charge interactions in water at neutral pH and 0.15 M ionic strength [22]. For each

complex, NetQ is computed by summing all interactions between charged groups (Lys, Arg,

N-terminus +1; Asp, Glu, C-terminus -1). This is achieved by calculating charge interactions

in the complex and subtracting charge interactions in the separated components, thus giving

the resultant charge contribution to complexation. Charges qi and qj, separated by a distance

of r, interact with a 1/r Coulomb potential in a dielectric medium with the relative permittivity

of water (80), modified by a Debye-Hückel factor at 0.15 M ionic strength [22].

Binding data and structural templates

Experimental data obtained from literature are used to separate interactors from non-interac-

tors, which are then coupled with template-based comparative models for the potential inter-

acting pairs. In the case of bZIPs, a dataset of 127 strong interactions, 324 weak interactions,

and 1214 non-interactions was assembled from a comprehensive study of leucine zipper
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dimerization [30]. The authors defined the interactions as: strong with a z-score (number of

standard deviations from the mean) for signal > 10, weak with a z-score between 2.5 and 10,

and non-interactors—a lower z-score. Leucine zipper sequences were aligned with each other

and the template from the first zipper anchoring position. Templates with long helical regions

were chosen, 1T2K [31] and 1CI6 [32].

The Caulobacter crescentus genome encodes three parE toxins and one pseudogene (parE2)

and their corresponding parD antitoxins [33], whereas the relEB family is represented by four

toxin-antitoxin pairs [34]. The parED/relEB superfamily toxins and antitoxins interact with

each other on a 1:1 basis [35], i.e. each toxin interacts with and is neutralized by its cognate

antitoxin only. Thus, there are 3 interacting and 6 non-interacting pairs in the parED system,

and 4 interacting and 12 non-interacting pairs in the relEB system. Another toxin–antitoxin

system is the Mycobacterium tuberculosis vapBC family, comprising 48 vapC toxins that inter-

act on a 1:1 basis with their vapB antitoxins [36], which produces 48 interacting and 2256 non-

interacting pairs. Complex structures for the toxin—antitoxin pairs were generated by model-

ing on 3KXE [35] for the parED family; 2KC8 [37] for the relEB family; and 3H87 [38] and

3DBO [39] for the vapBC family.

As part of the ubiquitination pathway, ubiquitin-conjugating enzymes (E2s) interact with

ubiquitin-ligating enzymes (E3s). Human E3 ubiquitin ligases are divided into three subgroups

depending on the structure of the catalytic domain, the largest group being the RING-type E3s

[40]. In a genomic study, 31 human E2s, 17 E2 pseudogenes, and 313 RING-type E3s were

identified [41]. A dataset of 329 interactions and 7219 non-interactions was derived. Two tem-

plate structures of different RING domain lengths were used: 3HCT, 40 amino acids [42] and

4CCG, 59 [43]. A separate study on functional interactions between 22 human E2s and 9

HECT type E3s produced a dataset of 94 interacting and 104 non-interacting pairs [44]. We

generated all 198 models using the 3JVZ [45] and 5HPT [46] template structures.

Interaction data on BH3 peptide interactions with antiapoptotic proteins, consisting of 48

IC50 values, was obtained from solution competition assays on the binding between five antia-

poptotic proteins and BH3 peptides from 10 proapoptotic proteins [47]. The 48 complexes

were generated with comparative modeling based on the 2XA0 [48] template. Table 1 provides

a summary of the systems examined in this work.

Before proceeding to comparative modeling, we examined the binding mode between dif-

ferent pairs of proteins within each system for conservation. Structural and other experimental

data demonstrate that the binding modes within the Bcl-2 family and the E2—E3 system are

highly conserved [49,50]. Our models of Bcl-2 family complexes are in excellent agreement

with recently published structures [51] with Cα RMSDs ~ 0.5 Å. Only in the toxin-antitoxin

systems did we observe large divergence in sequence and structure, with sequence identities as

low as 4% and RMSDs above 3 Å.

Where comparisons are made between sets of calculated properties, statistical significance

is assessed with the two-tailed Mann-Whitney U test, a non-parametric test used to determine

whether samples derive from populations with the same distribution. Use of multiple tem-

plates allowed us to assess the robustness of our results.

Results

Workflow

A multiple sequence alignment between paralogues in protein families is used to perform com-

parative modeling with one or more template structures for a complex. Fig 1 shows the proce-

dure for 10 BH3 peptides and a template structure of an antiapoptotic protein bound to a BH3

peptide. For each of the 10 modeled complexes, interface descriptors are computed: interactions
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of groups bearing net charge (NetQ), change in non-polar solvent accessible surface area upon

complex formation (ΔSASAnp), and change in polar solvent accessible surface area (ΔSASA-

pol). Interacting and non-interacting pairs are identified from literature and interfacial proper-

ties are compared between the two groups, with appropriate statistical analysis. Results are

plotted, for this example (Fig 1) as individual values of NetQ for interacting and non-interacting

pairs in the Bcl-2 –BH3 peptide set, and also as the cumulative density of NetQ values in a larger

dataset.

Basic leucine zipper transcription factors

A challenge for studies that seek to understand interaction specificities between paralogue

families of proteins is the availability of high quality experimental data. Such data are available

for the basic leucine zipper transcription factors (bZIPs), upon which Newman and Keating

have carried out a comprehensive binding study [30]. After performing a multiple sequence

alignment, 3-dimensional models of all possible binary combinations of bZIPs were generated.

Interfacial properties for the different complexes were calculated and compared between inter-

actors and non-interactors. The electrostatic energy of interaction (NetQ) is more favorable

for interactors, (mean M = -5.3, standard deviation SD = 3.9 kJ/mol, number of interacting

pairs = N1 = 127), than for non-interactors (M = -2.3, SD = 3.40 kJ/mol, number of non-inter-

acting pairs = N2 = 1214), when modeling on the 1CI6 template. Change in non-polar solvent

accessible surface area is larger in interactors (M = -1681, SD = 99 Å2) than non-interactors

(M = -1633, SD = 95 Å2), whereas change in buried polar accessible surface area is similar for

interactors (M = -473, SD = 112 Å2) and non-interactors (M = -486, SD = 100 Å2) (Fig 2). The

NetQ and ΔSASAnp differences between interactors and non-interactors are significant, with

p values of 4.29x10-19 and 1.27x10-9 respectively using the two-tailed Mann-Whitney U test,

whereas ΔSASApol is not significantly different (p = 0.88). Weak interactors are located

between interactors and non-interactors, although closer to interactors for ΔSASAnp and

closer to non-interactors for NetQ. The ranking of p-values is the same when modeling with

the 1T2K template, with Mann-Whitney test p-values for interactors compared with non-

interactors of 6.99x10-14 for NetQ, 2.71x10-10 for ΔSASAnp and 2.62x10-5 for ΔSASApol.

E2 ubiquitin conjugating enzymes–RING E3 ubiquitin ligases

Ubiquitination contributes to the regulation of many physiological processes [52]. The transfer

of ubiquitin to a protein substrate in the cell occurs through a complex series of interactions

involving E1, E2 and E3 enzyme classes, with the number of enzymes in each class increasing

along the pathway. E2 enzymes accept activated ubiquitin from E1s and are, in turn, recog-

nized by an E3 ubiquitin ligase. Finally, E3s transfer the ubiquitin to a protein target [53].

Table 1. Summary of systems studied.

system interactors (N1) weak interactors non-interactors (N2) experimental technique [reference]

bZIPs 127 324 1214 fluorescent peptide arrays [30]

E2 –RING E3s 329 - 7219 yeast two-hybrid screen (Y2H) [41]

E2 –HECT E3s 94 - 104 functional screen [44]

Toxins–antitoxins parE–parD 3 - 6 growth inhibition [35]

relE–relB 4 - 12 growth inhibition [35]

vapC–vapB 48 - 2256 growth inhibition and Y2H [36]

Bcl-2-intrafamily interactions 43 - 5 solution competition assay [47]

https://doi.org/10.1371/journal.pone.0185928.t001
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Fig 1. Schematic representation of the workflow. In this example of BH3 peptides potentially binding to the Bcl-2 antiapoptopic protein,

multiple sequence alignment feeds into comparative modeling, generation of electrostatic and buried surface area interface descriptors, and

subsequent comparison between interactors and non-interactors, as individual complex and cumulative density data. The cumulative density

derives from a larger dataset than the sequences shown. Key hydrophobic residues in the sequence alignment are highly conserved and

highlighted in red. These four positions fit into conserved hydrophobic pockets on the surface of the protein, labeled (in red), p1, p2, p3, and

p4. A surface representation is shown for the groove, superimposed on backbone representations for other parts of the complex, dark grey

for Bax and light grey for Bcl-2. Variable positions (6, 10, 13 and 18) discussed in the text are indicated in blue in the sequence alignment and

with stick representations in the structure. Also shown in stick representation and labeled are the invariant aspartic acid in position 17 and key

residues from the Bcl-2 protein. Interside chain salt bridges and backbone hydrogen bonds in the template structure are represented with

dashed lines.

https://doi.org/10.1371/journal.pone.0185928.g001
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Experimental studies on the ubiquitination pathway have provided insight into the specificity

of protein-protein interactions within the system [41].

The majority of suitable templates in the Protein Data Bank (PDB) [24] represent 36–46

residue-long RING domains. Modeling on a template with a RING domain length of 40 amino

acids (3HCT) gave all three properties, NetQ, ΔSASAnp, and ΔSASApol, as significantly differ-

ent between interactors and non-interactors. NetQ for interactors of M = -2.1, SD = 2.3 kJ/mol

compares with M = 0.6, SD = 3.0 kJ/mol for non-interactors (N1 = 329, N2 = 7219, Mann-

Whitney p = 4.70x10-22). For interactors, ΔSASAnp, M = -661, SD = 77 Å2 compares with M =

-610, SD = 102 Å2 for non-interactors (p = 1.31x10-22). For ΔSASApol, interactors give M =

-370, SD = 98 Å2 and non-interactors M = -398, SD = 95 Å2 (p = 5.76x10-9).

The largest available E3 structure suitable to be a template, a 59 residue-long RING domain

bound to an E2 enzyme (4CCG) also gave separation of all three properties (Fig 3). NetQ for

interactors is M = -3.0, SD = 4.1 kJ/mol and for non-interactors, M = -0.9, SD = 4.4 kJ/mol,

with Mann-Whitney p = 1.35x10-13. For ΔSASAnp, M = -806, SD = 99 Å2 for interactors com-

pares with M = -767, SD = 100 Å2 for non-interactors (p = 9.50x10-18). For ΔSASApol, interac-

tors give M = -419, SD = 74 Å2 and non-interactors M = -460, SD = 90 Å2, with p = 1.65x10-18.

E2 ubiquitin conjugating enzymes–HECT E3 ubiquitin ligases

HECT E3 ubiquitin ligases, like the RING E3s, are involved in transferring ubiquitin from an

E2 enzyme to a protein target. A study on functional E2 –HECT E3 interactions provides

interaction data [44]. Using the 5HPT template (Fig 4), NetQ is more favourable for interac-

tors (M = -4.0, SD = 4.1 kJ/mol) than for non-interactors (M = -1.0, SD = 4.0 kJ/mol), which is

Fig 2. Comparison of interfaces for bZIP leucine zippers. Cumulative densities for interactors, non-interactors and 324 weak interactors [30] are shown,

using the 1CI6 template. A. NetQ. B. ΔSASAnp. C. ΔSASApol.

https://doi.org/10.1371/journal.pone.0185928.g002

Fig 3. Comparison of interfaces for E2 –RING E3 complexes modeled on 4CCG. Cumulative densities for interactors and non-interactors are shown.

A. NetQ. B. ΔSASAnp. C. ΔSASApol.

https://doi.org/10.1371/journal.pone.0185928.g003
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statistically significant with the two-tailed Mann-Whitney U test (N1 = 94, N2 = 104,

p = 6.39x10-8). Buried non-polar surface is significantly larger in interactors (M = -1198,

SD = 86 Å2) than non-interactors (M = -1153, SD = 105 Å2, p = 2x10-3), whereas polar surface

is not significantly different (interactors M = -758, SD = 113 Å2, non-interactors M = -751,

SD = 123 Å2, p = 0.33). Similar results are obtained with the 3JVZ template (Fig 5) listing inter-

actors versus non-interactors: NetQ, M = -7.1, SD = 6.3 kJ/mole versus M = -2.9, SD = 5.6 kJ/

mol, with p = 2.87x10-7; ΔSASAnp, M = -1501, SD = 123 Å2 versus M = -1397, SD = 165 Å2,

with p = 4.35x10-6; ΔSASApol, M = -1159, SD = 177 Å2 versus M = -1091, SD = 190 Å2, with

p = 5.39x10-3. For the 3JVZ template, unlike 5HPT, buried polar surface area is also signifi-

cantly different, possibly because the C-lobe of the HECT domain is positioned differently,

capturing different points along the pathway of transferring ubiquitin from the E2 to the E3.

Toxin–antitoxin pairs

Specificity data are available for parD-parE pairs in Caulobacter crescentus [35], and vapB-

vapC pairs for the related vapBC system in Mycobacterium tuberculosis [36]. NetQ, ΔSASApol

and ΔSASAnp are not significantly different between interactors and non-interactors for the

vapBC family (N1 = 48, N2 = 2256, Fig 6) when modeling on the 3H87 or 3DBO templates.

Modeling parE–parD pairs (N1 = 3, N2 = 6) on the 3KXE template, and relE–relB (N1 = 4,

N2 = 12) on the 2KC8 template, also fails to produce any separation between interactors and

non-interactors. Toxin–antitoxin pairs are by far the most divergent system, with sequence

identities as low as 4% within the toxin or antitoxin families, and Cα RMSDs between 3 and 7

Å for aligned template structures.

Fig 4. Comparison of interfaces for E2 –HECT E3 complexes modeled on 5HPT. Cumulative densities for interactors and non-interactors are shown. A.

NetQ. B. ΔSASAnp. C. ΔSASApol.

https://doi.org/10.1371/journal.pone.0185928.g004

Fig 5. Comparison of interfaces for E2 –HECT E3 complexes modeled on 3JVZ. Cumulative densities for interactors and non-interactors are shown. A.

NetQ. B. ΔSASAnp. C. ΔSASApol.

https://doi.org/10.1371/journal.pone.0185928.g005
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Bcl-2-family proteins

Interactions among the Bcl-2-like proteins are crucial in regulating apoptosis. Specificity data

are available for a set of BH3 peptides interacting with BH3-binding grooves [47]. After model-

ing antiapoptotic protein–BH3 peptide interactions on a template of human Bcl-2 bound to a

BH3 peptide (2XA0), and comparing charge interactions and buried surfaces between inter-

acting (N1 = 43) and non-interacting pairs (N2 = 5), the most evident difference is that non-

interactors typically have a less favorable NetQ than interactors (p = 0.002, Fig 7). Buried sur-

face is less discriminating between interactors and non-interactors (p = 0.131 for ΔSASAnp,

p = 1 for ΔSASApol).

Discussion

This study assesses to what extent interactions between groups bearing net charge correlate

with specificity for complexes formed by families of paralogous proteins at a common inter-

face. Modeling paralogues on a suitable template and comparing empirical interface properties

produces significant separation between interactors and non-interactors in most systems, with

electrostatic interactions (between groups bearing net charge) being most discriminatory, fol-

lowed by buried non-polar surface, with buried polar surface being least discriminatory. It is

shown that the results are largely independent of the template, although there is a limit to the

template-based modeling with our current methods, demonstrated by the bacterial toxin–anti-

toxin pairs. These systems have diverged sufficiently to seriously impact on the accuracy of the

comparative modeling process. For example, the vapB2–vapC2 and vapB5–vapC5 pairs have an

overall sequence identity of 6%, and an RMSD between template structures of 6.6 Å, in con-

trast to a more typical case in the current work of sequence identities ~ 45% and RMSDs ~ 1.5

Å. Extensive sequence divergence, seen particularly in bacterial systems, is likely to provide a

challenge for even the most sophisticated comparative modeling tools [54]. However, the

lower sequence divergence seen for proteins in paralogue families in metazoan systems make

them amenable to the comparative studies that we have employed.

Our sidechain replacement comparative modeling tool provides no opportunity to model

insertions and deletions. Whether such changes can be modeled with sufficient accuracy and

speed for large-scale analysis of complexes remains an open question. An available option is

whether to repack all sidechains or to employ a more minimal repacking of only those side-

chains that differ between model and template. The minimal repacking scheme has been used,

since amino acid conservation could reflect an important role in maintenance of structure

[55]. For example, with BH3 peptides, 4 conserved hydropobic residues bind into 4 conserved

pockets on the antiapoptotic proteins, and an invariant aspartic acid forms a salt-bridge with a

conserved arginine from the partner protein (Fig 1). In RING E3s, conserved histidine and/or

Fig 6. Comparison of interfaces for vapC toxin–vapB antitoxin complexes modeled on 3H87. Cumulative densities for interactors and

non-interactors are shown. A. NetQ. B. ΔSASAnp. C. ΔSASApol.

https://doi.org/10.1371/journal.pone.0185928.g006
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cysteine residues coordinate Zn2+ to maintain the native protein structure. It has been found

that preserving the template amino acid sidechain rotamer is beneficial in maintaining the sta-

bility of modeled antiapoptotic protein–BH3 peptide complexes during molecular dynamics

simulations [18].

Fig 7. Comparison of interfaces for BH3 peptide–binding groove interactions, modeled on 2XA0. Color-coded histograms for interactors (blue),

non-interactors (red), and interactions that have not been determined (yellow). A. NetQ. B. ΔSASAnp. C. ΔSASApol.

https://doi.org/10.1371/journal.pone.0185928.g007
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High throughput experimental data for protein–protein interactions are key for the current

study, but these data can be imprecise. For example, the largest dataset used, E2 –RING E3 inter-

actions, derives from a yeast two-hybrid screen [41]. Given the general low affinity of E2 –E3

interactions [56], the screen may contain false positive and/or false negative data. Additionally,

the functional assay used in the E2 –HECT E3 study is not capable of detecting interactions which

only extend ubiquitin chains on mono-ubiquitinated targets or require cofactors [44]. Further

computational study would benefit from more data collection in a variety of paralogue systems.

In agreement with previous work [57], we find that non-polar surface constitutes the

majority of the interface, consistent with it being the dominant contributor to the free energy

of binding. The current study suggests that superposed on burial of non-polar surface, the

interactions of groups bearing net charge are a major determinant of binding specificity, for

interactions between members of paralogue families. This finding is consistent with the core

and rim model of protein interfaces [58], which postulates that conservation is greatest at the

mostly hydrophobic core [59][60]. Our study indicates that for specificity of protein interac-

tions from paralogue families, at a common interface, charge alterations make a substantial

contribution, on a relatively conserved steric scaffold.

This observation can be interpreted from the standpoint of the core and rim model, and co-

evolution of sequences, at least in the case of BH3 peptide–antiapoptotic protein complexes.

Anchoring hydrophobic resides are highly conserved in this system (Fig 1), with conservation

of the amino acids forming the 4 non-polar pockets, and illustrated by the low variation of

ΔSASAnp values (Fig 7B). Key variable residues are blue in the sequence alignment of Fig 1,

and contribute to a charge-mediated specificity, evident in Fig 7A. These amino acids vary

within the alignment between acidic, basic, and uncharged. It follows that co-evolutionary

methods could be fruitfully employed in identifying interacting pairs through grouping into

subsystems. It is possible to cast our current results in the context of the core and rim model.

Here, the core is dominated by conserved non-polar amino acids, whilst more polar groups at

the rim play a large role in determining specificity. It is apparent that significant variation of

non-polar surface also occurs within most of the systems studied here, although in general

changes in charge interactions are better at distinguishing interactors from non-interactors.

For one system, BH3 peptide complexes with antiapoptotic proteins, we have discussed how

co-evolutionary approaches could be applied to specificity determinants. Co-evolutionary

methods are likely to be more generally applicable to these systems, and await further analysis.

Using the BH3 peptide complexes, we illustrate one example of how variation in rim residues

may currently be an under-recognised feature in specificity determination, as compared with

the well-recognised hydrophobic pockets and conserved aspartic acid. Mutation of E18 in Bim

to a serine diminishes the binding of Bcl-xL, whereas phosphorylating the resultant serine

restores binding, as a result of phopshoryl group interactions with arginine residues [61]. We

have previously uncovered such behavior with molecular dynamics simulation and free energy

calculations [18], but it is apparent in the current work that these patterns can also be recog-

nized through more simple and much faster calculations.

We have established that charge-charge interactions contribute substantially to a fine-tuning

of pair interaction specificity in the systems studied, and in one case show that this modulation is

based largely in the rim of the core and rim model for protein-protein interactions. It is unclear

why interactions evolve in this manner, although two lines of enquiry are apparent and could be

further investigated. First, the effects of mutations (non-polar versus polar/charged residues) on

stability of each interacting partner could lead to a preference for less deleterious charge swaps

over non-polar surface alteration. Second, in a view of the crowded macromolcular environment,

complementarity of charge interactions could afford a mechanism for scanning of potential part-

ners at moderately longer range than the solvent exclusion of non-polar interactions.
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The empirical modeling pipeline could be trialed with a combination of charge and surface

burial, or inclusion of volume-based descriptors [27], and with other features, such as hydro-

gen bonding, more detailed analysis of buried surface and solvation [62], and alternate analysis

of side-chain conformers in protein-protein interactions [63].Further work is required to

establish the degree to which our empirical model can be used predictively for interacting and

non-interacting pairs, in particular looking at restrictions imposed by divergence at the

sequence alignment and comparative modeling stages. In this regard, we have included calcu-

lations for A1 –Bax and A1 –Bak binding, which were not present in the original experimental

binding dataset. Our calculations suggest that these are favourable interactions, which is cor-

roborated by experimental work for A1 –Bax [64] and A1 –Bak [65]. The benefit of the current

study is that a very simple model is employed, so that the effectiveness of charge interactions

in contributing to interaction specificity is clearly encoded in the geometry of charge disposi-

tion at the interface. Our study is designed around variation at a common interface, which

yields to the simple model applied, in contrast for example to more detailed modeling for

design of a new interface [66]. It be could applied to modeling those parts of protein—protein

interaction networks within a cell [67,68,69] that involve interactions between proteins from

paralogue families.
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