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The limbic system plays a pivotal role in stress-induced anxiety and intestinal

disorders, but how the functional circuits between nuclei within the limbic

system are engaged in the processing is still unclear. In our study, the results of

fluorescence gold retrograde tracing and fluorescence immunohistochemistry

showed that the melanin-concentrating hormone (MCH) neurons of the lateral

hypothalamic area (LHA) projected to the basolateral amygdala (BLA). Both

chemogenetic activation of MCH neurons and microinjection of MCH into the

BLA induced anxiety disorder in mice, which were reversed by intra-BLA

microinjection of MCH receptor 1 (MCHR1) blocker SNAP-94847. In the

chronic acute combining stress (CACS) stimulated mice,

SNAP94847 administrated in the BLA ameliorated anxiety-like behaviors and

improved intestinal dysfunction via reducing intestinal permeability and

inflammation. In conclusion, MCHergic circuit from the LHA to the BLA

participates in the regulation of anxiety-like behavior in mice, and this neural

pathway is related to the intestinal dysfunction in CACS mice by regulating

intestinal permeability and inflammation.
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Introduction

Epidemiological studies have shown that as many as 33.7% of

people are affected by anxiety disorders in their lifetimes, which

causes a high disease burden (Bandelow and Michaelis, 2015).

Although numerous studies have examined the brain regions

involved in anxiety symptomatology, leading to the development

of selective serotonin reuptake inhibitors for anxiety

management, much remains unknown regarding the etiology

and mechanism of anxiety (Arias et al., 2021). It is well known

that long-lasting stress state caused by emotional arousal, severe

trauma or intense experiences usually is a major inductive factor

of psychiatric disorders, such as anxiety, depression,

schizophrenia and post-traumatic stress disorder (Davis et al.,

2010; Yin et al., 2016). Both animal and clinical studies found that

acute or chronic stress stimuli caused morphological and

functional changes in amygdala nuclei, and the hyperactivity

of amygdala was considered to contribute to the anxious

response (Sandi and Richter-Levin, 2009).

The amygdala, located in the medial temporal lobe of most

mammals (Sah et al., 2003), plays an important role in processing

information about anxiety-inducing stimuli, and modulates

emotional and behavioral responses (Delgado et al., 2006;

Sharp, 2017). The microcircuit in amygdala relevant for

anxious responses includes the basolateral complex (BLA) and

the central nucleus (CeA) (Yang and Wang, 2017; Hájos, 2021).

The BLA, as the main integrated input nucleus into the amygdala,

receives processed and multisensory information from different

brain regions such as the sensory thalamic and cortical structures

as well as the hippocampus, PFC and the locus coeruleus (McCall

et al., 2015; Sah, 2017; Zhang et al., 2018; Pi et al., 2020).

Neurotransmitters such as neuropeptide Y, somatostatin,

cholinergic and norepinephrine also act on the BLA to

modulate the behavioral manifestation of anxiety (Bedse et al.,

2015; Bao et al., 2021; Gaskins et al., 2021; Sizer et al., 2021). In

addition, optogenetic activation of the BLA is sufficient to induce

real-time anxiety effects (Daviu et al., 2019). The CeA, mainly

accepting and processing the sensory information from the BLA,

is the major output region of the amygdala involved in

physiological and behavioral responses to stress (Knapska

et al., 2007; Namburi et al., 2015). CeA also receives minor

stimuli signals from other regions(Gilpin et al., 2015), so

dysfunction or activation of special receptors elicited

anxiogenic-like responses (de la Mora et al., 2016; Hernandez-

Perez et al., 2018; Narvaez et al., 2018; Micioni Di Bonaventura

et al., 2019). Therefore, to understand anxiety disorder induced

by stress, it is important to study the information input to the

BLA, which might help to develop more effective therapeutics

(Duval et al., 2015).

Melanin-concentrating hormone (MCH) is a brain–gut

polypeptide composed of 19 amino acids. It is expressed by

many cells in the lateral hypothalamic area (LHA), which is a hub

integrating a variety of central and peripheral signals that

coordinate adaptive behavioral responses to the environment

through a complex output circuit (Chometton et al., 2016;

Jimenez et al., 2018). MCHergic neurons project to entire

brain regions, including the amygdala, hippocampus, and

nucleus accumbens, etc., (Jang J. H. et al., 2018). In addition

to being associated with feeding behavior and energy

homeostasis, MCH has also been shown to play an important

role in the regulation of anxiety- and depression-related

behaviors in stressed rats and mice, and blocking MCH

receptor 1 has antidepressant and anti-anxiety effects in

various animal models (Ludwig et al., 2001; Abbott et al.,

2003; Hausen et al., 2016; Jiang and Brüning, 2018). The

neurochemical mechanisms underlying the regulatory role of

MCH consist of decreasing the reward, inhibiting the activity of

serotonergic dorsal raphe nucleus neurons, and increasing the

activity of hypothalamus-pituitary adrenal axis, etc., (Shimazaki

et al., 2006; Chaki et al., 2015; Torterolo et al., 2015). Injecting

MCH into the cerebroventricles, locus coeruleus, or BLA has

been shown to significantly decrease social interaction times,

climbing times in forced swim tests, and sucrose preference in

sucrose preference tests (Borowsky et al., 2002; Kim et al., 2015;

Ye et al., 2018). Kim et al. (2015) ’s study showed that stress can

cause activation of MCH receptors in BLA, leading to defects in

emotion-related behaviors. In addition, the levels of P-CamKII α
in BLA of MCH KO mice were decreased, and they were able to

recover from chronic stress (Kim and Han, 2016a). However,

there are also studies that contradict the above results of anxiety

induced by MCH, in which intranasal administration of MCH

significantly reduced depression-like behaviors in stressed rats

and mice (Oh et al., 2020). These findings suggest that the BLA or

LHA neurons expressing MCH play a vital role in regulating

anxiety and depressive behavior, while the regulation of LHA-

BLA MCHergic neural pathway on anxiety remains unknown.

Stress affects gastrointestinal motility, visceral pain

sensitivity, and intestinal epithelial cell permeability (O’Malley

et al., 2010). Conversely, harmful colorectal dilation, which is

considered a disorder of the brain–gut axis, activates the central

amygdala, BLA, and anterior cingulate cortex (Tsushima et al.,

2021). Although the mechanism is not clear, the close

relationship between psychological stress and intestinal

inflammation is widely recognized (Wang et al., 2021b).

Psychological stress increases intestinal permeability and can

lead to symptoms of low-grade inflammation and functional

gastrointestinal diseases (Ilchmann-Diounou and Menard,

2020). Moreover, in vitro MCH treatment of colon cells has

been shown to upregulate IL-8 transcription, suggesting a link

between MCH and inflammatory pathways (Kokkotou et al.,

2009).

In this study, the MCHergic neural pathway from the LHA to

the BLA was activated by chemical-genetic approaches to

investigate its potential effect on anxiety-like behavior and

intestinal dysfunction. Chronic acute combining stress (CACS)

was performed in mice to induce anxiety-like behavior, which
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was assessed by the open field test (OFT), elevated plus maze

(EPM) test, marble burying test (MBT), and sucrose preference

test (SPT). Intestinal changes were observed in CACS mice,

including the motility, 5-HT and neuronal nitric oxide

synthase (nNOS) expression in the myenteric plexus,

intestinal inflammation, and intestinal permeability. Potential

involvement of the LHA–BLA MCHergic neural pathway were

investigated, and the MCH1R antagonist SNAP94847 (SNAP)

was microinjected into the BLA to elucidate the involvement of

LHA–BLA MCHergic signaling in brain–gut axis dysfunction in

anxiety-like animal models. Present findings may contribute to

the exploration of a novel treatment strategy for stress-induced

anxiety and intestinal dysfunction.

Materials and methods

Animals

A total number of 170 male C57BL/6 mice (25–30 g)

purchased from Qingdao University’s Laboratory Animal

Center (Shandong, China) were used. Mice (3 per cage) were

maintained under a normal 12-h light/dark cycle and had free

access to tap water and standard chow. The ambient temperature

and relative humidity were maintained at 24°C ± 1°C and 45% ±

5%, respectively. All animal procedures including housing,

experimentation, and disposal were performed in accordance

with the Guidelines for Care and Use of Laboratory Animals of

Qingdao University and approved by the Animal Ethics

Committee of the Medical College of Qingdao University.

Experimental instruments and reagents

MCH (ChinaPeptides Co.,Ltd., China); Clozapine N-oxide

(CNO; GLPBIO, United States); SNAP-94847 (SNAP;

MedChemExpress Co., Ltd., China); AAV2/9-mMCHp-

hM3D(Gq)-mCherry-WPRE-PA (Taitool Bioscience Co., Ltd.,

China); Stainless-steel guide cannula (model number: 62102;

RWD Life Science Co. Ltd., China); Penicillin (Wuhan

Biological Technology Co., Ltd., China); Fluoro-Gold (FG;

Fluorochrome.LLC., United States); Microsyringe (Hamilton,

Switzerland); Kryostat 1720 freezing microtome (Leica,

Germany); Rabbit anti-MCHR1 (Abcam, United Kingdom);

Rabbit anti-MCH (Abcam, United Kingdom); Mouse anti-c-

Fos (Abcam, United Kingdom); Rat anti-5-HT (Abcam,

United Kingdom); Rabbit anti-nNOS (Abcam,

United Kingdom); Goat anti-mouse Cy3 (Jackson

ImmunoResearch, United States); Goat anti-rabbit Alexa Fluor

488 (Jackson ImmunoResearch, United States); Antifadent

mountant solutions (Citifluor, United Kingdom); DP50 digital

camera (Olympus, Japan); SMART Video Tracking System

(Panlab, United States); ELISA kit (Shanghai Jianglai

Biotechnology Co., Ltd., China); Anti-ZO-1 (Affinity,

United States); Anti-occludin (Proteintech, United States);

ChemiScope 6200 system and chemical analysis software

(Clinx Science Instruments, China)

Experimental design

Experiment 1: mice were randomly divided into two groups

(n = 10). 1.5 μl MCH (1 mg/ml) or normal saline (NS) was

injected into the BLA respectively for three consecutive days

through the brain cannulas. The behavioral tests were

conducted 30 min after the last injection.

Experiment 2: mice were randomly selected to observe the

coexistence of Fluoro-Gold and MCH immunoreactive

neurons in the LHA by retrograde tracing combined with

immunofluorescence histochemical staining (n = 6).

Experiment 3: mice were randomly divided into four groups:

NS + NS, SNAP + NS, NS + CNO, and SNAP + CNO group

(n = 6–8). The four groups were divided by intraperitoneal

injection of CNO or NS and microinjection of SNAP or NS in

BLA. All mice received stereotaxic injection of adeno-

associated virus (AAV) vector (AAV2/9-mMCHp-

hM3D(Gq)-mCherry-WPRE-PA, titer: 2E+12, 0.5 μl) in the

LHA. After 2 weeks of recovery, cannula implantation were

conducted in the BLA. 1 week later, 1.5 μl SNAP (2 mg/ml) or

NS were microinjected in the BLA for continuous seven days.

On the experiment day, CNO (0.15 mg/kg) was injected

intraperitoneally to induce the activation of hM3Dq-

positive MCH neurons in the LHA 20 min prior to the

anxiety behaviors tests.

Experiment 4: mice were randomly subjected to the chronic

unpredictable stress for 21 consecutive days and 2 h acute

restraint stress on Day 22. The anxiety behaviors (n = 10) were

monitored on Day 1, 3, 7, 14, 18, 22. Six mice were sacrificed

to observe the activated MCH neurons induced by CACS on

Day 22.

Experiment 5: mice were randomly divided into four groups:

Control + NS group, Control + SNAP group, CACS + NS

group and CACS + SNAP group. 1.5 μl SNAP (2 mg/ml) or

NS was microinjected in the BLA of CACS and normal

control mice respectively for consecutive seven days, and

the anxiety-like behaviors (n = 6–10), intestinal tract

motility test (n = 7–10), enzyme-linked immune-sorbent

assay (ELISA) (n = 8–10), and western blot (n = 6) were

explored respectively.

Implantation of brain cannulas and drug
microinjection

In Experiment 1, 3, 4, 5, mice were injected intraperitoneally

with ketamine (100 mg/kg) and xylazine (20 mg/kg) and fixed in
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the stereotaxic frame. The skull was then exposed. A stainless-

steel guide cannula was implanted vertically into the BLA

(posterior 1.4 mm, lateral ± 3.0 mm, and depth of 4.8 mm

relative to the bregma) according to the brain atlases of

Paxinos and Franklin (Paxinos and Franklin, 2004) and then

sealed with dental acrylic. After the operation, mice were injected

with 80,000 U of penicillin (5 mg/kg) for three consecutive days

to prevent infection. After 7 days recovery, mice were

administered drug or vehicle in the BLA through the injection

cannula connected to a syringe by a 10-cm polyethylene tube in

1.5 μl volume over 5 min. The injection cannula was kept in place

for another 2 min to allow the drug to completely diffuse from

the tip.

Flouro-gold retrograde tracking

Following a previous study (Liu et al., 2020), mice were

anaesthetised and fixed on the stereotaxic instrument. An

aliquot of 200 nl of 2% FG was injected into BLA (posterior

1.4 mm, lateral ± 3.0 mm, and depth of 4.8 mm relative to the

bregma) according to the atlas with a microsyringe. The

microsyringe was kept in place for another 10 min to allow

the FG to completely diffuse from the tip. Finally, the syringe

was removed, and the wound was disinfected and sutured.

Penicillin was injected for three consecutive days after the

operation. After 7 days, the mice were anaesthetised and

perfused with 4% paraformaldehyde (PFA), and their

brains were removed for immunofluorescence staining.

Immunofluorescence staining

The removed brains were postfixed for 4 h and

cryoprotected in sucrose (30% in MQ water) overnight. A

series of frozen coronal sections of 15 μm were cut on a

freezing microtome. The slices were incubated with 4%

goat serum and 0.5% Triton at room temperature for 2 h

and then incubated with primary antibodies at 4°C overnight.

For BLA neurons, the primary antibodies were rabbit anti-

MCHR1 (1:500). For LHA neurons, the primary antibodies

were rabbit anti-MCH (1:800) and mouse anti-c-Fos (1:800).

For the myenteric plexus, the 1.5 cm proximal colon was taken

and the mucosa, submucosa and muscularis layers of the

intestine were torn out under a dissecting microscope to

expose the myenteric plexus and immunofluorescence

staining was performed. The primary antibodies consisted

of rat anti-5-HT (1:100) and rabbit anti-nNOS (1:1,000). After

washing with phosphate buffer saline (PBS) for 5 min three

times, the sections were incubated with secondary antibodies,

which were goat anti-mouse Cy3 (1:300), goat anti-rabbit

Alexa Fluor 488 (1:100), or goat anti-rat Cy3 (1:300) at

room temperature for 2 h. After rinsing with PBS three

times for 5 min each wash, the sections were mounted with

antifadent mountant solutions. All sections were visualized,

and photographs were taken using a BX50 microscope and a

DP50 digital camera. Immunoreactive cells were counted in

five fields of five brain slices of the LHA of each mouse. The

area of positive cell count was 350 × 350 μm2. The percentage

of double-labeled cell was calculated as number of double-

labeled cells/total number of positive neurons × 100 (Liu et al.,

2020). In the myenteric plexus of each animal, 30 ganglions

were randomly selected, and the immunoreactive neurons in

the colon were counted. The average number of neurons in

each ganglion was obtained using ImageJ software (Guo et al.,

2021).

Behavioral tests

Open field test
The experiment was conducted 30 min after the injection

in a quiet environment with dim illumination. Each mouse

was placed at the center of the bottom surface of a box and was

allowed to adapt for 30 s. Its exploratory behavior was then

recorded for 5 min using a camera fixed above the field. The

total distance traveled and the time spent in the central area

were analyzed using a SMART Video Tracking System. The

TABLE 1 The protocol of chronic acute combining stress.

Days Stressor Days Stressor Days Stressor

Day 1 sleeping in wet cages for 6 h Day 9 swimming in cold water (4°C) for 10 min Day 17 overnight illumination

Day 2 overnight illumination Day 10 water deprivation for 24 h Day 18 tail pinching for 3 min

Day 3 food deprivation for 24 h Day 11 sleeping in wet cages for 6 h Day 19 sleeping in wet cages for 6 h

Day 4 water deprivation for 24 h Day 12 tail pinching for 3 min Day 20 water deprivation for 24 h

Day 5 swimming in cold water (4°C) for 10 min Day 13 overnight illumination Day 21 overnight illumination

Day 6 overnight illumination Day 14 sleeping in wet cages for 6 h Day 22 acute restraint stress for 2 h

Day 7 tail pinching for 3 min Day 15 swimming in cold water (4°C) for 10 min

Day 8 food deprivation for 24 h Day 16 food deprivation for 24 h
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inner wall and bottom of the box were cleaned with 75%

ethanol after removing each animal to remove any lingering

odor. The time and distance of the mice staying in the center

and periphery of the open field were recorded (Matsumoto

et al., 2021).

Elevated plus maze
A maze consisting of a plus-shaped platform with two

open and two closed arms was placed 40 cm above the ground.

Each mouse was placed in the maze from the center lattice to

the closed arm, and its movements were recorded for 5 min.

The number of times of entering the open arm and the closed

arm and the residence time were taken as parameters (Wang

et al., 2021a).

Marble burying test
The animals were transferred to a cage (47 × 25 × 30 cm) with

20 glass balls 1.5 cm in diameter arranged in a 4 × 5 grid on a 5-

cm thick pad. After 30 min, the animals were placed back in their

cages, and the buried marbles (up to 2/3 of their diameter) were

counted (Yu et al., 2019).

Sucrose preference test
On the first day, the mice were acclimatized with two bottles

of 1% sucrose solution for 24 h. On the second day, they were

given a bottle of 1% sucrose solution and the same volume of

water for 24 h. The positions of the two bottles were switched

every 2 h to prevent location preferences. Sucrose preference was

determined by measuring sucrose solution consumption and

expressed as a percentage of the total liquids over a 4-h

period (Li et al., 2021).

Chemogenetic stimulation

In Experiment 3, the skulls of mice were exposed on the

stereotaxic device after anesthesia. The bilateral stereotaxic

injection of AAV2/9-mMCHp-hM3D(Gq)-mCherry-WPRE-PA

was positioned at the LHA (posterior 1.34 mm, lateral ± 1.2 mm,

and depth of 5.0 mm relative to the bregma) according to the atlas.

After three weeks of recovery, Clozapine N-oxide (CNO) dissolved in

saline (1 mg/ml) was injected (0.15 mg/kg) intraperitoneally to induce

activation of hM3Dq-positive MCH neurons. Wang et al. (2021c).

FIGURE 1
MCH peptide microinjection into the BLA induced anxiety-like behaviors in mice. (A) Fluorescent immunohistochemistry showed MCHR in the
BLA. (B)Representative traces of locomotor activity in theOFT. (C) Effects of injecting theMCHpeptide into the BLA on the center residence time and
distance in the.OFT. (D) Representative traces of locomotor activity in the EPM. (E) Effects of injecting the MCH peptide into the BLA on the open arm
entry times and residence time in the EPM. The data are presented as the mean ± SEM (n = 10 mice per group). *p < 0.05, **p < 0.01, ***p <
0.001 versus the NS group.
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Chronic acute combining stress

In Experiment 4 and 5, mice were randomly subjected to

chronic unpredictable stress for 21 consecutive days. The chronic

unpredictable stress included food deprivation for 24 h, water

deprivation for 24 h, swimming in cold water (4°C) for 10 min,

tail pinching for 3 min, overnight illumination, and sleeping in

wet cages for 6 h (Yu et al., 2019). On Day 22, mice were

subjected to acute restraint stress for 2 h (Table 1).

Intestinal tract motility test

Defecation time
The mice were fasted for 18 h, SNAP or NS were microinjected

into the BLA of CACS mice and normal control mice respectively.

One hour later, 0.3 ml charcoal powder (5% activated carbon

dissolved in 10% acacia solution) was gavaged to the mice. The

time of the first fecal ball with carbon powder was recorded.

Fecal moisture content test
Feces from each mouse were weighed and then dried in an

oven (60°C) for 1 h. The dried feces were then weighed. The water

content was calculated according to the following formula:

[(initial weight–dry weight)/initial weight] × 100 (Yu et al.,

2019; Li et al., 2021).

Enzyme-linked immune-sorbent assay

Mice were anesthetized and proximal colon samples (0.04 g)

were taken. PBS was added (360 μl), and the samples were

ground on ice. After centrifugation at 1,450 × g for 20 min at

4°C, the supernatant was collected and stored at −80°C. The levels

of 5-HT, nNOS, TNF-α, IL-6, and IL-10 in the samples were

measured according to the ELISA kit instructions.

Western blot

Following the method of a previous study (Cui et al., 2021),

proximal colon tissue samples were collected and cleaved in

RIPA lysis buffer containing phosphatase and protease inhibitors

and homogenized on ice. A BCA protein detection kit was used to

quantify the protein concentrations in the samples. Equivalent

amounts of protein (20 μg) were analyzed on SDS-PAGE gel and

then electrically transferred to a 0.45-μm PVDF membrane at

room temperature and blocked in TBST with 5% skimmed milk

for 2 h. It was then incubated overnight in a 4°C refrigerator with

the following specific colostrum: anti-ZO-1 (1:1,000) and anti-

occludin (1:3,000). The membrane was then incubated with

HRP-conjugated secondary antibody (anti-rabbit/mouse IgG)

for fluorescent protein band detection using a synergistic

chemiluminescence solution and analyzed using a

ChemiScope 6200 system and chemical analysis software.

Histological verification

At the end of the experiment, each mouse was perfused and

fixed by 4% PFA, and 50 μm frozen sections of the brains were

prepared to verify the locations of nuclear injection. Incorrectly

positioned data were excluded from statistical analysis.

Statistical analysis

The data were expressed as means ± standard deviations and

processed using Prism 8.0 software. Statistical significance was

assessed using two-way or one-way factorial ANOVA with

Bonferroni/Dunn correction for multiple comparisons and a paired

t-test. Values of p < 0.05 were considered statistically significant.

Results

Melanin-concentrating hormone
microinjection into the basolateral
amygdala induced anxiety-like behaviors
in mice

Fluorescence immunohistochemical results showed that

MCHR was distributed in the BLA (Figure 1A). The

experimental group was injected with MCH peptide, and the

control group was injected with the NS. Behavioral tests were

performed 30 min after the drug was injected. The time (p <
0.001, n = 10) and movement distance (p < 0.01, n = 10) in the

OFT central zone were significantly shorter in the MCH group

than in the control group (Figures 1B,C). In the EPM test, the

mice in the MCH group entered the open arms significantly less

often (p < 0.01, n = 10) and spent significantly less time there (p <
0.01, n = 10) than those in the control group (Figures 1D,E).

Melanin-concentrating hormone-
immunoreactive neurons in the lateral
hypothalamic area projected to the
basolateral amygdala

FG was microinjected into the BLA of mice (Figure 2A).

Microscopically, MCH-immunoreactive neurons were found in

the LHA (Figure 2B), 32.15% ± 6.83% of MCH-labeled neurons

contain FG, and 21.33% ± 5.32% of FG-labeled neurons showed

immunoreactiveMCH expression (Figure 2C), suggesting that some

MCH-immunoreactive neurons in the LHA projected nerve fibers

to the BLA.
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Chemogenetic activation of melanin-
concentrating hormone neurons induced
anxiety behaviors in mice

The LHA of mice was injected with mMCHp-hM3D(Gq)-

mCherry (Figure 3A). A cannula was then implanted into the

BLA, After the recovery, the mice were tested OFT on day 25,

EPM on day 26, MBT on day 27, and SPT on day 28 (Figure 3B). To

rule out an effect of CNO on behavior, dose comparison was

performed. The results showed that CNO in a dose of 0.15 mg/kg

had no effect on the behavior of normal mice compared with the NS

control group. A higher dose of 0.3 mg/kg CNO had no significant

effect on the behavior of embedding beads in MBT, and had a

tendency to reduce the duration of open arm stay in EPM, while this

dose in OFT could significantly reduce the duration of stay in the

center of mice (p < 0.001, n = 6–8; Figure 3C). Therefore, 0.15 mg/kg

was selected for the activation of MCH neurons in the LHA.

Themice with AAV2/9-mMCHp-hM3D(Gq)-mCherry-WPRE-

PAwere divided into four groups: NS +NS, SNAP +NS, NS + CNO,

and SNAP + CNO. Compared with the NS + NS group, the NS +

CNO group had a shorter average time (p < 0.05, n = 8) and distance

covered (p < 0.05, n = 8) in the OFT central zone (Figure 3D), fewer

entries into the open arms (p < 0.01, n = 8) and less time spent there

(p < 0.05, n = 8) in the EPM (Figure 3E), fewer buried beads (p < 0.01,

n = 6) in the MBT (Figure 3F), and less preference for sucrose (p <
0.01, n = 6) in the SPT (Figure 3G).

A comparison between the SNAP+CNOandNS+CNOgroups

showed that the former had significantly longer times (p< 0.01, n= 8)

and distances covered (p < 0.01, n = 8) in the OFT center (Figure 3D),

more frequent entries (p < 0.001, n = 8) and longer times (p < 0.001,

n = 8) in the open arms of the EPM (Figure 3E), more buried beads

(p < 0.01, n = 6) in the MBT (Figure 3F), and a greater preference for

sucrose (p < 0.05, n = 6) in the SPT (Figure 3G). These results showed

that the activation of MCH neurons caused anxiety-like responses in

mice, whereas SNAP microinjection into the BLA alleviated them.

Chronic acute combining stress induced
anxiety behaviors and activation of
melanin-concentrating hormone neurons
in the mice

Anxious mouse models were created by combining acute and

chronic stress for 22 days (Figure 4A). The CACS mice spent

significantly less time in the OFT central zone than normal mice

on Day 18 and later (p < 0.05, n = 10; Figure 4B). Acute stress was

induced for 2 h before sacrifice on Day 22, and six mice were then

perfused and fixed to obtain frozen sections. The brains of the normal

and anxious mice were sliced for MCH and c-Fos fluorescent

immunohistochemical staining. Microscopically, MCH- and c-Fos-

immunoreactive neurons were observed in the LHA, and someMCH

neurons showed c-Fos-positive expression (Figures 4C,D). A

comparison of c-Fos immunoreactive expression in the LHA of

normal and anxious mice showed significantly more numerous

c-Fos and MCH double-labeled cells in the MCH positive neurons

of anxious mice than in that of normal mice (27.53% ± 5.32% vs.

7.67% ± 1.81%; p < 0.05, n = 6), suggesting increased activation of

MCH neurons in anxious mice.

FIGURE 2
MCH-immunoreactive neurons in the LHA projected to the BLA. (A) A schematic diagram and injection site of FG microinjection into the BLA.
(B,C) After seven days of FG retrograde tracking, the fluorescence immunohistochemistry showed that the MCH neurons in the LHA (B) and the
MCH/FG co-expressing neurons extend from the BLA into the LHA (C) (n = 6).
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FIGURE 3
Chemogenetic activation of MCH neurons induced anxiety-like behaviors inmice. (A) A schematic diagram of anmMCHp-hM3D(Gq)-mCherry
injection into the LHA (left) and a representative photograph of mMCHp-hM3D(Gq)-mCherry fluorescence at the injection site in the LHA (right). (B)
An experimental procedure to activate the virus during behavioral experiments. After the mice had acclimated to the environment, the virus was
injected into the LHA, with a cannula buried in the BLA; one week after their recovery from the surgery, the virus was activated by an
intraperitoneal injection of CNO, and the MCHR1 blocker SNAP was injected into the BLA to measure the behavior of the mice. (C) Effects of
0.3 mg/kg and 0.15 mg/kg CNO on OFT, EPM and MBT in wild type mice. (n = 6–8 mice per group). (D,E,F,G) Representative traces of locomotor
activity in the OFT (D), EPM (E), and MBT (F) (left), the effects of BLA injection of the MCHR1 blocker SNAP and intraperitoneal injection of CNO to
activate the virus on theOFT center residence time and distance (D), EPM open arm entry times and residence time (E), the number ofmarbles buried
in the MBT (F), and sucrose preference (G) (right). The data are presented as the mean ± SEM (n = 6–8 mice per group). *p < 0.05, **p < 0.01, ***p <
0.001 versus the NS + NS group, #p < 0.05, ##p < 0.01, ###p < 0.001 versus the NS + CNO group.
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SNAP microinjection into the basolateral
amygdala alleviated anxiety-like behaviors
in chronic acute combining stress mice

A cannula was then implanted into the BLA of the CACS mice

on Day 22, and behavioral tests and intestinal motility test were

administered after a seven-day recovery (Figure 5A). Both CACS

mice and normal control mice were injected with SNAP or NS in

BLA, and behavioral experiment was tested 30 min after injection.

Compared with the Control + NS group, the CACS + NS had a

shorter time (p < 0.001, n = 10) and distance (p < 0.001, n = 10) in

the OFT central zone (Figure 5B), less frequent entries (p < 0.01, n =

10) and shorter times (p < 0.01, n = 10) in the open arms of the EPM

(Figure 5C), less buried beads (p < 0.001, n = 8) in the MBT

(Figure 5D), and a less preference for sucrose (p< 0.001, n= 6) in the

SPT (Figure 5E). After SNAPwas injected into BLA of Controlmice,

no significant changes were observed in behavioral tests compared

with Control + NS group (p > 0.05, n = 6–10).

The behavior of CACS mice was measured 30 min after

microinjection of SNAP, the time (p < 0.01, n = 10) and

distance covered (p < 0.05, n = 10) in the OFT central zone

were significantly greater in CACS + SNAP mice than in CACS

+ NS mice. (Figure 5B). The CACS + SNAP mice also showed

significantly more entries (p < 0.05, n = 10) and longer times (p <
0.01, n = 10) in the open arms of the EPM than CACS + NS mice

(Figure 5C). Furthermore, the CACS + SNAP group had more

buried marbles (p < 0.01, n = 8; Figure 5D) and a greater sucrose

preference (p < 0.01, n = 6; Figure 5E) than the CACS + NS group.

SNAP microinjection into the basolateral
amygdala affected the intestinal
characteristics of chronic acute
combining stress mice

The Control + NS group, Control + SNAP group, CACS +NS

group and CACS + SNAP group were injected with NS or SNAP

in BLA and then gavaged with charcoal solution to measure fecal

excretion time and water content. Compared with the Control +

NS group, the fecal excretion time was significantly shorter (p <
0.01, n = 8, Figure 6A), and the fecal water content was

significantly higher (p < 0.05, n = 8, Figure 6B) in the CACS

+ NS mice. However, the CACS mice receiving SNAP

microinjection into the BLA exhibited significantly longer

fecal excretion times (p < 0.01, n = 8, Figure 6A) and lower

fecal water contents (p < 0.01, n = 8, Figure 6B) than the CACS +

FIGURE 4
CACS induced anxiety-like behaviors and activated MCH neurons in the mice. (A) The timeline of Experiment 4. (B) Changes in stay time at the
OFT center on days 1, 3, 7, 14, 18, and 22 during CACS modeling and CACS mice showed anxiety-like behaviors (n = 10). (C) A representative
photograph of MCH/C-FOS fluorescence immunohistochemistry in the LHA of the control group and neurons co-expressed with MCH/C-FOS,
indicating the number of MCH neurons activated (n = 6). (D) Representative fluorescence immunohistochemistry photographs of MCH/C-FOS
in the LHA of the CACS model mice (n = 6).
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NS mice. This suggests that SNAP alleviated diarrhea symptoms

in the CACS model mice. ELISA showed that TNF-α and IL-6

expression was significantly higher in the collected colon tissues

of CACS + NS mice (p < 0.001, n = 10, Figures 6C,D) than in the

Control + NS mice, while IL-10 expression did not differ

significantly (p > 0.05, n = 8, Figure 6E). In CACS mice

treated with SNAP, expressions of TNF-α and IL-6 were

decreased significantly in the colon compared with CACS +

NS mice (p < 0.001, n = 10, Figures 6C,D). The western blot

results showed that the expression of occludin and ZO1 was

significantly lower in the colon tissues of CACS + NS mice than

in the Control + NS mice and significantly higher in the CACS +

SNAP mice than in the CACS + NS mice (p < 0.001, n = 6,

Figure 6F).

SNAP microinjection into the basolateral
amygdala did not modify the expression of
neuronal nitric oxide synthase or 5-HT in
chronic acute combining stress mice

The myenteric plexus of the intestine was exposed for fluoro-

immunohistochemical staining. The results showed significantly

higher 5-HT expression in the CACS + NS group than in the

FIGURE 5
SNAP microinjection into the BLA affected the anxiety-like behaviors of CACS mice. (A) The timeline of Experiment 5. (B,C,D,E) Representative
traces of locomotor activity in theOFT (B) (left), EPM (C) (left), the effects of microinjection of SNAP into the BLA of the CACSmodel mice on the OFT
center residence time and distance (B), EPM open arm entry times and residence time (C), the number of marbles buried in the MBT (D), and sucrose
preference (E). The data are presented as themean ± SEM (n= 6–10mice per group). *p < 0.05, **p < 0.01, ***p < 0.001 versus the Control +NS
group, #p < 0.05, ##p < 0.01, ###p < 0.001 versus the CACS + NS group.
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Control + NS group (p < 0.001, n = 6–8, Figures 7A,C,E). The

expression of 5-HT did not differ significantly between the CACS

+ NS and CACS + SNAP groups (p > 0.05, n = 6–8, Figures

7A,C,E). Likewise, the expression of nNOS was higher in the

CACS + NS group than in the Control + NS group (p < 0.001, n =

6, Figures 7B,D) but did not differ significantly between the

CACS + NS and CACS + SNAP groups (p > 0.05, n = 6,

Figures 7B,D).

Discussion

In this study, both exogenous MCH microinjected into the

BLA and chemogenetic activation of MCH neurons in the LHA

induced anxiety-like behaviors, and the MCHergic circuit from

the LHA to the BLA was investigated in mice. The hyper-

reactivity of MCHergic circuit might play an important role in

inducing anxiety in the CACS mice, which was verified by

microinjection of MCHR1 blocker SNAP into the BLA.

Further, intestinal disturbances associated with anxiety were

alleviated by administration of SNAP in the BLA through

reducing inflammation and improving intestinal permeability.

Considerable evidence suggests that the LHA is a hub for the

integration and regulation of feeding, reward, stress, and

motivated behavior (Hurley and Johnson, 2014; Tyree et al.,

2018; Perez-Bonilla et al., 2020). The gut-brain peptide MCH,

mainly expressed in the LHA is associated with some of these

functions, including energy balance and sleep–wake rhythms,

anxiety-like behaviors and so on (Pelluru et al., 2013; Oh et al.,

2020; Al-Massadi et al., 2021). Kim et al. (2015) found that

transcriptionally upregulated MCH expression induced by

repeated stress promoted anxiety-like behaviors, and that the

key nucleus involved in the response seems to be the BLA (Kim

and Han, 2016c). As known, the BLA is the “fear and stress

center” of the limbic system and expresses MCHR1 (Jang J. H.

et al., 2018), which suggests a possible functional link between the

LHA and the BLA areas in anxiety and related symptoms.

Firstly, our fluorescence immunohistochemistry results

showed the expression of MCHR in the BLA, and then we

microinjected exogenous MCH into the BLA of mice and

examined their behaviors using the OFT and EPM test 30 min

later. The observed anxiety-like behaviors led us to speculate that

there might be a fiber projection relationship between MCHergic

neurons from the LHA and BLA. To determine the origin of the

nerve fibers and prove this conjecture, we then injected FG into

the BLA of mice for retrograde tracking. The fluorescence

immunohistochemistry results showed that FG-labeled

neurons in the LHA partially coincided with MCH neurons,

indicating that MCHergic neurons in the LHA could project to

the BLA. It has been reported that stress-induced activation of

MCH receptors in the BLA can lead to deficits in social and

emotion-related behaviors (Kim and Han, 2016b). Furthermore,

injecting MCH into the BLA has been found to generally increase

p-CamKIIα and produce socially impaired and depressive

behaviors. Conversely, MCH knockout has been shown to

reduce p-CAMKIIα in the BLA of mice and to make them

FIGURE 6
Microinjection of SNAP in BLA affected intestinal characters in CACSmice. (A,B)Changes in fecal excretion time (A), fecal water content (B), and
the effects of injecting SNAP into the BLA on fecal excretion time and fecal water content. (C,D,E) Changes in IL-6, TNF-α, and IL-10 in the colon
tissues of the CACS model mice and the effects of injecting SNAP in the BLA on IL-6, TNF-α, and IL-10 in the colon tissues of the CACS model mice.
(F) Changes in occludin and ZO1 in the colons of the CACS model mice and the effect of injecting SNAP in the BLA on occludin and ZO1 in the
colons of the CACSmodel mice. The data are presented as the mean ± SEM (n = 6–10mice per group). *p < 0.05, **p < 0.01, ***p < 0.001 versus the
control group, #p < 0.05, ##p < 0.01, ###p < 0.001 versus the CACS + NS group.
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resistant to chronic stress (Kim et al., 2015). Our results are

consistent with mentioned findings.

We further activated MCH neurons in the LHA using

chemogenetics to investigate the role of endogenous MCH in

anxiety-like behavior. We induced MCH neuron activation by

intraperitoneal injection of CNO, a ligand of hM3Dq, in AAV-

injected mice. Because CNO is one of the metabolites of

clozapine, which belongs to a class of antipsychotic drugs, we

first determined the appropriate concentration inmice to rule out

an effect of the drug itself on anxiety. Referring to previous

studies (Naganuma et al., 2018), we first chose a dose of

0.3 mg/kg. However, our experiment showed that this dose

affected the behavior of mice in OFT, whereas a dose of

0.15 mg/kg had no significant effect. Thus, we activated MCH

neurons in the LHA with 0.15 mg/kg, which aggravated anxiety.

Conversely, blocking the MCH receptors in the BLA ameliorated

it. These results indicate that MCH neurons play a role in

anxiety-like behaviors through the LHA–BLA pathway.

It was reported that MCH receptors are expressed in glutamate

and GABAergic neurons of BLA (Kim et al., 2015). So, on the one

hand, glutamate neurons in the BLA were speculated to be directly

regulated by MCH from LHA. Since BLA sends out glutamate

energy projection to CeA, CeA in turn projects adrenocorticotropin-

releasing hormone to the paraventricular nucleus of hypothalamus

to participate in the activation of HPA axis, thus regulating stress-

induced anxiety behavior and intestinal changes (Flandreau et al.,

2012). On the other hand, based on the networks of parvalbumin-

positive interneurons in the BLA (Woodruff and Sah, 2007) and

increased locomotor activity led by MCH receptor 1 deletion from

GABAergic neurons (Chee et al., 2019), it is believed that

GABAergic interneurons indirectly alter the excitability of

glutamatergic projection neurons.

FIGURE 7
SNAPmicroinjection into the BLA did not modify the expression of nNOS or 5-HT in CACSmice. (A,C,E) Effects of SNAPmicroinjection into the
BLA on 5-HT expression in the colons of the CACSmodel mice. The number of 5-HT-positive cells and concentration increased in the model group
but did not decrease significantly in the SNAP group. (B,D) Effects of SNAPmicroinjection into the BLA on nNOS expression in the colons of the CACS
modelmice. The number of nNOS-positive cells increased in themodel group but did not decrease significantly in the SNAP group. The data are
presented as the mean ± SEM (n = 6–8mice per group). *p < 0.05, **p < 0.01, ***p < 0.001 versus the control group, #p < 0.05, ##p < 0.01, ###p <
0.001 versus the CACS + NS group.
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Although chronic mild stress model has been reported to

produce diverse modifications, it has been widely used to study

behaviours associated with anxiety and depression and possesses

face, construct, and predictive validity (Willner, 1997; Wiborg,

2013; Vitale et al., 2017). Chronic unpredictable and restraint

stress can mimic anxiety states and irritable bowel syndrome

(IBS)-like symptoms to a considerable extent, ranging from

central nervous system disorders to bowel movement and

visceral sensory disturbance (Zou et al., 2008). In this study,

mice subjected to 22 days of CACS showed anxiety-like behaviors

in the OFT and EPM test. In frozen sections of their brains, c-Fos

expression was significantly higher in CACS model mice than in

control mice, indicating greater MCH neurons activation.

Conversely, microinjection of an MCH receptor antagonist

into the BLA relieved the anxiety-like behaviors in the OFT

and EPM test in CACS model mice and led to increases in buried

marbles and sucrose preference.

Stress-induced IBS-like symptoms mainly include changes in

stool frequency or form due to visceral sensitivity and abnormal

intestinal motility (Jia et al., 2018). IBS is thought to be a disorder

of the brain–gut axis, which is the pathway through which the

intestine communicates with the brain through neuroendocrine

and inflammatory pathways (Videlock and Chang, 2021).

Kokkotou et al. (2008) detected increased expression of MCH

and its receptor in the colon of patients with inflammatory bowel

disease, but its role in the intestinal tract remains unclear. In this

study, we detected changes in the fecal excretion time and fecal

water content in CACS mice on Day 22, suggesting that anxiety

caused significant intestinal dysfunction in mice. Conversely,

SNAP microinjected into the BLA ameliorated IBS-like

symptoms, further confirming the role of the LHA–BLA

MCHergic pathway in stress-induced IBS-like symptoms.

Clinical studies have shown increased number and activation

of mast cells in patients with IBS, which release various

mediators, including pro-inflammatory cytokines and 5-HT,

to alter intestinal sensation, motility, secretion, and

permeability (Krammer et al., 2019). In this study, we also

found higher expression levels of 5-HT in CACS group

showed by intestinal immunohistochemistry and ELISA. It is

believed that the abnormal expression of 5-HT might be a factor

to influence the intestine of CACS mice. NO synthase (NOS) is

also a factor involved in the pathogenesis of IBS. Previous studies

showed that the expression of nNOS protein and mRNA in the

colon of neonatal maternal separationmodel rats was higher than

that of normal rats, while inducible NOS (iNOS) and endothelial

NOS (eNOS) did not change significantly in the two groups

(Tjong et al., 2011). In addition, nNOS is a biomarker of Cajal

stromal cells in IBS-like diarrhea caused by stress (Jang D. E.

et al., 2018). The increased nNOS suggested the presence of more

Cajal cells in CACS mice. Other studies have also shown that

nNOS is positively correlated with irritable bowel motility (Han

et al., 2021). However, SNAP treatment had no significant effect

FIGURE 8
Schematic of this study. This study investigated the role of the LHA-BLA MCHergic neural pathway in regulating stress-induced anxiety and
intestinal function in mice. The results showed that both injection of MCH and activation of MCH neurons in the BLA could lead to anxious-like
behavior in mice, while injection of SNAP into the BLA could reduce anxious-like behavior in both activated MCH neurons and CACSmodel mice. In
addition to the changes in their emotional behavior, the CACS model mice showed intestinal IBS-like symptoms (inflammation and increased
permeability). SNAP treatment could improve these symptoms, suggesting that this pathway is involved in regulating emotional behavior and
intestinal motility changes in anxious mice.
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on the expression of 5-HT or nNOS in CACS mice, which

implied that neither 5-HT nor nNOS might be the mediator

through which the LHA–BLAMCHergic neural pathway acts on

the gastrointestinal tract.

It is known that low-grade inflammation and changes in

intestinal permeability are frequent among IBS patients (Jang

J. H. et al., 2018). We further investigated the intestinal

permeability and inflammation factors in CACS mice.

Western blot analysis of tight junction–related proteins

showed that the expression of occludin and ZO1 decreased

significantly in CACS mice but increased after SNAP

treatment. Furthermore, ELISA detection of TNF-α and IL-

6 showed elevated levels of both inflammatory factors in

CACS mice. The intestinal barrier prevents antigens,

pathogens, and other pro-inflammatory substances from

entering the body. However, increased intestinal

permeability can lead to local or systemic inflammation

and disease (Fukui, 2016). SNAP reduced the expression of

inflammatory factors in the model group, inhibiting intestinal

inflammation. Therefore, we speculate that BLA-blocking

MCHR1 could reduce intestinal hyperpermeability and

inflammation caused by stress, thus improving intestinal

motility.

SNAP, as the specific antagonist of theMCHR1, is effective in

reducing MCH-induced food-seeking behaviors and high-fat

food reinforced operant responding (Nair et al., 2009). In

CACS mice, the pretreatment of SNAP in the BLA

ameliorated IBS-like symptoms, increased the expression of

occludin and ZO1 and reduced the expression of

inflammatory factors, which suggested that MCHR1 was

involved in stress-inducing intestinal symptoms. Similar

results also reported SNAP attenuated stress-induced

hyperthermia and reversed decreased sucrose intake in the

chronic mild stress anhedonia model (Smith et al., 2009).

However, SNAP did not recover the elevated expression of 5-

HT or nNOS in CACS mice, which indicated different

neurotransmitters might be responding to CACS inducing

stress. It has been reported that oxytoxin, galanin and

dopamine are involved in stress-related behavioral modulation

(Bajo et al., 2012; de la Mora et al., 2016; Hernandez-Perez et al.,

2018; Narvaez et al., 2018; Micioni Di Bonaventura et al., 2019;

Ballas et al., 2021; Deal et al., 2021).

In conclusion, our findings suggest that MCH plays a role in

stress-induced anxious behaviors and intestinal dynamic changes

through the LHA–BLA pathway. The MCHR1 antagonist SNAP

acting on the BLA can relieve stress-induced anxiety and reduce

intestinal permeability and inflammation, thus alleviating stress-

induced IBS-like symptoms (Figure 8). However, the detailed

molecular mechanisms remain unclear. Further research is

needed to elucidate the role of MCH in anxiety disorders

through the LHA–BLA pathway and explore potential IBS

treatments based on the brain–gut axis.
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